1
|
Wang C, Li Z, Huang X, Xu X, Xu X, Zhang K, Zhou Y, Bai J, Liu Z, Jiang Y, Tang Y, Deng X, Li S, Hu E, Peng W, Xiong L, Xiao Q, Yang Y, Qin Q, Liu S. Multi-Omic Analysis Reveals the Potential Anti-Disease Mechanism of Disease-Resistant Grass Carp. Int J Mol Sci 2025; 26:3619. [PMID: 40332099 PMCID: PMC12027461 DOI: 10.3390/ijms26083619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The gut-liver axis is essential in animal disease and health. However, the role of the gut-liver axis in the anti-disease mechanism of disease-resistant grass carp (DRGC) derived from the backcross of female gynogenetic grass carp (GGC) and male grass carp (GC) remains unclear. This study analyzed the changes in gut histopathology, fecal intestinal microflora and metabolites, and liver transcriptome between GC and DRGC. Histological analysis revealed significant differences in the gut between DRGC and GC. In addition, microbial community analyses indicated that hybridization induced gut microbiome variation by significantly increasing the proportion of Firmicutes and Bacteroidota in DRGC. Metabolomic data revealed that the hybridization-induced metabolic change was probably characterized by being related to taurocholate and sphinganine in DRGC. Transcriptome analysis suggested that the enhanced disease resistance of DRGC was primarily attributed to immune-related genes (SHMT2, GOT1, ACACA, DLAT, GPIA, TALDO1, G6PD, and FASN). Spearman's correlation analysis revealed a significant association between the gut microbiota, immune-related genes, and metabolites. Collectively, the gut-liver axis, through the interconnected microbiome-metabolite-gene pathway, may play a crucial role in the mechanism of greater disease resistance in DRGC, offering valuable insights for advancing the grass carp cultivation industry.
Collapse
Affiliation(s)
- Chongqing Wang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, China
| | - Zeyang Li
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Xu Huang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Xidan Xu
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Xiaowei Xu
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Kun Zhang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Yue Zhou
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Jinhai Bai
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Zhengkun Liu
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Yuchen Jiang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Yan Tang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Xinyi Deng
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Siyang Li
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Enkui Hu
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Wanjing Peng
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Ling Xiong
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Qian Xiao
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Yuhan Yang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| | - Qinbo Qin
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, China
| | - Shaojun Liu
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education, Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (C.W.); (Z.L.); (X.H.); (X.X.); (X.X.); (K.Z.); (Y.Z.); (J.B.); (Z.L.); (Y.J.); (Y.T.); (X.D.); (S.L.); (E.H.); (W.P.); (L.X.); (Q.X.); (Y.Y.); (S.L.)
| |
Collapse
|
2
|
Yu W, Yang J, Teng LW, Zhao XL, Zhu ZY, Cui S, Du WG, Liu ZS, Zeng ZG. Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard. Zool Res 2025; 46:139-151. [PMID: 39846192 PMCID: PMC11891006 DOI: 10.24272/j.issn.2095-8137.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome. Despite this, our understanding of gut microbiome plasticity and its role in host adaptability remains limited, particularly in reptiles. To clarify this issue, we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards ( Phrynocephalus vlangalii) between high-altitude (2 600 m a.s.l.) and superhigh-altitude (3 600 m a.s.l.) environments on Dangjin Mountain of the Qinghai-Xizang Plateau, China. One year later, we assessed the phenotypes and gut microbiomes of their offspring. Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations. High-altitude conditions increased diversity, and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments. Additionally, superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity, potentially linked to their lower growth rates. Overall, these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients. Furthermore, this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity, offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China
| | - Xiao-Long Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai 200241, China
| | - Ze-Yu Zhu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Sheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China. E-mail:
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
3
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
4
|
Brealey JC, Kodama M, Rasmussen JA, Hansen SB, Santos-Bay L, Lecaudey LA, Hansen M, Fjære E, Myrmel LS, Madsen L, Bernhard A, Sveier H, Kristiansen K, Gilbert MTP, Martin MD, Limborg MT. Host-gut microbiota interactions shape parasite infections in farmed Atlantic salmon. mSystems 2024; 9:e0104323. [PMID: 38294254 PMCID: PMC10886447 DOI: 10.1128/msystems.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Laurène A Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Aquaculture Department, SINTEF Ocean, Trondheim, Norway
| | - Martin Hansen
- Department of Environmental Science, Environmental Metabolomics Lab, Aarhus University, Roskilde, Denmark
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Norway, Bergen, Norway
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Shankregowda AM, Siriyappagouder P, Kuizenga M, Bal TMP, Abdelhafiz Y, Eizaguirre C, Fernandes JMO, Kiron V, Raeymaekers JAM. Host habitat rather than evolutionary history explains gut microbiome diversity in sympatric stickleback species. Front Microbiol 2023; 14:1232358. [PMID: 37901806 PMCID: PMC10601471 DOI: 10.3389/fmicb.2023.1232358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and β diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of β diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.
Collapse
Affiliation(s)
| | | | - Marijn Kuizenga
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
6
|
Lee YH, Kim MS, Lee Y, Wang C, Yun SC, Lee JS. Synergistic adverse effects of microfibers and freshwater acidification on host-microbiota interactions in the water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132026. [PMID: 37473567 DOI: 10.1016/j.jhazmat.2023.132026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Microfibers are the most common type of microplastics in freshwater environments. Anthropogenic climate stressors, such as freshwater acidification (FA), can interact with plastic pollution to disrupt freshwater ecosystems. However, the underlying mechanisms responsible for the interactive effects of microfibers and FA on aquatic organisms remain poorly understood. In this study, we investigated individual Daphnia magna-microbiota interactions affected by interactions between microfibers and FA (MFA). We found that the accumulated amount of microfibers in pH-treatment groups was significantly higher than in the control groups, resulting in negative consequences on reproduction, growth, and sex ratio. We also observed that MFA interactions induced immunity- and reproduction-related biological processes. In particular, the abundance of pathogenic bacteria increased only in MFA groups, indicating that MFA interactions can cause intestinal damage. Our integrated analysis of microbiomes and host transcriptomes revealed that synergistic adverse effects of MFAs are closely related to changes in microbial communities, suggesting that D. magna fitness and the microbial community are causally linked. These finding may help elucidate the toxicity mechanisms governing the responses of D. magna to microfibers and acidification interactions, and to host-microbiome-environment interactions.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chuxin Wang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong Chan Yun
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Vadillo Gonzalez S, Vranken S, Coleman MA, Wernberg T, Steinberg PD, Marzinelli EM. Host genotype and microbiome associations in co-occurring clonal and non-clonal kelp, Ecklonia radiata. Mol Ecol 2023; 32:4584-4598. [PMID: 37332135 DOI: 10.1111/mec.17056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Sofie Vranken
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crowley, Western Australia, Australia
| | - Melinda A Coleman
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crowley, Western Australia, Australia
- New South Wales Fisheries, Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crowley, Western Australia, Australia
- Institute of Marine Research, Floedevigen Research Station, His, Norway
| | - Peter D Steinberg
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ezequiel M Marzinelli
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
8
|
Rasmussen JA, Kiilerich P, Madhun AS, Waagbø R, Lock EJR, Madsen L, Gilbert MTP, Kristiansen K, Limborg MT. Co-diversification of an intestinal Mycoplasma and its salmonid host. THE ISME JOURNAL 2023; 17:682-692. [PMID: 36807409 PMCID: PMC10119124 DOI: 10.1038/s41396-023-01379-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | | | - Rune Waagbø
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Panova MAZ, Varfolomeeva MA, Gafarova ER, Maltseva AL, Mikhailova NA, Granovitch AI. First insights into the gut microbiomes and the diet of the Littorina snail ecotypes, a recently emerged marine evolutionary model. Evol Appl 2023; 16:365-378. [PMID: 36793697 PMCID: PMC9923488 DOI: 10.1111/eva.13447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Microbes can play a prominent role in the evolution of their hosts, facilitating adaptation to various environments and promoting ecological divergence. The Wave and Crab ecotypes of the intertidal snail Littorina saxatilis is an evolutionary model of rapid and repeated adaptation to environmental gradients. While patterns of genomic divergence of the Littorina ecotypes along the shore gradients have been extensively studied, their microbiomes have been so far overlooked. The aim of the present study is to start filling this gap by comparing gut microbiome composition of the Wave and Crab ecotypes using metabarcoding approach. Since Littorina snails are micro-grazers feeding on the intertidal biofilm, we also compare biofilm composition (i.e. typical snail diet) in the crab and wave habitats. In the results, we found that bacterial and eukaryotic biofilm composition varies between the typical habitats of the ecotypes. Further, the snail gut bacteriome was different from outer environments, being dominated by Gammaproteobacteria, Fusobacteria, Bacteroidia and Alphaproteobacteria. There were clear differences in the gut bacterial communities between the Crab and the Wave ecotypes as well as between the Wave ecotype snails from the low and high shores. These differences were both observed in the abundances and in the presence of different bacteria, as well as at different taxonomic level, from bacterial OTU's to families. Altogether, our first insights show that Littorina snails and their associated bacteria are a promising marine system to study co-evolution of the microbes and their hosts, which can help us to predict the future for wild species in the face of rapidly changing marine environments.
Collapse
Affiliation(s)
- Marina A. Z. Panova
- Department of Marine Sciences‐TjärnöUniversity of GothenburgGothenburgSweden
- The Centre for Marine Evolutionary Biology CeMEBUniversity of GothenburgGothenburgSweden
| | | | - Elizaveta R. Gafarova
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Arina L. Maltseva
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Natalia A. Mikhailova
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
- Centre of Cell TechnologiesInstitute of Cytology RASSt. PetersburgRussia
| | - Andrei I. Granovitch
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
10
|
Guo Y, Song B, Li A, Wu Q, Huang H, Li N, Yang Y, Adams JM, Yang L. Higher pH is associated with enhanced co-occurrence network complexity, stability and nutrient cycling functions in the rice rhizosphere microbiome. Environ Microbiol 2022; 24:6200-6219. [PMID: 36076153 DOI: 10.1111/1462-2920.16185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
The rice rhizosphere microbiota is crucial for crop yields and nutrient use efficiency. However, little is known about how co-occurrence patterns, keystone taxa and functional gene assemblages relate to soil pH in the rice rhizosphere soils. Using shotgun metagenome analysis, the rice rhizosphere microbiome was investigated across 28 rice fields in east-central China. At higher pH sites, the taxonomic co-occurrence network of rhizosphere soils was more complex and compact, as defined by higher average degree, graph density and complexity. Network stability was greatest at medium pH (6.5 < pH < 7.5), followed by high pH (7.5 < pH). Keystone taxa were more abundant at higher pH and correlated significantly with key ecosystem functions. Overall functional genes involved in C, N, P and S cycling were at a higher relative abundance in higher pH rhizosphere soils, excepting C degradation genes (e.g. key genes involved in starch, cellulose, chitin and lignin degradation). Our results suggest that the rice rhizosphere soil microbial network is more complex and stable at higher pH, possibly indicating increased efficiency of nutrient cycling. These observations may indicate routes towards more efficient soil management and understanding of the potential effects of soil acidification on the rice rhizosphere system.
Collapse
Affiliation(s)
- Yaping Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Anqi Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Qi Wu
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Haili Huang
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Na Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Ying Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Jonathan Miles Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Lin Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun Biol 2022; 5:770. [PMID: 35908086 PMCID: PMC9338936 DOI: 10.1038/s42003-022-03679-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0–30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation. The gut microbiome composition of the coral-feeding butterflyfish across Caribbean reefs is more variable at degraded reefs. These microbiomes have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria.
Collapse
|
12
|
Alberdi A, Andersen SB, Limborg MT, Dunn RR, Gilbert MTP. Disentangling host-microbiota complexity through hologenomics. Nat Rev Genet 2022; 23:281-297. [PMID: 34675394 DOI: 10.1038/s41576-021-00421-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.
Collapse
Affiliation(s)
- Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
13
|
Intrahabitat Differences in Bacterial Communities Associated with Corbicula fluminea in the Large Shallow Eutrophic Lake Taihu. Appl Environ Microbiol 2022; 88:e0232821. [PMID: 35285714 DOI: 10.1128/aem.02328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.
Collapse
|
14
|
Gu Y, Li X, Chen H, Sun Y, Yang L, Ma Y, Yong Chan EC. Antidiabetic effects of multi-species probiotic and its fermented milk in mice via restoring gut microbiota and intestinal barrier. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
16
|
Ou W, Yu G, Zhang Y, Mai K. Recent progress in the understanding of the gut microbiota of marine fishes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:434-448. [PMID: 37073265 PMCID: PMC10077274 DOI: 10.1007/s42995-021-00094-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
As the significance of the gut microbiota has become increasingly realized, a large number of related studies have emerged. With respect to the gut microbial composition of fish, the predominant gut microbes and core gut microbiota have been reported by many researchers. Our understanding of fish gut microbiota, especially its functional roles, has fallen far behind that of terrestrial vertebrates, although previous studies using gnotobiotic zebrafish models have revealed that the gut microbiota performs a significant role in gut development, nutrient metabolism and immune responses. Given that environmental factors of marine habitats are very different from those of freshwater habitats, a distinct difference may exist in the gut microbiota between freshwater and marine fish. Therefore, this review aims to address the advances in marine fish gut microbiota in terms of methodologies, the gut microbial composition, and gnotobiotic models of marine fish, the important factors (host genotype and three environmental factors: temperature, salinity and diet) that drive marine fish gut microbiota, and significant roles of the gut microbiota in marine fish.
Collapse
Affiliation(s)
- Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
| | - Guijuan Yu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
17
|
Dong Y, Li Y, He P, Wang Z, Fan S, Zhang Z, Zhang X, Xu Q. Gut Microbial Composition and Diversity in Four Ophiuroid Species: Divergence Between Suspension Feeder and Scavenger and Their Symbiotic Microbes. Front Microbiol 2021; 12:645070. [PMID: 33815331 PMCID: PMC8017295 DOI: 10.3389/fmicb.2021.645070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Gut microbiota have important roles in the survival and adaptation of the host. Ophiuroids, as the worldwide dominant benthos, have ecological roles in benthic-pelagic coupling in the sea floor. However, little is known about the composition and diversity of their gut microbiota and its potential functions in benthic ecosystems. In present study, we preformed 16S rRNA sequencing and function analysis in four dominant species (Stegophiura sladeni, Ophiopholis mirabilis, Ophiura sarsii vadicola, and Ophiura kinbergi) with two feeding types (suspension feeding/herbivores and scavenger/carnivores) from the Yellow Sea, China. Results showed that 56 phyla and 569 genera of microbiota were identified among ophiuroid guts. Multivariate and diversity analyses showed that the ophiuroid gut microbiota were independent and have higher biodiversity to the sediment microbial in the Yellow Sea. Phyla Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes were the dominant bacteria, with more than 80% abundance among the four ophiuroid species. A comparison among the gut microbial compositions among four ophiuroids showed the similarity of two offshore carnivore ophiuroids (S. sladeni and O. sarsii vadicola) and variation in the dominant microbiota types of three nearshore ophiuroids (S. sladeni, O. mirabilis, and O. kinbergi). The functional analysis revealed the significant differences of the environment-related expression in S. sladeni gut microbiota between nearshore and offshore environments. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional annotation showed the significant divergence of metabolism pathways between two nearshore species, the herbivores O. mirabilis and carnivores S. sladeni, such as the Lipid metabolism, Carbohydrate metabolism, and Metabolism of cofactors and vitamins. The homolog search and phylogenetic analysis identified the first gut symbiotic Candidatus Hepatoplasma in S. sladeni with important roles for the nutrient metabolisms. Overall, our study reported the comprehensive data of ophiuroid gut microbiota, while the functional microbiome provides insight into the physiology and environmental adaptation in ophiuroids.
Collapse
Affiliation(s)
- Yue Dong
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yixuan Li
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Peiqing He
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zongling Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shiliang Fan
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xuelei Zhang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinzeng Xu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Locally adapted gut microbiomes mediate host stress tolerance. ISME JOURNAL 2021; 15:2401-2414. [PMID: 33658622 PMCID: PMC8319338 DOI: 10.1038/s41396-021-00940-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
While evidence for the role of the microbiome in shaping host stress tolerance is becoming well-established, to what extent this depends on the interaction between the host and its local microbiome is less clear. Therefore, we investigated whether locally adapted gut microbiomes affect host stress tolerance. In the water flea Daphnia magna, we studied if the host performs better when receiving a microbiome from their source region than from another region when facing a stressful condition, more in particular exposure to the toxic cyanobacteria Microcystis aeruginosa. Therefore, a reciprocal transplant experiment was performed in which recipient, germ-free D. magna, isolated from different ponds, received a donor microbiome from sympatric or allopatric D. magna that were pre-exposed to toxic cyanobacteria or not. We tested for effects on host life history traits and gut microbiome composition. Our data indicate that Daphnia interact with particular microbial strains mediating local adaptation in host stress tolerance. Most recipient D. magna individuals performed better when inoculated with sympatric than with allopatric microbiomes. This effect was most pronounced when the donors were pre-exposed to the toxic cyanobacteria, but this effect was also pond and genotype dependent. We discuss how this host fitness benefit is associated with microbiome diversity patterns.
Collapse
|
19
|
Xiao F, Zhu W, Yu Y, He Z, Wu B, Wang C, Shu L, Li X, Yin H, Wang J, Juneau P, Zheng X, Wu Y, Li J, Chen X, Hou D, Huang Z, He J, Xu G, Xie L, Huang J, Yan Q. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. NPJ Biofilms Microbiomes 2021; 7:5. [PMID: 33469034 PMCID: PMC7815754 DOI: 10.1038/s41522-020-00176-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Clarifying mechanisms underlying the ecological succession of gut microbiota is a central theme of gut ecology. Under experimental manipulations of zebrafish hatching and rearing environments, we test our core hypothesis that the host development will overwhelm environmental dispersal in governing fish gut microbial community succession due to host genetics, immunology, and gut nutrient niches. We find that zebrafish developmental stage substantially explains the gut microbial community succession, whereas the environmental effects do not significantly affect the gut microbiota succession from larvae to adult fish. The gut microbiotas of zebrafish are clearly separated according to fish developmental stages, and the degree of homogeneous selection governing gut microbiota succession is increasing with host development. This study advances our mechanistic understanding of the gut microbiota assembly and succession by integrating the host and environmental effects, which also provides new insights into the gut ecology of other aquatic animals.
Collapse
Affiliation(s)
- Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Wengen Zhu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
- College of Agronomy, Hunan Agricultural University, 410128, Changsha, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Xinghao Li
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Huaqun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Philippe Juneau
- Department of Biological Science, GRIL, TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succursale Centre-Ville, Montréal, QC, Canada
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Yongjie Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, 410128, Changsha, China
| | - Xiaojuan Chen
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, 430079, Wuhan, China
| | - Dongwei Hou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Zhijian Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Jianguo He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 510070, Guangzhou, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 510070, Guangzhou, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510006, Guangzhou, China.
| |
Collapse
|
20
|
Clarke LJ, Suter L, King R, Bissett A, Bestley S, Deagle BE. Bacterial epibiont communities of panmictic Antarctic krill are spatially structured. Mol Ecol 2021; 30:1042-1052. [PMID: 33300251 DOI: 10.1111/mec.15771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022]
Abstract
Antarctic krill (Euphausia superba) are amongst the most abundant animals on Earth, with a circumpolar distribution in the Southern Ocean. Genetic and genomic studies have failed to detect any population structure for the species, suggesting a single panmictic population. However, the hyper-abundance of krill slows the rate of genetic differentiation, masking potential underlying structure. Here we use high-throughput sequencing of bacterial 16S rRNA genes to show that krill bacterial epibiont communities exhibit spatial structuring, driven mainly by distance rather than environmental factors, especially for strongly krill-associated bacteria. Estimating the ecological processes driving bacterial community turnover indicated this was driven by bacterial dispersal limitation increasing with geographic distance. Furthermore, divergent epibiont communities generated from a single krill swarm split between aquarium tanks under near-identical conditions suggests physical isolation in itself can cause krill-associated bacterial communities to diverge. Our findings show that Antarctic krill-associated bacterial communities are geographically structured, in direct contrast with the lack of structure observed for krill genetic and genomic data.
Collapse
Affiliation(s)
- Laurence J Clarke
- Australian Antarctic Division, Kingston, Tas, Australia.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas, Australia.,Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas, Australia
| | - Léonie Suter
- Australian Antarctic Division, Kingston, Tas, Australia
| | - Rob King
- Australian Antarctic Division, Kingston, Tas, Australia
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organisation, Hobart, Tas, Australia
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas, Australia
| | - Bruce E Deagle
- Australian Antarctic Division, Kingston, Tas, Australia.,Commonwealth Scientific and Industrial Research Organisation, Hobart, Tas, Australia
| |
Collapse
|
21
|
Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol Evol 2020; 35:1021-1036. [DOI: 10.1016/j.tree.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
22
|
Lado P, Luan B, Allerdice MEJ, Paddock CD, Karpathy SE, Klompen H. Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis. PeerJ 2020; 8:e9367. [PMID: 32704442 PMCID: PMC7350919 DOI: 10.7717/peerj.9367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Tick-borne diseases (TBDs) continue to emerge and re-emerge in several regions of the world, highlighting the need for novel and effective control strategies. The development of effective strategies requires a better understanding of TBDs ecology, and given the complexity of these systems, interdisciplinary approaches are required. In recent years, the microbiome of vectors has received much attention, mainly because associations between native microbes and pathogens may provide a new promising path towards the disruption of pathogen transmission. However, we still do not fully understand how host genetics and environmental factors interact to shape the microbiome of organisms, or how pathogenic microorganisms affect the microbiome and vice versa. The integration of different lines of evidence may be the key to improve our understanding of TBDs ecology. In that context, we generated microbiome and pathogen presence data for Dermacentor variabilis, and integrated those data sets with population genetic data, and metadata for the same individual tick specimens. Clustering and multivariate statistical methods were used to combine, analyze, and visualize data sets. Interpretation of the results is challenging, likely due to the low levels of genetic diversity and the high abundance of a few taxa in the microbiome. Francisella was dominant in almost all ticks, regardless of geography or sex. Nevertheless, our results showed that, overall, ticks from different geographic regions differ in their microbiome composition. Additionally, DNA of Rickettsia rhipicephali, R. montanensis, R. bellii, and Anaplasma spp., was detected in D. variabilis specimens. This is the first study that successfully generated microbiome, population genetics, and pathogen presence data from the same individual ticks, and that attempted to combine the different lines of evidence. The approaches and pre-processing steps used can be applied to a variety of taxa, and help better understand ecological processes in biological systems.
Collapse
Affiliation(s)
- Paula Lado
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bo Luan
- Statistics, The Ohio State University, Columbus, OH, United States of America
| | - Michelle E J Allerdice
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Hans Klompen
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
23
|
Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF. Population-level inferences from environmental DNA-Current status and future perspectives. Evol Appl 2020; 13:245-262. [PMID: 31993074 PMCID: PMC6976968 DOI: 10.1111/eva.12882] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
Environmental DNA (eDNA) extracted from water samples has recently shown potential as a valuable source of population genetic information for aquatic macroorganisms. This approach offers several potential advantages compared with conventional tissue-based methods, including the fact that eDNA sampling is noninvasive and generally more cost-efficient. Currently, eDNA approaches have been limited to single-marker studies of mitochondrial DNA (mtDNA), and the relationship between eDNA haplotype composition and true haplotype composition still needs to be thoroughly verified. This will require testing of bioinformatic and statistical software to correct for erroneous sequences, as well as biases and random variation in relative sequence abundances. However, eDNA-based population genetic methods have far-reaching potential for both basic and applied research. In this paper, we present a brief overview of the achievements of eDNA-based population genetics to date, and outline the prospects for future developments in the field, including the estimation of nuclear DNA (nuDNA) variation and epigenetic information. We discuss the challenges associated with eDNA samples as opposed to those of individual tissue samples and assess whether eDNA might offer additional types of information unobtainable with tissue samples. Lastly, we provide recommendations for determining whether an eDNA approach would be a useful and suitable choice in different research settings. We limit our discussion largely to contemporary aquatic systems, but the advantages, challenges, and perspectives can to a large degree be generalized to eDNA studies with a different spatial and temporal focus.
Collapse
Affiliation(s)
| | | | | | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
| | | | | |
Collapse
|
24
|
Wei F, Wu Q, Hu Y, Huang G, Nie Y, Yan L. Conservation metagenomics: a new branch of conservation biology. SCIENCE CHINA-LIFE SCIENCES 2018; 62:168-178. [PMID: 30588567 DOI: 10.1007/s11427-018-9423-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
Multifaceted approaches are required to monitor wildlife populations and improve conservation efforts. In the last decade, increasing evidence suggests that metagenomic analysis offers valuable perspectives and tools for identifying microbial communities and functions. It has become clear that gut microbiome plays a critical role in health, nutrition, and physiology of wildlife, including numerous endangered animals in the wild and in captivity. In this review, we first introduce the human microbiome and metagenomics, highlighting the importance of microbiome for host fitness. Then, for the first time, we propose the concept of conservation metagenomics, an emerging subdiscipline of conservation biology, which aims to understand the roles of the microbiota in evolution and conservation of endangered animals. We define what conservation metagenomics is along with current approaches, main scientific issues and significant implications in the study of host evolution, physiology, nutrition, ecology and conservation. We also discuss future research directions of conservation metagenomics. Although there is still a long way to go, conservation metagenomics has already shown a significant potential for improving the conservation and management of wildlife.
Collapse
Affiliation(s)
- Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|