1
|
Wang C, Roeroe KA, Zhou Z, Niu G, Du J, Hu W, Zheng X. Gene expression plasticity governing symbiosis during natural coral bleaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176046. [PMID: 39241871 DOI: 10.1016/j.scitotenv.2024.176046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The increasing global frequency and severity of coral bleaching events, driven by the loss of endosymbiotic algae, pose a significant threat to these vital ecosystems. However, gene expression plasticity offers a potential mechanism for rapid and effective acclimatization to environmental changes. We employed dual transcriptomics to examine the gene expression profile of Seriatopora hystrix, an ecologically important scleractinian coral, across healthy, mildly bleached, and severely bleached colonies collected from the waters of Likupang, North Sulawesi, Indonesia. Our analysis revealed that coral bleaching is associated with gene plasticity in calcium signaling and focal adhesion within coral hosts, as well as with endoplasmic reticulum stress in symbionts. Notably, we identified specific genes associated with innate immunity that were predominantly overexpressed in mildly bleached coral hosts. This overexpression implies that high expression plasticity of these key genes might contribute to bleaching resistance and the preservation of the host-symbiont relationship. Our findings offer a detailed insight into the dynamics of bleaching resistance in S. hystrix, shedding light on the variability of bleaching risks in Indonesian reefs and underscoring the coral's ability to utilize gene expression plasticity for immediate survival and potential long-term adaptation to climate changes.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | | | - Zhi Zhou
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Gaofeng Niu
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianguo Du
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China; Observation and Research Station of Island and Costal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, China
| | - Wenjia Hu
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China; Observation and Research Station of Island and Costal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China; Observation and Research Station of Island and Costal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, China.
| |
Collapse
|
2
|
Nef C, Pierella Karlusich JJ, Bowler C. From nets to networks: tools for deciphering phytoplankton metabolic interactions within communities and their global significance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230172. [PMID: 39034691 PMCID: PMC11293860 DOI: 10.1098/rstb.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, in silico predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| | | | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| |
Collapse
|
3
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
4
|
Kelliher JM, Robinson AJ, Longley R, Johnson LYD, Hanson BT, Morales DP, Cailleau G, Junier P, Bonito G, Chain PSG. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research. MICROBIOME 2023; 11:192. [PMID: 37626434 PMCID: PMC10463477 DOI: 10.1186/s40168-023-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how "microbiomes within microbiomes" affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales. Video Abstract.
Collapse
Affiliation(s)
| | | | - Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rizos I, Debeljak P, Finet T, Klein D, Ayata SD, Not F, Bittner L. Beyond the limits of the unassigned protist microbiome: inferring large-scale spatio-temporal patterns of Syndiniales marine parasites. ISME COMMUNICATIONS 2023; 3:16. [PMID: 36854980 PMCID: PMC9975217 DOI: 10.1038/s43705-022-00203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 03/02/2023]
Abstract
Marine protists are major components of the oceanic microbiome that remain largely unrepresented in culture collections and genomic reference databases. The exploration of this uncharted protist diversity in oceanic communities relies essentially on studying genetic markers from the environment as taxonomic barcodes. Here we report that across 6 large scale spatio-temporal planktonic surveys, half of the genetic barcodes remain taxonomically unassigned at the genus level, preventing a fine ecological understanding for numerous protist lineages. Among them, parasitic Syndiniales (Dinoflagellata) appear as the least described protist group. We have developed a computational workflow, integrating diverse 18S rDNA gene metabarcoding datasets, in order to infer large-scale ecological patterns at 100% similarity of the genetic marker, overcoming the limitation of taxonomic assignment. From a spatial perspective, we identified 2171 unassigned clusters, i.e., Syndiniales sequences with 100% similarity, exclusively shared between the Tropical/Subtropical Ocean and the Mediterranean Sea among all Syndiniales orders and 25 ubiquitous clusters shared within all the studied marine regions. From a temporal perspective, over 3 time-series, we highlighted 39 unassigned clusters that follow rhythmic patterns of recurrence and are the best indicators of parasite community's variation. These clusters withhold potential as ecosystem change indicators, mirroring their associated host community responses. Our results underline the importance of Syndiniales in structuring planktonic communities through space and time, raising questions regarding host-parasite association specificity and the trophic mode of persistent Syndiniales, while providing an innovative framework for prioritizing unassigned protist taxa for further description.
Collapse
Affiliation(s)
- Iris Rizos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France.
| | - Pavla Debeljak
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Thomas Finet
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Dylan Klein
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, Laboratoire d'Océanographie et du Climat: Expérimentation et Analyses Numériques (LOCEAN, SU/CNRS/IRD/MNHN), 75252, Paris Cedex 05, France
| | - Fabrice Not
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Xu Z, Li Y, Li M, Liu H. Transcriptomic response of Daphnia magna to nitrogen- or phosphorus-limited diet. Ecol Evol 2021; 11:11009-11019. [PMID: 34429898 PMCID: PMC8366849 DOI: 10.1002/ece3.7889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Effects of nutrient-imbalanced diet on the growth and fitness of zooplankton were widely reported as key issues to aquatic ecology. However, little is known about the molecular mechanisms driving the physiological changes of zooplankton under nutrient stress.In this study, we investigated the physiological fitness and transcriptomic response of Daphnia magna when exposed to nitrogen (N)-limited or phosphorus (P)-limited algal diet (Chlamydomonas reinhardtii) compared to regular algae (N and P saturated).D. magna showed higher ingestion rates and overexpression of genes encoding digestive enzymes when fed with either N-limited or P-limited algae, reflecting the compensatory feeding. Under P-limitation, both growth rate and reproduction rate of D. magna were greatly reduced, which could be attributed to the downregulated genes within the pathways of cell cycle and DNA replication. Growth rate of D. magna under N-limitation was similar to normal group, which could be explained by the high methylation level (by degradation of methionine) supporting the body development.Phenotypic changes of D. magna under nutrient stress were explained by gene and pathway regulations from transcriptome data. Generally, D. magna invested more on growth under N-limitation but kept maintenance (e.g., cell structure and defense to external stress) in priority under P-limitation. Post-translational modifications (e.g., methylation and protein folding) were important for D. magna to deal with nutrient constrains.This study reveals the fundamental mechanisms of zooplankton in dealing with elemental imbalanced diet and sheds light on the transfer of energy and nutrient in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhimeng Xu
- SZU‐HKUST Joint PhD Program in Marine Environmental ScienceShenzhen UniversityShenzhenChina
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyKowloonChina
- Shenzhen Key Laboratory of Marine Microbiome EngineeringInstitute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Yingdong Li
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Meng Li
- SZU‐HKUST Joint PhD Program in Marine Environmental ScienceShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome EngineeringInstitute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Hongbin Liu
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyKowloonChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong LaboratoryThe Hong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
7
|
Kaup M, Trull S, Hom EFY. On the move: sloths and their epibionts as model mobile ecosystems. Biol Rev Camb Philos Soc 2021; 96:2638-2660. [PMID: 34309191 PMCID: PMC9290738 DOI: 10.1111/brv.12773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Sloths are unusual mobile ecosystems, containing a high diversity of epibionts living and growing in their fur as they climb slowly through the canopies of tropical forests. These epibionts include poorly studied algae, arthropods, fungi, and bacteria, making sloths likely reservoirs of unexplored biodiversity. This review aims to identify gaps and eliminate misconceptions in our knowledge of sloths and their epibionts, and to identify key questions to stimulate future research into the functions and roles of sloths within a broader ecological and evolutionary context. This review also seeks to position the sloth fur ecosystem as a model for addressing fundamental questions in metacommunity and movement ecology. The conceptual and evidence-based foundation of this review aims to serve as a guide for future hypothesis-driven research into sloths, their microbiota, sloth health and conservation, and the coevolution of symbioses in general.
Collapse
Affiliation(s)
- Maya Kaup
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS, 38677-1848, U.S.A
| | - Sam Trull
- The Sloth Institute, Tulemar Gardens, Provincia de Puntarenas, Manuel Antonio, 60601, Costa Rica
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS, 38677-1848, U.S.A
| |
Collapse
|
8
|
Dittami SM, Arboleda E, Auguet JC, Bigalke A, Briand E, Cárdenas P, Cardini U, Decelle J, Engelen AH, Eveillard D, Gachon CMM, Griffiths SM, Harder T, Kayal E, Kazamia E, Lallier FH, Medina M, Marzinelli EM, Morganti TM, Núñez Pons L, Prado S, Pintado J, Saha M, Selosse MA, Skillings D, Stock W, Sunagawa S, Toulza E, Vorobev A, Leblanc C, Not F. A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 2021; 9:e10911. [PMID: 33665032 PMCID: PMC7916533 DOI: 10.7717/peerj.10911] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.
Collapse
Affiliation(s)
- Simon M Dittami
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Enrique Arboleda
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Enora Briand
- Laboratoire Phycotoxines, Ifremer, Nantes, France
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulisse Cardini
- Integrative Marine Ecology Dept, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Johan Decelle
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France
| | | | - Damien Eveillard
- Laboratoire des Sciences Numériques de Nantes (LS2N), Université de Nantes, CNRS, Nantes, France
| | - Claire M M Gachon
- Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - Sarah M Griffiths
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Ehsan Kayal
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - François H Lallier
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Ezequiel M Marzinelli
- Ecology and Environment Research Centre, The University of Sydney, Sydney, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Sydney Institute of Marine Science, Mosman, Australia
| | | | - Laura Núñez Pons
- Section Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Soizic Prado
- Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, Paris, France
| | - José Pintado
- Instituto de Investigaciones Marinas, CSIC, Vigo, Spain
| | - Mahasweta Saha
- Benthic Ecology, Helmholtz Center for Ocean Research, Kiel, Germany.,Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Marc-André Selosse
- National Museum of Natural History, Département Systématique et Evolution, Paris, France.,Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Derek Skillings
- Philosophy Department, University of Pennsylvania, Philadelphia, United States of America
| | - Willem Stock
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinichi Sunagawa
- Dept. of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Eve Toulza
- IHPE, Univ. de Montpellier, CNRS, IFREMER, UPDV, Perpignan, France
| | - Alexey Vorobev
- CEA - Institut de Biologie François Jacob, Genoscope, Evry, France
| | - Catherine Leblanc
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Fabrice Not
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| |
Collapse
|
9
|
Li Y, Xu Z, Liu H. Nutrient-imbalanced conditions shift the interplay between zooplankton and gut microbiota. BMC Genomics 2021; 22:37. [PMID: 33413098 PMCID: PMC7791863 DOI: 10.1186/s12864-020-07333-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16 s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Results Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2 = 0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2 = 0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet. Conclusions Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07333-z.
Collapse
Affiliation(s)
- Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China.,SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China. .,Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
10
|
Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. MICROBIOME 2019; 7:5. [PMID: 30635058 PMCID: PMC6330386 DOI: 10.1186/s40168-019-0619-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
In the recent years, the holobiont concept has emerged as a theoretical and experimental framework to study the interactions between hosts and their associated microbial communities in all types of ecosystems. The spread of this concept in many branches of biology results from the fairly recent realization of the ubiquitous nature of host-associated microbes and their central role in host biology, ecology, and evolution. Through this special series "Host-microbiota interactions: from holobiont theory to analysis," we wanted to promote this field of research which has considerable implications for human health, food production, and ecosystem protection. In this preface, we highlight a collection of articles selected for this special issue that show, use, or debate the concept of holobiont to approach taxonomically and ecologically diverse organisms, from humans and plants to sponges and insects. We also identify some theoretical and methodological challenges and propose directions for future research on holobionts.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France.
| | - Julian R Marchesi
- Centre for Digestive and Gut Health, Imperial College London, London, W2 1NY, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Christophe Mougel
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Marc-André Selosse
- Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, 57 Rue Cuvier-CP39, F-75005, Paris, France
- Faculty of Biology, University of Gdansk, Ul. Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|