1
|
Pang R, Wang X, Zhang L, Lei L, Han Z, Xie B, Su Y. Genome-Centric Metagenomics Insights into the Plastisphere-Driven Natural Degradation Characteristics and Mechanism of Biodegradable Plastics in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18915-18927. [PMID: 39380403 DOI: 10.1021/acs.est.4c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Biodegradable plastics (BPs) are pervasively available as alternatives to traditional plastics, but their natural degradation characteristics and microbial-driven degradation mechanisms are poorly understood, especially in aquatic environments, the primary sink of plastic debris. Herein, the three-month dynamic degradation process of BPs (the copolymer of poly(butylene adipate-co-terephthalate) and polylactic acid (PLA) (PBAT/PLA) and single PLA) in a natural aquatic environment was investigated, with nonbiodegradable plastics polyvinyl chloride, polypropylene, and polystyrene as controls. PBAT/PLA showed the weight loss of 47.4% at 50 days and severe fragmentation within two months, but no significant decay for other plastics. The significant increase in the specific surface area and roughness and the weakening of hydrophobicity within the first month promoted microbial attachment to the PBAT/PLA surface. Then, a complete microbial succession occurred, including biofilm formation, maturation, and dispersion. Metagenomic analysis indicated that plastispheres selectively enriched degraders. Based on the functional genes involved in BPs degradation, a total of 16 high-quality metagenome-assembled genomes of degraders (mainly Burkholderiaceae) were recovered from the PBAT/PLA plastisphere. These microbes showed the greatest degrading potential at the biofilm maturation stage and executed the functions by PLA_depolymerase, polyesterase, hydrolase, and esterase. These findings will enhance understanding of BPs' environmental behavior and microbial roles on plastic degradation.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liangmao Zhang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Feng M, Robinson S, Qi W, Edwards A, Stierli B, van der Heijden M, Frey B, Varliero G. Microbial genetic potential differs among cryospheric habitats of the Damma glacier. Microb Genom 2024; 10. [PMID: 39351905 PMCID: PMC11443553 DOI: 10.1099/mgen.0.001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.
Collapse
Affiliation(s)
- Maomao Feng
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Serina Robinson
- Department of Environmental Microbiology, Swiss Federal Research Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Marcel van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Plant-Soil Interactions, Agroscope, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
3
|
Jia P, Tian M, Zhang B, Wu X, He X, Zhang W. Habitat changes due to glacial freezing and melting reshape microbial networks. ENVIRONMENT INTERNATIONAL 2024; 189:108788. [PMID: 38838490 DOI: 10.1016/j.envint.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The phenomenon of glacial freezing and thawing involves microbial sequestration, release, and colonization, which has the potential to impact ecosystem functioning through changes in microbial diversity and interactions. In this study, we examined the structural features of microbial communities of the Dongkemadi glacier, including bacteria, fungi, and archaea, in four distinct glacial environments (snow, ice, meltwater, and frontier soil). The sequestration, release, and colonization of glacial microbes have been found to significantly impact the diversity and structure of glacial microbial communities, as well as the complexity of microbial networks. Specifically, the complexity of bacterial networks has been observed to increase in a sequential manner during these processes. Utilizing the Inter-Domain Ecological Network approach, researchers have further explored the cross-trophic interactions among bacteria, fungi, and archaea. The complexity of the bacteria-fungi-archaea network exhibited a sequential increase due to the processes of sequestration, release, and colonization of glacial microbes. The release and colonization of glacial microbes led to a shift in the role of archaea as key species within the network. Additionally, our findings suggest that the hierarchical interactions among various microorganisms contributed to the heightened complexity of the bacteria-fungi-archaea network. The primary constituents of the glacial microbial ecosystem are unclassified species associated with the Polaromonas. It is noteworthy that various key species in glacial ecosystems are influenced by the distinct environmental factors. Moreover, our findings suggest that key species are not significantly depleted in response to abrupt alterations in individual environmental factors, shedding light on the dynamics of microbial cross-trophic interactions within glacial ecosystems.
Collapse
Affiliation(s)
- Puchao Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mao Tian
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiukun Wu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo He
- Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Tanggula Mountain Cryosphere and Environment Observation and Research Station of Tibet Autonomous Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
4
|
Spry JA, Siegel B, Bakermans C, Beaty DW, Bell MS, Benardini JN, Bonaccorsi R, Castro-Wallace SL, Coil DA, Coustenis A, Doran PT, Fenton L, Fidler DP, Glass B, Hoffman SJ, Karouia F, Levine JS, Lupisella ML, Martin-Torres J, Mogul R, Olsson-Francis K, Ortega-Ugalde S, Patel MR, Pearce DA, Race MS, Regberg AB, Rettberg P, Rummel JD, Sato KY, Schuerger AC, Sefton-Nash E, Sharkey M, Singh NK, Sinibaldi S, Stabekis P, Stoker CR, Venkateswaran KJ, Zimmerman RR, Zorzano-Mier MP. Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars. ASTROBIOLOGY 2024; 24:230-274. [PMID: 38507695 DOI: 10.1089/ast.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.
Collapse
Affiliation(s)
| | | | - Corien Bakermans
- Department of Biology, Penn. State University (Altoona), Altoona, Pennsylvania, USA
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - David A Coil
- School of Medicine, University of California, Davis, Davis, California, USA
| | | | - Peter T Doran
- Department of Geology & Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lori Fenton
- SETI Institute, Mountain View, California, USA
| | - David P Fidler
- Council on Foreign Relations, Washington, District of Columbia, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, California, USA
| | - Joel S Levine
- College of William & Mary, Williamsburg, Virginia, USA
| | | | - Javier Martin-Torres
- School of Geoscience, University of Aberdeen, Aberdeen, United Kingdom
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Spain
| | - Rakesh Mogul
- California Polytechnic (Pomona), Pomona, California, USA
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Manish R Patel
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | - John D Rummel
- Friday Harbor Associates LLC, Friday Harbor, Washington, USA
| | | | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, Florida, USA
| | | | - Matthew Sharkey
- US Department of Health & Human Services, Washington, District of Columbia, USA
| | - Nitin K Singh
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Carol R Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | |
Collapse
|
5
|
Bonaccorsi R, Glass B, Moreno-Paz M, García-Villadangos M, Warren-Rhodes K, Parro V, Manchado JM, Wilhelm MB, McKay CP. In Situ Real-Time Monitoring for Aseptic Drilling: Lessons Learned from the Atacama Rover Astrobiology Drilling Studies Contamination Control Strategy and Implementation and Application to the Icebreaker Mars Life Detection Mission. ASTROBIOLOGY 2023; 23:1303-1336. [PMID: 38133823 DOI: 10.1089/ast.2022.0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.
Collapse
Affiliation(s)
- Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Kimberley Warren-Rhodes
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | |
Collapse
|
6
|
Zhang C, Ren Z. The role of subsurface ice in sustaining bacteria in continental and maritime glaciers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165324. [PMID: 37414181 DOI: 10.1016/j.scitotenv.2023.165324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
In supraglacial environments, surface and subsurface ices are two distinct and connected microhabitats in terms of physicochemical and biological aspects. At the frontline of climate change, glaciers lose tremendous ice masses to downstream ecosystems, serving as crucial sources of both biotic and abiotic materials. In this study, we studied the disparities and relationships of microbial communities between surface and subsurface ices collected from a maritime and a continental glacier during summer. The results showed that surface ices had significantly higher nutrients and were more physiochemically different than subsurface ices. Despite lower nutrients, subsurface ices had higher alpha-diversity with more unique and enriched operational taxonomic units (OTUs) than surface ices, indicating the potential role of subsurface as a bacterial refuge. Sorensen dissimilarity between bacterial communities in surface ices and subsurface ices was mainly contributed by the turnover component, suggesting strong species replacement from surface to subsurface ices due to large environmental gradients. For different glaciers, the maritime glacier had significantly higher alpha-diversity than the continental glacier. The difference between surface and subsurface communities was more pronounced in the maritime glacier than in the continental glacier. The network analysis revealed that surface-enriched and subsurface-enriched OTUs formed independent modules, with surface-enriched OTUs having closer interconnections and greater importance in the network of the maritime glacier. This study highlights the important role of subsurface ice as a bacterial refuge and enriches our knowledge of microbial properties in glaciers.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Engineering Technology, Beijing Normal University, Zhuhai, China; Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, China
| | - Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
7
|
Li X, Zhang M, Dang C, Wu Z, Xia Y. In situ Nanopore sequencing reveals metabolic characteristics of the Qilian glacier meltwater microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84805-84813. [PMID: 37341942 DOI: 10.1007/s11356-023-28250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023]
Abstract
Nanopore metagenomic sequencing enables rapid annotating microbiological ecosystems, and the previous glacier-related sequencing applications (e.g., targeted ice sheets, ice lake, and cryoconite holes) inspire us to explore high-altitude glacier meltwater at Qilian Mountain, China (3000 to 4000 m above sea level, MASL). Our findings suggest that (1) despite only several hundred meters apart, the microbial communities and functionalities are quite different among vertical alpine distributions; (2) the high-altitude Qilian meltwater microbiome serve several main metabolic functions, including sulfur oxidation, selenite decomposing, photosynthesis, energy production, enzymic, and UV tolerant activities. Meanwhile, our Nanopore metagenomic results indicate that the microbial classifications and functionalities (e.g., chaperones, cold-shock, specific tRNA species, oxidative stress, and resistance to toxic compounds) of Qilian meltwater are highly consistent with the other glacial microbiome, emphasizing that only certain microbial species can survive in the cold environment and the molecular adaptions and lifestyles remain stable all over the world. Besides, we have shown Nanopore metagenomic sequencing can provide reliable prokaryotic classifications within or among studies, which therefore can encourage more applications in the field given faster turnaround time. However, we recommend accumulating at least 400 ng nucleic acids (after extraction) and maximizing Nanopore library preparation efficiency before on-site sequencing to obtain better resolutions.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Miao Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150001, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Ren Z, Cao S, Chen T, Zhang C, Yu J. Bacterial functional redundancy and carbon metabolism potentials in soil, sediment, and water of thermokarst landscapes across the Qinghai-Tibet Plateau: Implications for the fate of permafrost carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158340. [PMID: 36041614 DOI: 10.1016/j.scitotenv.2022.158340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Permafrost thaw create widespread thermokarst landscapes. As a result, distinct habitats are provided to harbor different bacterial communities in degraded permafrost soil (PBCs), thermokarst lake sediment (SBCs), and lake water (WBCs), driving carbon metabolism differentially. In this study, we investigated functional diversity and redundancy, and carbon metabolism potentials of PBCs, SBCs, and WBCs in thermokarst landscapes across the Qinghai-Tibet Plateau. The results showed that PBCs and SBCs had higher taxonomic and functional alpha diversity than WBCs, while WBCs had lower functional redundancy. WBCs had the highest beta diversity followed by SBCs and PBCs, suggesting strong determination of taxonomic variations on functional differences. Community assembly processes also had significant influences on beta diversity, especially for SBCs. Metabolism pathways of carbohydrate metabolism, methane metabolism, and carbon fixation were enriched differentially in PBCs, SBCs, and WBCs, suggesting different C fate in distinct habitats. Carbohydrate metabolism data suggested that PBCs might have stronger potentials to mineralize a greater diversity of organic carbon substrate than SBCs and WBCs, promoting degradation of organic carbon stocks in degraded permafrost soils. Methane metabolism data showed that SBCs had a stronger methanogenesis potential followed by PBCs and WBCs, while PBCs had a stronger methane oxidation potential. High abundance of genes involving in formaldehyde assimilation might suggested that a large proportion of produced methane might be assimilated by methanotrophs in the thermokarst landscapes. Both aerobic and anaerobic carbon fixation pathways were enriched in PBCs. The results added our understanding of functional properties and biogeochemical carbon cycles in thermokarst landscapes, improving our abilities in accurate modeling of carbon dynamics and the ultimate fate of permafrost carbon in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Shengkui Cao
- School of Geographical Science, Qinghai Normal University, Xining 810008, China.
| | - Tao Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Jinlei Yu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
10
|
Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus. Sci Rep 2022; 12:12379. [PMID: 35896693 PMCID: PMC9329357 DOI: 10.1038/s41598-022-16370-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Missions to detect extraterrestrial life are being designed to visit Europa and Enceladus in the next decades. The contact between the mission payload and the habitable subsurface of these satellites involves significant risk of forward contamination. The standardization of protocols to decontaminate ice cores from planetary field analogs of icy moons, and monitor the contamination in downstream analysis, has a direct application for developing clean approaches crucial to life detection missions in these satellites. Here we developed a comprehensive protocol that can be used to monitor and minimize the contamination of Arctic ice cores in processing and downstream analysis. We physically removed the exterior layers of ice cores to minimize bioburden from sampling. To monitor contamination, we constructed artificial controls and applied culture-dependent and culture-independent techniques such as 16S rRNA amplicon sequencing. We identified 13 bacterial contaminants, including a radioresistant species. This protocol decreases the contamination risk, provides quantitative and qualitative information about contamination agents, and allows validation of the results obtained. This study highlights the importance of decreasing and evaluating prokaryotic contamination in the processing of polar ice cores, including in their use as analogs of Europa and Enceladus.
Collapse
|
11
|
Ren Z, Gao H, Luo W, Elser JJ. Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai-Tibet Plateau. ENVIRONMENTAL MICROBIOME 2022; 17:12. [PMID: 35346386 PMCID: PMC8962558 DOI: 10.1186/s40793-022-00408-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND On the front lines of climate change, glacier termini play crucial roles in linking glaciers and downstream ecosystems during glacier retreat. However, we lack a clear understanding of biological processes that occur in surface and basal ice at glacier termini. METHODS Here, we studied the bacterial communities in surface ice and basal ice (the bottom layer) of a glacier terminus in the Yangtze River Source, Qinghai-Tibet Plateau. RESULTS Surface and basal ice harbored distinct bacterial communities but shared some core taxa. Surface ice communities had a higher α-diversity than those in basal ice and were dominated by Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria while basal ice was dominated by Firmicutes and Proteobacteria. The bacterial communities were also substantially different in functional potential. Genes associated with functional categories of cellular processes and metabolism were significantly enriched in surface ice, while genes connected to environmental information processing were enriched in basal ice. In terms of biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur, bacterial communities in surface ice were enriched for genes connected to aerobic carbon fixation, aerobic respiration, denitrification, nitrogen assimilation, nitrogen mineralization, sulfur mineralization, alkaline phosphatase, and polyphosphate kinase. In contrast, bacterial communities in basal ice were enriched for genes involved in anaerobic carbon fixation, fermentation, nitrate reduction, 2-aminoethylphosphonic acid pathway, G3P transporter, glycerophosphodiester phosphodiesterase, and exopolyphosphatase. Structural equation modeling showed that total nitrogen and environmental carbon:phosphorus were positively while environmental nitrogen:phosphorus was negatively associated with taxonomic β-diversity which itself was strongly associated with functional β-diversity of bacterial communities. CONCLUSIONS This study furthers our understanding of biogeochemical cycling of the mountain cryosphere by revealing the genetic potential of the bacterial communities in surface and basal ice at the glacier terminus, providing new insights into glacial ecology as well as the influences of glacier retreat on downstream systems.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hongkai Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Luo
- Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, 59860, USA
| |
Collapse
|
12
|
Kayani MUR, Huang W, Feng R, Chen L. Genome-resolved metagenomics using environmental and clinical samples. Brief Bioinform 2021; 22:bbab030. [PMID: 33758906 PMCID: PMC8425419 DOI: 10.1093/bib/bbab030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/29/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high-throughput sequencing technologies and computational methods have added a new dimension to metagenomic data analysis i.e. genome-resolved metagenomics. In general terms, it refers to the recovery of draft or high-quality microbial genomes and their taxonomic classification and functional annotation. In recent years, several studies have utilized the genome-resolved metagenome analysis approach and identified previously unknown microbial species from human and environmental metagenomes. In this review, we describe genome-resolved metagenome analysis as a series of four necessary steps: (i) preprocessing of the sequencing reads, (ii) de novo metagenome assembly, (iii) genome binning and (iv) taxonomic and functional analysis of the recovered genomes. For each of these four steps, we discuss the most commonly used tools and the currently available pipelines to guide the scientific community in the recovery and subsequent analyses of genomes from any metagenome sample. Furthermore, we also discuss the tools required for validation of assembly quality as well as for improving quality of the recovered genomes. We also highlight the currently available pipelines that can be used to automate the whole analysis without having advanced bioinformatics knowledge. Finally, we will highlight the most widely adapted and actively maintained tools and pipelines that can be helpful to the scientific community in decision making before they commence the analysis.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200,000, China
| | - Ru Feng
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Lei Chen
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| |
Collapse
|
13
|
Toubes‐Rodrigo M, Potgieter‐Vermaak S, Sen R, Oddsdóttir ES, Elliott D, Cook S. Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution-derived hydrogen. Microbiologyopen 2021; 10:e1200. [PMID: 34459543 PMCID: PMC8289488 DOI: 10.1002/mbo3.1200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe-containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C-fixing chemolithotrophic bacteria, especially Fe-oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice-derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution-derived hydrogen can also be utilized for methanogenesis. PICRUSt-predicted metabolism suggests that methane metabolism and C-fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands.
Collapse
Affiliation(s)
- Mario Toubes‐Rodrigo
- AstrobiologyOUFaculty of Science, Technology, Engineering and MathematicsThe Open UniversityMilton KeynesUK
| | - Sanja Potgieter‐Vermaak
- Department of Natural SciencesEcology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Robin Sen
- Department of Natural SciencesEcology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | | | - David Elliott
- Environmental Sustainability Research CentreUniversity of DerbyDerbyUK
| | - Simon Cook
- Geography and Environmental ScienceUniversity of DundeeDundeeUK
- UNESCO Centre for Water Law, Policy and ScienceUniversity of DundeeDundeeUK
| |
Collapse
|
14
|
Edwards A, Cameron KA, Cook JM, Debbonaire AR, Furness E, Hay MC, Rassner SM. Microbial genomics amidst the Arctic crisis. Microb Genom 2020; 6:e000375. [PMID: 32392124 PMCID: PMC7371112 DOI: 10.1099/mgen.0.000375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.
Collapse
Affiliation(s)
- Arwyn Edwards
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Karen A. Cameron
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Joseph M. Cook
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Aliyah R. Debbonaire
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Eleanor Furness
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Melanie C. Hay
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Sara M.E. Rassner
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| |
Collapse
|
15
|
Yang Z, Zhang Y, Lv Y, Yan W, Xiao X, Sun B, Ma H. H 2 Metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica. J Microbiol 2019; 57:1095-1104. [PMID: 31758395 DOI: 10.1007/s12275-019-9366-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Subglacial ecosystems harbor diverse chemoautotrophic microbial communities in areas with limited organic carbon, and lithological H2 produced during glacial erosion has been considered an important energy source in these ecosystems. To verify the H2-utilizing potential there and to identify the related energy-converting metabolic mechanisms of these communities, we performed metagenomic analysis on subglacial sediment samples from East Antarctica with and without H2 supplementation. Genes coding for several [NiFe]-hydrogenases were identified in raw sediment and were enriched after H2 incubation. All genes in the dissimilatory nitrate reduction and denitrification pathways were detected in the subglacial community, and the genes coding for these pathways became enriched after H2 was supplied. Similarly, genes transcribing key enzymes in the Calvin cycle were detected in raw sediment and were also enriched. Moreover, key genes involved in H2 oxidization, nitrate reduction, oxidative phosphorylation, and the Calvin cycle were identified within one metagenome-assembled genome belonging to a Polaromonas sp. As suggested by our results, the microbial community in the subglacial environment we investigated consisted of chemoautotrophic populations supported by H2 oxidation. These results further confirm the importance of H2 in the cryosphere.
Collapse
Affiliation(s)
- Zhifeng Yang
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, P. R. China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yongxin Lv
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenkai Yan
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiang Xiao
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Bo Sun
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, P. R. China
| | - Hongmei Ma
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, P. R. China.
| |
Collapse
|
16
|
Subramaniyan V, Gurumurthy K. Diversity of probiotic adhesion genes in the gastrointestinal tract of goats. J Cell Biochem 2019; 120:12422-12428. [DOI: 10.1002/jcb.28508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Vishnupriya Subramaniyan
- Department of Biotechnology School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Kalaichelvan Gurumurthy
- Department of Biotechnology School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|