1
|
Li Z, Tong H, Ni M, Zheng Y, Yang X, Tan Y, Li Z, Jiang M. An at-leg pellet and associated Penicillium sp. provide multiple protections to mealybugs. Commun Biol 2024; 7:580. [PMID: 38755282 PMCID: PMC11099121 DOI: 10.1038/s42003-024-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Beneficial fungi are well known for their contribution to insects' adaptation to diverse habitats. However, where insect-associated fungi reside and the underlying mechanisms of insect-fungi interaction are not well understood. Here, we show a pellet-like structure on the legs of mealybugs, a group of economically important insect pests. This at-leg pellet, formed by mealybugs feeding on tomato but not by those on cotton, potato, or eggplant, originates jointly from host secretions and mealybug waxy filaments. A fungal strain, Penicillium citrinum, is present in the pellets and it colonizes honeydew. P. citrinum can inhibit mealybug fungal pathogens and is highly competitive in honeydew. Compounds within the pellets also have inhibitory activity against mealybug pathogens. Further bioassays suggest that at-leg pellets can improve the survival rate of Phenacoccus solenopsis under pathogen pressure, increase their sucking frequency, and decrease the defense response of host plants. Our study presents evidences on how a fungi-associated at-leg pellet provides multiple protections for mealybugs through suppressing pathogens and host defense, providing new insights into complex insect × fungi × plant interactions and their coevolution.
Collapse
Affiliation(s)
- Zicheng Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Haojie Tong
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Meihong Ni
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yiran Zheng
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yumei Tan
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Zhang Y, Li Z, Peng Y, Guo Z, Wang H, Wei T, Shakir Y, Jiang G, Deng Y. Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME COMMUNICATIONS 2024; 4:ycae013. [PMID: 38495633 PMCID: PMC10942772 DOI: 10.1093/ismeco/ycae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhidong Li
- Office of International Business and Technology Application, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - Yuan Peng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zimu Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Guohua Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Chander AM, Singh NK, Venkateswaran K. Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. J Indian Inst Sci 2023; 103:1-6. [PMID: 37362853 PMCID: PMC10196283 DOI: 10.1007/s41745-023-00388-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
Microbes are important decomposers of organic waste. By decomposing organic waste and using it for their growth, microbes play an important role in maintaining ecosystem's carbon and nitrogen cycles. An ecosystem's microbial shift may disturb it's carbon/nitrogen cycle as a result of any climate change or humanitarian factors, but heat produced by various instruments and greenhouse gases contribute significantly to global warming which in turn may be related to microbial shift of ecosystems. To reduce greenhouse gas emissions and global warming, innovative clean energy production methods must be employed to develop fuels with minimal greenhouse effect. Biofuels, such as bioethanol, provide clean energy with less carbon dioxide emissions. For the production of bioethanol, it is always recommended to use microbes that are capable of decomposing complex organic matter (cellulose, lignin, hemicellulose). Some microbes can efficiently decompose complex organic matter due to the presence of genetic machinery that produces cellulases and β-glucosidase. The membrane transporters are also important for microbes in uptake of simple sugars for metabolism and ethanol production. Microbial technologies are addressing the future needs for not only organic waste management but also clean energy/bioethanol production. However, the role of these technologies on space missions and extraterrestrial settings needs to be explored to improve long term space missions.
Collapse
Affiliation(s)
- Atul Munish Chander
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 USA
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 USA
| |
Collapse
|
4
|
Blachowicz A, Mhatre S, Singh NK, Wood JM, Parker CW, Ly C, Butler D, Mason CE, Venkateswaran K. The Isolation and Characterization of Rare Mycobiome Associated With Spacecraft Assembly Cleanrooms. Front Microbiol 2022; 13:777133. [PMID: 35558115 PMCID: PMC9087587 DOI: 10.3389/fmicb.2022.777133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Ensuring biological cleanliness while assembling and launching spacecraft is critical for robotic exploration of the solar system. To date, when preventing forward contamination of other celestial bodies, NASA Planetary Protection policies have focused on endospore-forming bacteria while fungi were neglected. In this study, for the first time the mycobiome of two spacecraft assembly facilities at Jet Propulsion Laboratory (JPL) and Kennedy Space Center (KSC) was assessed using both cultivation and sequencing techniques. To facilitate enumeration of viable fungal populations and downstream molecular analyses, collected samples were first treated with chloramphenicol for 24 h and then with propidium monoazide (PMA). Among cultivable fungi, 28 distinct species were observed, 16 at JPL and 16 at KSC facilities, while 13 isolates were potentially novel species. Only four isolated species Aureobasidium melanogenum, Penicillium fuscoglaucum, Penicillium decumbens, and Zalaria obscura were present in both cleanroom facilities, which suggests that mycobiomes differ significantly between distant locations. To better visualize the biogeography of all isolated strains the network analysis was undertaken and confirmed higher abundance of Malassezia globosa and Cyberlindnera jadinii. When amplicon sequencing was performed, JPL-SAF and KSC-PHSF showed differing mycobiomes. Metagenomic fungal reads were dominated by Ascomycota (91%) and Basidiomycota (7.15%). Similar to amplicon sequencing, the number of fungal reads changed following antibiotic treatment in both cleanrooms; however, the opposite trends were observed. Alas, treatment with the antibiotic did not allow for definitive ascribing changes observed in fungal populations between treated and untreated samples in both cleanrooms. Rather, these substantial differences in fungal abundance might be attributed to several factors, including the geographical location, climate and the in-house cleaning procedures used to maintain the cleanrooms. This study is a first step in characterizing cultivable and viable fungal populations in cleanrooms to assess fungal potential as biocontaminants during interplanetary explorations. The outcomes of this and future studies could be implemented in other cleanrooms that require to reduce microbial burden, like intensive care units, operating rooms, or cleanrooms in the semiconducting and pharmaceutical industries.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Cynthia Ly
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
5
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
6
|
Yang J, Fu Y, Liu H. Microbiomes of air dust collected during the ground-based closed bioregenerative life support experiment "Lunar Palace 365". ENVIRONMENTAL MICROBIOME 2022; 17:4. [PMID: 35081988 PMCID: PMC8793263 DOI: 10.1186/s40793-022-00399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the dynamics of airborne microbial communities and antibiotic resistance genes (ARGs) in space life support systems is important because potential pathogens and antibiotic resistance pose a health risk to crew that can lead to mission failure. There have been few reports on the distribution patterns of microbiomes and ARGs in space life support systems. In particular, there have been no detailed investigations of microbiomes and/or antibiotic resistance based on molecular methods in long-term confined bioregenerative life support systems (BLSSs). Therefore, in the present study, we collected air dust samples from two crew shifts, different areas, and different time points in the "Lunar Palace 365" experiment. We evaluated microbial diversity, species composition, functional potential, and antibiotic resistance by combining cultivation-independent analyses (amplicon, shot-gun sequencing, and qPCR). RESULTS We found that the bacterial community diversity in the Lunar Palace1 (LP1) system was higher than that in a controlled environment but lower than that in an open environment. Personnel exchange led to significant differences in bacterial community diversity, and source tracking analysis revealed that most bacteria in the air derived from the cabin crew and plants, but no differences in microbial function or antibiotic resistance were observed. Thus, human presence had the strongest effect on the succession of microbial diversity in the BLSSs. CONCLUSIONS Our results highlight that microbial diversity in BLSSs is heavily influenced by changes in crew and is unique from other open and controlled environments. Our findings can be used to help develop safe, enclosed BLSS that meet the requirements of human survival and habitation in outer space. In addition, our results can further enhance our understanding of the indoor air microbial community and effectively maintain a safe working and living environment, including plant growth.
Collapse
Affiliation(s)
- Jianlou Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
7
|
Chen Y, Xu C, Zhong C, Lyu Z, Liu J, Chen Z, Dun H, Xin B, Xie Q. Temporal Characteristics of the Oropharyngeal and Nasal Microbiota Structure in Crewmembers Stayed 180 Days in the Controlled Ecological Life Support System. Front Microbiol 2021; 11:617696. [PMID: 33613468 PMCID: PMC7886687 DOI: 10.3389/fmicb.2020.617696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Confined experiments are carried out to simulate the closed environment of space capsule on the ground. The Chinese Controlled Ecological Life Support System (CELSS) is designed including a closed-loop system supporting 4 healthy volunteers surviving for 180 days, and we aim to reveal the temporal characteristics of the oropharyngeal and nasal microbiota structure in crewmembers stayed 180 days in the CELSS, so as to accumulate the information about microbiota balance associated with respiratory health for estimating health risk in future spaceflight. We investigated the distribution of microorganisms and their dynamic characteristics in the nasal cavity and oropharynx of occupants with prolonged confinement. Based on the 16S rDNA v3–v4 regions using Illumina high-throughput sequencing technology, the oropharyngeal and nasal microbiota were monitored at eight time points during confinement. There were significant differences between oropharyngeal and nasal microbiota, and there were also individual differences among the same site of different volunteers. Analysis on the structure of the microbiota showed that, in the phylum taxon, the nasal bacteria mainly belonged to Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, etc. In addition to the above phyla, in oropharyngeal bacteria Fusobacterial accounted for a relatively high proportion. In the genus taxon, the nasal and oropharyngeal bacteria were independent. Corynebacterium and Staphylococcus were dominant in nasal cavity, and Corynebacterium, Streptococcus, and Neisseria were dominant in oropharynx. With the extension of the confinement time, the abundance of Staphylococcus in the nasal cavity and Neisseria in the oropharynx increased, and the index Chao fluctuated greatly from 30 to 90 days after the volunteers entered the CELSS. Conclusion: The structure and diversity of the nasal and oropharyngeal microbiota changed in the CELSS, and there was the phenomenon of migration between occupants, suggesting that the microbiota structure and health of the respiratory tract could be affected by living in a closed environment for a long time.
Collapse
Affiliation(s)
- Yanwu Chen
- Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing, China
| | - Chongfa Zhong
- China Astronaut Research and Training Center, Beijing, China
| | - Zhitang Lyu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Baoding, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing, China
| | - Zhanghuang Chen
- China Astronaut Research and Training Center, Beijing, China
| | - Huanhuan Dun
- China Astronaut Research and Training Center, Beijing, China
| | - Bingmu Xin
- Space Science and Technology Institute (Shenzhen), Shenzhen, China.,China Astronaut Research and Training Center, Beijing, China
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
8
|
Mahnert A, Verseux C, Schwendner P, Koskinen K, Kumpitsch C, Blohs M, Wink L, Brunner D, Goessler T, Billi D, Moissl-Eichinger C. Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth. MICROBIOME 2021; 9:27. [PMID: 33487169 PMCID: PMC7831191 DOI: 10.1186/s40168-020-00959-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.
Collapse
Affiliation(s)
- Alexander Mahnert
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Cyprien Verseux
- Laboratory of Applied Space Microbiology, Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - Petra Schwendner
- University of Florida, Space Life Sciences Lab, 505 Odyssey Way, Exploration Park, N. Merritt Island, FL 32953 USA
| | - Kaisa Koskinen
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christina Kumpitsch
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marcus Blohs
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Lisa Wink
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Brunner
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Theodora Goessler
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica s.n.c, 00133 Rome, Italy
| | - Christine Moissl-Eichinger
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
9
|
Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, Shen J, Vlamakis H, Hartmann EM, Huttenhower C. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. MICROBIOME 2021; 9:17. [PMID: 33478576 PMCID: PMC7819323 DOI: 10.1186/s40168-020-00961-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND High-throughput sequencing provides a powerful window into the structural and functional profiling of microbial communities, but it is unable to characterize only the viable portion of microbial communities at scale. There is as yet not one best solution to this problem. Previous studies have established viability assessments using propidium monoazide (PMA) treatment coupled with downstream molecular profiling (e.g., qPCR or sequencing). While these studies have met with moderate success, most of them focused on the resulting "viable" communities without systematic evaluations of the technique. Here, we present our work to rigorously benchmark "PMA-seq" (PMA treatment followed by 16S rRNA gene amplicon sequencing) for viability assessment in synthetic and realistic microbial communities. RESULTS PMA-seq was able to successfully reconstruct simple synthetic communities comprising viable/heat-killed Escherichia coli and Streptococcus sanguinis. However, in realistically complex communities (computer screens, computer mice, soil, and human saliva) with E. coli spike-in controls, PMA-seq did not accurately quantify viability (even relative to variability in amplicon sequencing), with its performance largely affected by community properties such as initial biomass, sample types, and compositional diversity. We then applied this technique to environmental swabs from the Boston subway system. Several taxa differed significantly after PMA treatment, while not all microorganisms responded consistently. To elucidate the "PMA-responsive" microbes, we compared our results with previous PMA-based studies and found that PMA responsiveness varied widely when microbes were sourced from different ecosystems but were reproducible within similar environments across studies. CONCLUSIONS This study provides a comprehensive evaluation of PMA-seq exploring its quantitative potential in synthetic and complex microbial communities, where the technique was effective for semi-quantitative purposes in simple synthetic communities but provided only qualitative assessments in realistically complex community samples. Video abstract.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Kelsey N. Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Sena Bae
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Emma K. Accorsi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| |
Collapse
|
10
|
Xin CX, Lodhi AF, Qu X, Shakir Y, Deng YL, Zhang Y. Evaluating Quantitative Measures of Microbial Contamination from China's Spacecraft Materials. ASTROBIOLOGY 2020; 20:1014-1023. [PMID: 32783565 DOI: 10.1089/ast.2019.2070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Different methods are used for the quantification of microbial load on spacecrafts. Here, we investigated a number of methodologies currently in use with the intent to identify the most accurate methods for the quantification of microbes on low-biomass metal surfaces such as those used in China's Space Station. In a previous study, we observed a high abundance of Bacillus sp. TJ 1-1 on interior surfaces of China's Space Station, and we therefore undertook this study in which we used a range of 102 to 109 cells/100 cm2 of this strain for setting different contamination levels. Four of the most common analytical approaches (contact plate, spread plate, quantitative PCR, and BacLight™) were used to quantify the number of viable microbial cells associated with the materials of China's Space Station. Results show that, for 102 cells/100 cm2, the contact plate method is the most convenient and reliable. For microbial contamination levels ≥103 cells/100 cm2 and a sampling area of 121 cm2, the BacLight method proved to be most reliable for the detection of live cells. Moreover, a sampling area of 121 cm2 was found to be the most suitable for analysis of metal surfaces for space station interiors, which are usually low in biomass. These results establish suitable sampling and processing methodologies for microbial enumeration of metal surfaces on China's Space Station.
Collapse
Affiliation(s)
- Cong-Xin Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Adil Farooq Lodhi
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Xi Qu
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, China
| | - Yasmeen Shakir
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
11
|
Wischer D, Schneider D, Poehlein A, Herrmann F, Oruc H, Meinhardt J, Wagner O, Ahmed R, Kharin S, Novikova N, Haag R, Daniel R, Grohmann E. Novel Antimicrobial Cellulose Fleece Inhibits Growth of Human-Derived Biofilm-Forming Staphylococci During the SIRIUS19 Simulated Space Mission. Front Microbiol 2020; 11:1626. [PMID: 32849336 PMCID: PMC7405646 DOI: 10.3389/fmicb.2020.01626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Two novel antimicrobial surface coatings were assessed for their lasting antibacterial effect under simulated space conditions during the SIRIUS-19 study. Because long-term space travel can affect the human immune system, astronauts are particularly susceptible to infectious disease. Moreover, the space flight environment can alter the composition of microbial communities within the spacecraft and increase bacterial virulence and resistance to antibiotics. In addition to protecting the crew from infection by human pathogens, prevention and elimination of bacterial contamination is important to avoid corrosion and damage of the technical equipment. The antimicrobial coating AGXX® consists of micro-galvanic cells composed of silver and ruthenium which damage bacterial cells through the release of reactive oxygen species. Over the last years, several studies on the antimicrobial effect of AGXX® have demonstrated an effective inhibition of growth and even complete elimination of many pathogenic bacteria – including multiresistant microorganisms – as well as their biofilms. The second antimicrobial coating, GOX, consists of chemically modified graphene oxide. Through a positive surface charge and its flexible scaffold, GOX can multivalently bind and immobilize bacteria via electrostatic attraction. Here, AGXX® and GOX were applied to non-metallic carriers not previously tested. The antimicrobial coated materials, as well as uncoated control samples, were exposed in the SIRIUS artificial space module and analyzed at different time points during the 4-months isolation study. Survival and growth of airborne heterotrophic, aerobic bacteria on the surfaces were assessed by cultivation-based methods, employing growth conditions suitable for potential human pathogens. Human-associated, biofilm-forming Staphylococcus spp. (S. hominis, S. haemolyticus, and S. epidermidis) strongly dominated at all time points, most were resistant against erythromycin, kanamycin, and ampicillin. AGXX® coatings completely inhibited growth of these opportunistic pathogens on all tested surface materials. Particularly, AGXX®-cellulose fleece achieved a clear reduction in bacterial load able to recover post contact. GOX-cellulose fleece effectively immobilized bacteria. Sequence analysis of 16S rRNA gene amplicons revealed that the isolated Staphylococcus spp. did not dominate the overall bacterial community, accounting for only 0.1–0.4% of all sequences. Instead, molecular data revealed Lactobacillus, Comamonas, Pseudomonas, Sporosarcina, and Bacillus as the dominant genera across all samples and time points.
Collapse
Affiliation(s)
- Daniela Wischer
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Friederike Herrmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Harun Oruc
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Junias Meinhardt
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Olaf Wagner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rameez Ahmed
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sergey Kharin
- Institute of Biomedical Problems (IBMP), Moscow, Russia
| | | | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| |
Collapse
|
12
|
Abstract
This study provides the first assessment of monitoring cultivable and viable microorganisms on surfaces within a submerged, closed, analog habitat. The results of the analyses presented herein suggest that the surface material plays a role in microbial community structure, as the microbial populations differed between LDP and metal/glass surfaces. The metal/glass surfaces had less-complex community, lower bioburden, and more closely resembled the controls. These results indicated that material choice is crucial when building closed habitats, even if they are simply analogs. Finally, while a few species were associated with previously cultivated isolates from the International Space Station and MIR spacecraft, the majority of the microbial ecology of the submerged analog habitat differs greatly from that of previously studied analog habitats. Microbial contamination during long-term confinements of space exploration presents potential risks for both crew members and spacecraft life support systems. A novel swab kit was used to sample various surfaces from a submerged, closed, analog habitat to characterize the microbial populations. Samples were collected from various locations across the habitat which were constructed from various surface materials (linoleum, dry wall, particle board, glass, and metal), and microbial populations were examined by culture, quantitative PCR (qPCR), microbiome 16S rRNA gene sequencing, and shotgun metagenomics. Propidium monoazide (PMA)-treated samples identified the viable/intact microbial population of the habitat. The cultivable microbial population ranged from below the detection limit to 106 CFU/sample, and their identity was characterized using Sanger sequencing. Both 16S rRNA amplicon and shotgun sequencing were used to characterize the microbial dynamics, community profiles, and functional attributes (metabolism, virulence, and antimicrobial resistance). The 16S rRNA amplicon sequencing revealed abundance of viable (after PMA treatment) Actinobacteria (Brevibacterium, Nesternkonia, Mycobacterium, Pseudonocardia, and Corynebacterium), Firmicutes (Virgibacillus, Staphylococcus, and Oceanobacillus), and Proteobacteria (especially Acinetobacter) on linoleum, dry wall, and particle board (LDP) surfaces, while members of Firmicutes (Leuconostocaceae) and Proteobacteria (Enterobacteriaceae) were high on the glass/metal surfaces. Nonmetric multidimensional scaling determined from both 16S rRNA and metagenomic analyses revealed differential microbial species on LDP surfaces and glass/metal surfaces. The shotgun metagenomic sequencing of samples after PMA treatment showed bacterial predominance of viable Brevibacterium (53.6%), Brachybacterium (7.8%), Pseudonocardia (9.9%), Mycobacterium (3.7%), and Staphylococcus (2.1%), while fungal analyses revealed Aspergillus and Penicillium dominance. IMPORTANCE This study provides the first assessment of monitoring cultivable and viable microorganisms on surfaces within a submerged, closed, analog habitat. The results of the analyses presented herein suggest that the surface material plays a role in microbial community structure, as the microbial populations differed between LDP and metal/glass surfaces. The metal/glass surfaces had less-complex community, lower bioburden, and more closely resembled the controls. These results indicated that material choice is crucial when building closed habitats, even if they are simply analogs. Finally, while a few species were associated with previously cultivated isolates from the International Space Station and MIR spacecraft, the majority of the microbial ecology of the submerged analog habitat differs greatly from that of previously studied analog habitats.
Collapse
|
13
|
Current Progression: Application of High-Throughput Sequencing Technique in Space Microbiology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4094191. [PMID: 32685480 PMCID: PMC7327617 DOI: 10.1155/2020/4094191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
During a spaceflight, astronauts need to live in a spacecraft on orbit for a long time, and the relationship between humans and microorganisms in the closed environment of space is not the same as on the ground. The dynamic study of microorganisms in confined space shows that with the extension of the isolation time, harmful bacteria gradually accumulate. Monitoring and controlling microbial pollution in a confined environment system are very important for crew health and the sustainable operation of a space life support system. Culture-based assays have been used traditionally to assess the microbial loads in a spacecraft, and uncultured-based techniques are already under way according to the NASA global exploration roadmap. High-throughput sequencing technology has been used generally to study the communities of the environment and human on the ground and shows its broad prospects applied onboard. We here review the recent application of high-throughput sequencing on space microbiology and analyze its feasibility and potential as an on-orbit detection technology.
Collapse
|
14
|
Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S. Water and microbial monitoring technologies towards the near future space exploration. WATER RESEARCH 2020; 177:115787. [PMID: 32315899 DOI: 10.1016/j.watres.2020.115787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy.
| | - Caterina Levantesi
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| | - Diego Copetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Fabrizio Stefani
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Ilaria Locantore
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Vincenzo Guarnieri
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Cesare Lobascio
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Emmanouil Detsis
- European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080, Strasbourg Cedex, France
| | - Simona Rossetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| |
Collapse
|
15
|
Avila-Herrera A, Thissen J, Urbaniak C, Be NA, Smith DJ, Karouia F, Mehta S, Venkateswaran K, Jaing C. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS One 2020; 15:e0231838. [PMID: 32348348 PMCID: PMC7190111 DOI: 10.1371/journal.pone.0231838] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
The International Space Station (ISS) is a complex built environment physically isolated from Earth. Assessing the interplay between the microbial community of the ISS and its crew is important for preventing biomedical and structural complications for long term human spaceflight missions. In this study, we describe one crewmember’s microbial profile from body swabs of mouth, nose, ear, skin and saliva that were collected at eight different time points pre-, during and post-flight. Additionally, environmental surface samples from eight different habitable locations in the ISS were collected from two flights. Environmental samples from one flight were collected by the crewmember and samples from the next flight were collected after the crewmember departed. The microbial composition in both environment and crewmember samples was measured using shotgun metagenomic sequencing and processed using the Livermore Metagenomics Analysis Toolkit. Ordination of sample to sample distances showed that of the eight crew body sites analyzed, skin, nostril, and ear samples are more similar in microbial composition to the ISS surfaces than mouth and saliva samples; and that the microbial composition of the crewmember’s skin samples are more closely related to the ISS surface samples collected by the crewmember on the same flight than ISS surface samples collected by other crewmembers on different flights. In these collections, species alpha diversity in saliva samples appears to decrease during flight and rebound after returning to Earth. This is the first study to compare the ISS microbiome to a crewmember’s microbiome via shotgun metagenomic sequencing. We observed that the microbiome of the surfaces inside the ISS resemble those of the crew’s skin. These data support future crew and ISS microbial surveillance efforts and the design of preventive measures to maintain crew habitat onboard spacecraft destined for long term space travel.
Collapse
Affiliation(s)
- Aram Avila-Herrera
- Computating Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - James Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Camilla Urbaniak
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Nicholas A. Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - David J. Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Fathi Karouia
- KBRwyle, NASA Ames Research Center, Moffett Field, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Satish Mehta
- Microbiology Lab, Wyle Laboratories, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. MICROBIOME 2019; 7:50. [PMID: 30955503 PMCID: PMC6452512 DOI: 10.1186/s40168-019-0666-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a closed system inhabited by microorganisms originating from life support systems, cargo, and crew that are exposed to unique selective pressures such as microgravity. To date, mandatory microbial monitoring and observational studies of spacecraft and space stations have been conducted by traditional culture methods, although it is known that many microbes cannot be cultured with standard techniques. To fully appreciate the true number and diversity of microbes that survive in the ISS, molecular and culture-based methods were used to assess microbial communities on ISS surfaces. Samples were taken at eight pre-defined locations during three flight missions spanning 14 months and analyzed upon return to Earth. RESULTS The cultivable bacterial and fungal population ranged from 104 to 109 CFU/m2 depending on location and consisted of various bacterial (Actinobacteria, Firmicutes, and Proteobacteria) and fungal (Ascomycota and Basidiomycota) phyla. Amplicon sequencing detected more bacterial phyla when compared to the culture-based analyses, but both methods identified similar numbers of fungal phyla. Changes in bacterial and fungal load (by culture and qPCR) were observed over time but not across locations. Bacterial community composition changed over time, but not across locations, while fungal community remained the same between samplings and locations. There were no significant differences in community composition and richness after propidium monoazide sample treatment, suggesting that the analyzed DNA was extracted from intact/viable organisms. Moreover, approximately 46% of intact/viable bacteria and 40% of intact/viable fungi could be cultured. CONCLUSIONS The results reveal a diverse population of bacteria and fungi on ISS environmental surfaces that changed over time but remained similar between locations. The dominant organisms are associated with the human microbiome and may include opportunistic pathogens. This study provides the first comprehensive catalog of both total and intact/viable bacteria and fungi found on surfaces in closed space systems and can be used to help develop safety measures that meet NASA requirements for deep space human habitation. The results of this study can have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Aleksandra Checinska Sielaff
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
- Washington State University Extension - Youth and Families Program Unit, Washington State University, Pullman, WA, USA
| | - Camilla Urbaniak
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Ganesh Babu Malli Mohan
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jason M Wood
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Jeremiah Minich
- Marine Biology Research Division, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Teresa Mayer
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- NASA Ames Research Center, Space Bioscience Division, Moffett Field, Mountain View, CA, USA
- Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA.
| |
Collapse
|
17
|
Sobisch LY, Rogowski KM, Fuchs J, Schmieder W, Vaishampayan A, Oles P, Novikova N, Grohmann E. Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. Front Microbiol 2019; 10:543. [PMID: 30941112 PMCID: PMC6433718 DOI: 10.3389/fmicb.2019.00543] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
The International Space Station (ISS) is a closed habitat in a uniquely extreme and hostile environment. Due to these special conditions, the human microflora can undergo unusual changes and may represent health risks for the crew. To address this problem, we investigated the antimicrobial activity of AGXX®, a novel surface coating consisting of micro-galvanic elements of silver and ruthenium along with examining the activity of a conventional silver coating. The antimicrobial materials were exposed on the ISS for 6, 12, and 19 months each at a place frequently visited by the crew. Bacteria that survived on the antimicrobial coatings [AGXX® and silver (Ag)] or the uncoated stainless steel carrier (V2A, control material) were recovered, phylogenetically affiliated and characterized in terms of antibiotic resistance (phenotype and genotype), plasmid content, biofilm formation capacity and antibiotic resistance transferability. On all three materials, surviving bacteria were dominated by Gram-positive bacteria and among those by Staphylococcus, Bacillus and Enterococcus spp. The novel antimicrobial surface coating proved to be highly effective. The conventional Ag coating showed only little antimicrobial activity. Microbial diversity increased with increasing exposure time on all three materials. The number of recovered bacteria decreased significantly from V2A to V2A-Ag to AGXX®. After 6 months exposure on the ISS no bacteria were recovered from AGXX®, after 12 months nine and after 19 months three isolates were obtained. Most Gram-positive pathogenic isolates were multidrug resistant (resistant to more than three antibiotics). Sulfamethoxazole, erythromycin and ampicillin resistance were most prevalent. An Enterococcus faecalis strain recovered from V2A steel after 12 months exposure exhibited the highest number of resistances (n = 9). The most prevalent resistance genes were ermC (erythromycin resistance) and tetK (tetracycline resistance). Average transfer frequency of erythromycin, tetracycline and gentamicin resistance from selected ISS isolates was 10−5 transconjugants/recipient. Most importantly, no serious human pathogens such as methicillin resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) were found on any surface. Thus, the infection risk for the crew is low, especially when antimicrobial surfaces such as AGXX® are applied to surfaces prone to microbial contamination.
Collapse
Affiliation(s)
- Lydia-Yasmin Sobisch
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Katja Marie Rogowski
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Jonathan Fuchs
- Institute of Biology, University Freiburg, Freiburg, Germany
| | | | - Ankita Vaishampayan
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Patricia Oles
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | | | - Elisabeth Grohmann
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany.,Institute of Biology, University Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Merino N, Zhang S, Tomita M, Suzuki H. Comparative genomics of Bacteria commonly identified in the built environment. BMC Genomics 2019; 20:92. [PMID: 30691394 PMCID: PMC6350394 DOI: 10.1186/s12864-018-5389-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The microbial community of the built environment (BE) can impact the lives of people and has been studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations, complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater understanding of BE microorganisms can be achieved through basic information derived from the complete genome. Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards understanding these bacterial lifestyles. RESULTS Here, we selected bacterial genera commonly identified in the BE (or "Common BE genomes") and compared them against other prokaryotic genera ("Other genomes"). The "Common BE genomes" were identified in various climates and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly between genera. The genome size, GC content and GC skew strength of the "Common BE genomes" were statistically larger than those of the "Other genomes" but were not practically significant. In contrast, the strength of selected codon usage bias (S value) was statistically higher with a large effect size in the "Common BE genomes" compared to the "Other genomes." CONCLUSION Of the four genomic features tested, the S value could play a more important role in understanding the lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship between genomic features and the lifestyles of BE bacteria more robustly.
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Department of Earth Sciences, University of Southern California, Stauffer Hall of Science, Los Angeles, CA, 90089, USA
| | - Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, 90089-0641, USA
| | - Masaru Tomita
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. .,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan.
| |
Collapse
|
19
|
Zhang Y, Xin CX, Zhang LT, Deng YL, Wang X, Chen XY, Wang ZQ. Detection of Fungi from Low-Biomass Spacecraft Assembly Clean Room Aerosols. ASTROBIOLOGY 2018; 18:1585-1593. [PMID: 30383981 DOI: 10.1089/ast.2017.1803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highly sensitive and rapid detection of airborne fungi in space stations is essential to ensure disease prevention and equipment safety. In this study, quantitative loop-mediated isothermal amplification (qLAMP) was used to detect fungi in the aerosol of the low-biomass environment of China's space station assembly clean room (CSSAC). A qLAMP primer set for detecting a wide range of aerosol fungi was developed by aligning 34 sequences of isolated fungal species and 17 space station aerosol-related fungal species. Optimization of sample pretreatment conditions of the LAMP reaction increased the quantitative results by 1.29-1.96 times. The results showed that our qLAMP system had high amplification specificity for fungi, with a quantifiable detection limit as low as 102. The detected fungal biomass in the aerosol of CSSAC was 9.59 × 102-2.20 × 105 28S rRNA gene copy numbers/m3. This qLAMP assay may therefore replace traditional colony-forming unit and quantitative PCR methods as an effective strategy for detecting fungi in space stations.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Cong-Xin Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lan-Tao Zhang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, China
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiang Wang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, China
| | - Xiang-Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhao-Qian Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
20
|
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. MICROBIOME 2018; 6:204. [PMID: 30424821 PMCID: PMC6234677 DOI: 10.1186/s40168-018-0585-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. RESULTS The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii, and Aspergillus lentulus. Even though Rhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3. The AMR signatures associated with β-lactam, cationic antimicrobial peptide, and vancomycin were detected. Prominent virulence factors were cobalt-zinc-cadmium resistance and multidrug-resistance efflux pumps. CONCLUSIONS There was an increase in AMR and virulence gene factors detected over the period sampled, and metagenome sequences of human pathogens persisted over time. Comparative analysis of the microbial compositions of ISS with Earth analogs revealed that the ISS environmental surfaces were different in microbial composition. Metagenomics coupled with PMA treatment would help future space missions to estimate problematic risk group microbial pathogens. Cataloging AMR/virulence characteristics, succession, accumulation, and persistence of microorganisms would facilitate the development of suitable countermeasures to reduce their presence in the closed built environment.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Jason M. Wood
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Fathi Karouia
- Space Bioscience Division, NASA Ames Research Center, Moffett Field, CA USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| |
Collapse
|
21
|
Hao Z, Li L, Fu Y, Liu H. The influence of bioregenerative life-support system dietary structure and lifestyle on the gut microbiota: a 105-day ground-based space simulation in Lunar Palace 1. Environ Microbiol 2018; 20:3643-3656. [DOI: 10.1111/1462-2920.14358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/26/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
| | - Leyuan Li
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| | - Yuming Fu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| |
Collapse
|
22
|
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments. Appl Microbiol Biotechnol 2018; 102:1869-1887. [DOI: 10.1007/s00253-017-8712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
|
23
|
|
24
|
Schwendner P, Mahnert A, Koskinen K, Moissl-Eichinger C, Barczyk S, Wirth R, Berg G, Rettberg P. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing. MICROBIOME 2017; 5:129. [PMID: 28974259 PMCID: PMC5627443 DOI: 10.1186/s40168-017-0345-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND The Mars500 project was conceived as the first full duration simulation of a crewed return flight to Mars. For 520 days, six crew members lived confined in a specifically designed spacecraft mock-up. The herein described "MIcrobial ecology of Confined Habitats and humAn health" (MICHA) experiment was implemented to acquire comprehensive microbiota data from this unique, confined manned habitat, to retrieve important information on the occurring microbiota dynamics, the microbial load and diversity in the air and on various surfaces. In total, 360 samples from 20 (9 air, 11 surface) locations were taken at 18 time-points and processed by extensive cultivation, PhyloChip and next generation sequencing (NGS) of 16S rRNA gene amplicons. RESULTS Cultivation assays revealed a Staphylococcus and Bacillus-dominated microbial community on various surfaces, with an average microbial load that did not exceed the allowed limits for ISS in-flight requirements indicating adequate maintenance of the facility. Areas with high human activity were identified as hotspots for microbial accumulation. Despite substantial fluctuation with respect to microbial diversity and abundance throughout the experiment, the location within the facility and the confinement duration were identified as factors significantly shaping the microbial diversity and composition, with the crew representing the main source for microbial dispersal. Opportunistic pathogens, stress-tolerant or potentially mobile element-bearing microorganisms were predicted to be prevalent throughout the confinement, while the overall microbial diversity dropped significantly over time. CONCLUSIONS Our findings clearly indicate that under confined conditions, the community structure remains a highly dynamic system which adapts to the prevailing habitat and micro-conditions. Since a sterile environment is not achievable, these dynamics need to be monitored to avoid spreading of highly resistant or potentially pathogenic microorganisms and a potentially harmful decrease of microbial diversity. If necessary, countermeasures are required, to maintain a healthy, diverse balance of beneficial, neutral and opportunistic pathogenic microorganisms. Our results serve as an important data collection for (i) future risk estimations of crewed space flight, (ii) an optimized design and planning of a spacecraft mission and (iii) for the selection of appropriate microbial monitoring approaches and potential countermeasures, to ensure a microbiologically safe space-flight environment.
Collapse
Affiliation(s)
- Petra Schwendner
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center e.V. (DLR), Linder Höhe, 51147 Cologne, Germany
- Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
- Present address: UK Center for Astrobiology, University of Edinburgh, School of Physics and Astronomy, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK
| | - Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Kaisa Koskinen
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Simon Barczyk
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center e.V. (DLR), Linder Höhe, 51147 Cologne, Germany
| | - Reinhard Wirth
- Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center e.V. (DLR), Linder Höhe, 51147 Cologne, Germany
| |
Collapse
|
25
|
Be NA, Avila-Herrera A, Allen JE, Singh N, Checinska Sielaff A, Jaing C, Venkateswaran K. Whole metagenome profiles of particulates collected from the International Space Station. MICROBIOME 2017; 5:81. [PMID: 28716113 PMCID: PMC5514531 DOI: 10.1186/s40168-017-0292-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized. METHODS This study examined the whole metagenome of ISS microbes at both species- and gene-level resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared. RESULTS Species-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples. CONCLUSION Species-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. The overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.
Collapse
Affiliation(s)
- Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Aram Avila-Herrera
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jonathan E Allen
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Aleksandra Checinska Sielaff
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
- Present Address: Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
26
|
Blachowicz A, Mayer T, Bashir M, Pieber TR, De León P, Venkateswaran K. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat. MICROBIOME 2017; 5:62. [PMID: 28693587 PMCID: PMC5504618 DOI: 10.1186/s40168-017-0280-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. RESULTS Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after). Viable fungal families like Davidiellaceae, Teratosphaeriaceae, Pleosporales, and Pleosporaceae were shown to increase during the occupation time. CONCLUSIONS The results of this study revealed that the overall fungal diversity in the closed habitat changed during human presence; therefore, it is crucial to properly maintain a closed habitat to preserve it from deteriorating and keep it safe for its inhabitants. Differences in community profiles were observed when statistically treated, especially of the mycobiome of samples collected at day 20. On a genus level Epiccocum, Alternaria, Pleosporales, Davidiella, and Cryptococcus showed increased abundance over the occupation time.
Collapse
Affiliation(s)
- A Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
| | - M Bashir
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - T R Pieber
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - P De León
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - K Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA.
| |
Collapse
|