1
|
Rong X, Zhu L, Shu Q. Synergistic gut microbiome-mediated degradation of Astragalus membranaceus polysaccharides and Codonopsis pilosula polysaccharides into butyric acid: a metatranscriptomic analysis. Microbiol Spectr 2025:e0303924. [PMID: 40422281 DOI: 10.1128/spectrum.03039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Astragalus membranaceus and Codonopsis pilosula are traditional Chinese medicines known for their tonifying effects, which are linked to the metabolism of their polysaccharide components in the gut. However, the role of gut microbiota in the degradation of these polysaccharides to butyric acid remains unclear. This study aims to investigate the in vitro degradation of polysaccharides from Astragalus membranaceus and Codonopsis pilosula by healthy mice fecal microbiota, focusing on butyric acid production and the associated microbial gene expression. We conducted an in vitro analysis of the degradation of homogeneous polysaccharides. from Astragalus membranaceus and Codonopsis pilosula using fecal microbiota cultures derived from healthy mice. The fecal microbiota was cultured with the polysaccharides for 48 hours, after which the degradation liquid was collected for butyric acid quantification and metatranscriptome analysis of the microbiota. The degradation of Astragalus membranaceus polysaccharide resulted in a significant increase in butyric acid levels compared to those produced from Codonopsis pilosula polysaccharide or fructooligosaccharide (control). Differential gene expression analysis indicated an upregulation of carbohydrate-active enzymes and genes associated with butyrate production during the degradation of Astragalus membranaceus polysaccharides. Additionally, the findings suggested that synergistic interactions between polysaccharide-degrading and butyrate-producing bacteria play a crucial role in the microbiota's response to specific polysaccharides. This study highlights the potential of Astragalus polysaccharides to enhance butyric acid production through specific gut microbiota interactions, suggesting their beneficial effects on gut health and metabolism. Further research may provide insights into the therapeutic applications of these traditional medicines in modulating gut microbiota and improving health outcomes.IMPORTANCEThis study significantly advances our understanding of the role of gut microbiota in the metabolism of traditional Chinese medicinal polysaccharides, specifically those from Astragalus membranaceus and Codonopsis pilosula. By demonstrating that Astragalus membranaceus polysaccharide enhances butyric acid production more effectively than Codonopsis pilosula polysaccharide or fructooligosaccharides, the research highlights the potential of these natural compounds in modulating gut health. The identification of upregulated carbohydrate-active enzymes and butyrate production genes provides valuable insights into the microbial mechanisms underlying polysaccharide degradation. This work not only contributes to the field of microbiome research but also supports the development of functional foods and therapeutics aimed at enhancing gut health through targeted polysaccharide consumption.
Collapse
Affiliation(s)
- XinQian Rong
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - LingFeng Zhu
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - QingLong Shu
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Breyer E, Stix C, Kilker S, Roller BRK, Panagou F, Doebke C, Amano C, Saavedra DEM, Coll-García G, Steger-Mähnert B, Dachs J, Berrojalbiz N, Vila-Costa M, Sobrino C, Fuentes-Lema A, Berthiller F, Polz MF, Baltar F. The contribution of pelagic fungi to ocean biomass. Cell 2025:S0092-8674(25)00516-1. [PMID: 40412391 DOI: 10.1016/j.cell.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/12/2024] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Metagenomic analysis has recently unveiled the widespread presence of pelagic fungi in the global ocean, yet their quantitative contribution to carbon stocks remains elusive, hindering their incorporation into biogeochemical models. Here, we revealed the biomass of pelagic fungi in the open-ocean water column by combining ergosterol extraction, Calcofluor-White staining, catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), and microfluidic mass sensor techniques. We compared fungal biomass with the biomass of other more studied microbial groups in the ocean such as archaea and bacteria. Globally, fungi contributed 0.32 Gt C (CI: 0.19-0.46), refining previous uncertainty estimates from two orders of magnitude to less than one. While fungal biomass was lower than that of bacteria, it exceeded that of the archaea (archaea:fungi:bacteria biomass ratio of 1:9:44). Collectively, our findings reveal the important contribution of fungi to open-ocean biomass and, consequently, the marine carbon cycle, emphasizing the need for their inclusion in biogeochemical models.
Collapse
Affiliation(s)
- Eva Breyer
- Fungal and Biogeochemical Oceanography Group, College of Oceanography and Ecological Science, Shanghai Ocean University, Nanhui New City, 201306 Shanghai, China; Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria.
| | - Constanze Stix
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Sophie Kilker
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Benjamin R K Roller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Fragkiski Panagou
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Charlotte Doebke
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Chie Amano
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Daniel E M Saavedra
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Guillem Coll-García
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria; Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), 07190 Esporles, Spain
| | - Barbara Steger-Mähnert
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Catalonia, Spain
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Catalonia, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Catalonia, Spain
| | - Cristina Sobrino
- Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain
| | | | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, College of Oceanography and Ecological Science, Shanghai Ocean University, Nanhui New City, 201306 Shanghai, China; Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
3
|
Li Y, Zhang C, Zhong M, Hu S, Cui Y, Fang J, Yu X. Revealing the metabolic potential and environmental adaptation of nematophagous fungus, Purpureocillium lilacinum, derived from hadal sediment. Front Microbiol 2024; 15:1474180. [PMID: 39569000 PMCID: PMC11576294 DOI: 10.3389/fmicb.2024.1474180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
The extreme environment shapes fungi in deep-sea sediments with novel metabolic capabilities. The ubiquity of fungi in deep-sea habitats supports their significant roles in these ecosystems. However, there is limited research on the metabolic activities and adaptive mechanisms of filamentous fungi in deep-sea ecosystems. In this study, we investigated the biological activities, including antibacterial, antitumor and nematicidal activity of Purpureocillium lilacinum FDZ8Y1, isolated from sediments of the Mariana Trench. A key feature of P. lilacinum FDZ8Y1 was its tolerance to high hydrostatic pressure (HHP), up to 110 MPa. We showed that HHP affected its vegetative growth, development, and production of secondary metabolites, indicating the potential for discovering novel natural products from hadal fungi. Whole-genome sequencing of P. lilacinum FDZ8Y1 revealed the metabolic potential of this piezotolerant fungus in carbon (carbohydrate metabolism), nitrogen (assimilatory nitrate reduction and protein degradation) and sulfur cycling processes (assimilatory sulfate reduction). Transcriptomic analysis under elevated HHP showed that P. lilacinum FDZ8Y1 may activate several metabolic pathways and stress proteins to cope with HHP, including fatty acid metabolism, the antioxidant defense system, the biosynthetic pathway for secondary metabolites, extracellular enzymes and membrane transporters. This study provides valuable insights into the metabolic potential and adaptation mechanisms of hadal fungi to the challenging conditions of the hadal environment.
Collapse
Affiliation(s)
- Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Shenao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Li X, Cheng X, Xu J, Wu J, Chan LL, Cai Z, Zhou J. Dynamic patterns of carbohydrate metabolism genes in bacterioplankton during marine algal blooms. Microbiol Res 2024; 286:127785. [PMID: 38851011 DOI: 10.1016/j.micres.2024.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.
Collapse
Affiliation(s)
- Xinyang Li
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Junjie Xu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
5
|
Cohen NR, Krinos AI, Kell RM, Chmiel RJ, Moran DM, McIlvin MR, Lopez PZ, Barth AJ, Stone JP, Alanis BA, Chan EW, Breier JA, Jakuba MV, Johnson R, Alexander H, Saito MA. Microeukaryote metabolism across the western North Atlantic Ocean revealed through autonomous underwater profiling. Nat Commun 2024; 15:7325. [PMID: 39183190 PMCID: PMC11345423 DOI: 10.1038/s41467-024-51583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.
Collapse
Affiliation(s)
- Natalie R Cohen
- University of Georgia Skidaway Institute of Oceanography, Savannah, GA, 31411, USA.
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| | - Arianna I Krinos
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Cambridge, MA, 02543, USA
| | - Riss M Kell
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Gloucester Marine Genomics Institute, Gloucester, MA, 01930, USA
| | - Rebecca J Chmiel
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Dawn M Moran
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Matthew R McIlvin
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Paloma Z Lopez
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
| | | | | | | | - Eric W Chan
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - John A Breier
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Michael V Jakuba
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
- Arizona State University, Tempe, AZ, USA
| | - Harriet Alexander
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| |
Collapse
|
6
|
Pernice MC, Forn I, Logares R, Massana R. A fungi hotspot deep in the ocean: explaining the presence of Gjaerumia minor in equatorial Pacific bathypelagic waters. Sci Rep 2024; 14:10601. [PMID: 38719921 PMCID: PMC11079054 DOI: 10.1038/s41598-024-61422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.
Collapse
Affiliation(s)
- Massimo C Pernice
- Departament de Biologia Marina I Oceanografia, Institut de Ciències del Mar-CSIC, Barcelona, Spain.
| | - Irene Forn
- Departament de Biologia Marina I Oceanografia, Institut de Ciències del Mar-CSIC, Barcelona, Spain
| | - Ramiro Logares
- Departament de Biologia Marina I Oceanografia, Institut de Ciències del Mar-CSIC, Barcelona, Spain
| | - Ramon Massana
- Departament de Biologia Marina I Oceanografia, Institut de Ciències del Mar-CSIC, Barcelona, Spain
| |
Collapse
|
7
|
Liu Y, Ma L, Riqing D, Qu J, Chen J, Zhandu D, Li B, Jiang M. Microbial Metagenomes and Host Transcriptomes Reveal the Dynamic Changes of Rumen Gene Expression, Microbial Colonization and Co-Regulation of Mineral Element Metabolism in Yaks from Birth to Adulthood. Animals (Basel) 2024; 14:1365. [PMID: 38731369 PMCID: PMC11083404 DOI: 10.3390/ani14091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen's survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Daojie Riqing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Jiu Qu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Jiyong Chen
- Yushu Prefecture Animal Disease Prevention and Control Center, Yushu 815000, China;
| | - Danzeng Zhandu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| |
Collapse
|
8
|
Guerra-Mateo D, Cano-Lira JF, Fernández-Bravo A, Gené J. Sunken Riches: Ascomycete Diversity in the Western Mediterranean Coast through Direct Plating and Flocculation, and Description of Four New Taxa. J Fungi (Basel) 2024; 10:281. [PMID: 38667952 PMCID: PMC11051201 DOI: 10.3390/jof10040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The Mediterranean Sea stands out as a hotspot of biodiversity, whose fungal composition remains underexplored. Marine sediments represent the most diverse substrate; however, the challenge of recovering fungi in culture hinders the precise identification of this diversity. Concentration techniques like skimmed milk flocculation (SMF) could represent a suitable solution. Here, we compare the effectiveness in recovering filamentous ascomycetes of direct plating and SMF in combination with three culture media and two incubation temperatures, and we describe the fungal diversity detected in marine sediments. Sediments were collected at different depths on two beaches (Miracle and Arrabassada) on the Spanish western Mediterranean coast between 2021 and 2022. We recovered 362 strains, and after a morphological selection, 188 were identified primarily with the LSU and ITS barcodes, representing 54 genera and 94 species. Aspergillus, Penicillium, and Scedosporium were the most common genera, with different percentages of abundance between both beaches. Arrabassada Beach was more heterogeneous, with 42 genera representing 60 species (Miracle Beach, 28 genera and 54 species). Although most species were recovered with direct plating (70 species), 20 species were exclusively obtained using SMF as a sample pre-treatment, improving our ability to detect fungi in culture. In addition, we propose three new species in the genera Exophiala, Nigrocephalum, and Queenslandipenidiella, and a fourth representing the novel genus Schizochlamydosporiella. We concluded that SMF is a useful technique that, in combination with direct plating, including different culture media and incubation temperatures, improves the chance of recovering marine fungal communities in culture-dependent studies.
Collapse
Affiliation(s)
| | | | | | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and Institut Universitari de Recerca en Sostenibilitat, Canvi Climàtic i Transició Energètica (IU-RESCAT), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.G.-M.); (J.F.C.-L.); (A.F.-B.)
| |
Collapse
|
9
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J. Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
10
|
Cho M, Lee SJ, Choi E, Kim J, Choi S, Lee JH, Park H. An Antarctic lichen isolate (Cladonia borealis) genome reveals potential adaptation to extreme environments. Sci Rep 2024; 14:1342. [PMID: 38228797 PMCID: PMC10792129 DOI: 10.1038/s41598-024-51895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Cladonia borealis is a lichen that inhabits Antarctica's harsh environment. We sequenced the whole genome of a C. borealis culture isolated from a specimen collected in Antarctica using long-read sequencing technology to identify specific genetic elements related to its potential environmental adaptation. The final genome assembly produced 48 scaffolds, the longest being 2.2 Mbp, a 1.6 Mbp N50 contig length, and a 36 Mbp total length. A total of 10,749 protein-coding genes were annotated, containing 33 biosynthetic gene clusters and 102 carbohydrate-active enzymes. A comparative genomics analysis was conducted on six Cladonia species, and the genome of C. borealis exhibited 45 expanded and 50 contracted gene families. We identified that C. borealis has more Copia transposable elements and expanded transporters (ABC transporters and magnesium transporters) compared to other Cladonia species. Our results suggest that these differences contribute to C. borealis' remarkable adaptability in the Antarctic environment. This study also provides a useful resource for the genomic analysis of lichens and genetic insights into the survival of species isolated from Antarctica.
Collapse
Affiliation(s)
- Minjoo Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seung Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eunkyung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jinmu Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Soyun Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, South Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| | - Hyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
11
|
Varrella S, Barone G, Corinaldesi C, Giorgetti A, Nomaki H, Nunoura T, Rastelli E, Tangherlini M, Danovaro R, Dell’Anno A. Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth. J Fungi (Basel) 2024; 10:73. [PMID: 38248982 PMCID: PMC10820024 DOI: 10.3390/jof10010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Hadal trenches host abundant and diversified benthic prokaryotic assemblages, but information on benthic fungi is still extremely limited. We investigated the fungal abundance and diversity in the Challenger Deep (at ca. 11,000 m depth) and the slope of the Mariana Trench in comparison with three sites of the adjacent abyssal plain. Our results indicate that trench sediments are a hotspot of fungal abundance in terms of the 18S rRNA gene copy number. The fungal diversity (as the number of amplicon sequence variants, ASVs) was relatively low at all sites (10-31 ASVs) but showed a high turnover diversity among stations due to the presence of exclusive fungal taxa belonging to Aspergillaceae, Trichosphaeriaceae, and Nectriaceae. Fungal abundance and diversity were closely linked to sediment organic matter content and composition (i.e., phytopigments and carbohydrates), suggesting a specialization of different fungal taxa for the exploitation of available resources. Overall, these findings provide new insights into the diversity of deep-sea fungi and the potential ecological role in trench sediments and pave the way for a better understanding of their relevance in one of the most extreme ecosystems on Earth.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| | - Giulio Barone
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- Institute for Marine Biological Resources and Biotechnology, National Research Council, Largo Fiera della Pesca 2, 60125 Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Centre, 90133 Palermo, Italy;
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alessio Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
| | - Hidetaka Nomaki
- X-Star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan;
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka 237-0061, Japan
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| |
Collapse
|
12
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Breyer E, Baltar F. The largely neglected ecological role of oceanic pelagic fungi. Trends Ecol Evol 2023; 38:870-888. [PMID: 37246083 DOI: 10.1016/j.tree.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Most investigations into ocean ecology and biogeochemistry have tended to focus on marine bacteria, archaea, and protists, while pelagic fungi (mycoplankton) have traditionally been neglected and considered to reside only in association with benthic solid substrates. Nevertheless, recent studies have revealed that pelagic fungi are distributed ubiquitously throughout the water column in every ocean basin and play an active role in the degradation of organic matter and the cycling of nutrients. We review the current status of knowledge on the ecology of mycoplankton and highlight knowledge gaps and challenges. These findings underscore the need to recognize this neglected kingdom as significant contributors to the organic matter cycling and ecology of the oceans.
Collapse
Affiliation(s)
- Eva Breyer
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
14
|
Kempken F. Marine fungi: A treasure trove of novel natural products and for biological discovery. PLoS Pathog 2023; 19:e1011624. [PMID: 37733683 PMCID: PMC10513230 DOI: 10.1371/journal.ppat.1011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Affiliation(s)
- Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
15
|
Adams SJ, Walker AK. Diversity of fungi from marine inundated wood from the Bay of Fundy, Nova Scotia, Canada. BOTANICA MARINA 2023; 66:319-329. [PMID: 39711846 PMCID: PMC11661551 DOI: 10.1515/bot-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 12/24/2024]
Abstract
Marine fungi play an integral role in the decomposition of intertidal organic substrata but remain understudied in cold-water habitats including Atlantic Canada. Marine inundated wood from the intertidal zone was sampled from 30 sites along the Bay of Fundy coastline in Nova Scotia, Canada. Wood types studied included attached and loose intertidal wood, and driftwood. Emergent fungi were cultured and identified using ITS (internal transcribed spacers) rDNA barcoding. Two hundred and twenty cultures representing 86 fungi are reported. Sixty-one fungi were new records for the Bay of Fundy, 41 are first records from the marine environment, and 19 fungi are potentially new to science. Fungi identified included eight obligate marine fungi, with the remaining fungi being facultatively marine. Eight ascomycetes were soft rot fungi; this ecological strategy for decaying woody material in cold-water marine environments is discussed. Historical records and roles of wood type and site on fungal colonization are discussed.
Collapse
Affiliation(s)
- Sarah J. Adams
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, Nova ScotiaB4P 2R6, Canada
| | - Allison K. Walker
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, Nova ScotiaB4P 2R6, Canada
| |
Collapse
|
16
|
Sun CC, Zhao WJ, Yue WZ, Cheng H, Sun FL, Wang YT, Wu ML, Engel A, Wang YS. Polymeric carbohydrates utilization separates microbiomes into niches: insights into the diversity of microbial carbohydrate-active enzymes in the inner shelf of the Pearl River Estuary, China. Front Microbiol 2023; 14:1180321. [PMID: 37425997 PMCID: PMC10322874 DOI: 10.3389/fmicb.2023.1180321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 μm, FL) and particle-associated (>3 μm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.
Collapse
Affiliation(s)
- Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Wen-Jie Zhao
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhong Yue
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Yu-Tu Wang
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Mei-Lin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Anja Engel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
17
|
Sen K, Bai M, Li J, Ding X, Sen B, Wang G. Spatial Patterns of Planktonic Fungi Indicate Their Potential Contributions to Biological Carbon Pump and Organic Matter Remineralization in the Water Column of South China Sea. J Fungi (Basel) 2023; 9:640. [PMID: 37367576 DOI: 10.3390/jof9060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi have long been known to be dynamic in coastal water columns with multiple trophic modes. However, little is known about their interactions with abiotic and biotic components, contribution to the biological carbon pump (BCP), and organic matter remineralization in the oceanic water column. In this study, we investigated how fungi vary spatially and how their variations relate to that of bacteria in the water column of the South China Sea (SCS). Fungi were about three orders less prevalent than bacteria, and the main factors influencing their distribution were depth, temperature, and distance from the sites of riverine inputs. The decline in the abundance of fungi with depth was less steep than that of bacteria. Correlation tests revealed a strong positive association between the abundance of fungi and bacteria, especially in the twilight (r = 0.62) and aphotic (r = 0.70) zones. However, the co-occurrence network revealed mutual exclusion between certain members of fungi and bacteria. The majority of fungi in the water column were saprotrophs, which indicated that they were generally involved in the degradation of organic matter, particularly in twilight and aphotic zones. Similar to bacteria, the involvement of fungi in the metabolism of carbohydrates, proteins, and lipids was predicted, pointing to their participation in the turnover of organic carbon and the biogeochemical cycling of carbon, nitrogen, and sulfur. These findings suggest that fungi play a role in BCP and support their inclusion in marine microbial ecosystem models.
Collapse
Affiliation(s)
- Kalyani Sen
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mohan Bai
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueyan Ding
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Baeshen NN, Baz L, Shami AY, Ashy RA, Jalal RS, Abulfaraj AA, Refai M, Majeed MA, Abuzahrah SS, Abdelkader H, Baeshen NA, Baeshen MN. Composition, Abundance, and Diversity of the Soil Microbiome Associated with the Halophytic Plants Tamarix aphylla and Halopeplis perfoliata on Jeddah Seacoast, Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112176. [PMID: 37299153 DOI: 10.3390/plants12112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The coast of the Red Sea in Jeddah City is home to a unique microbial community that has adapted to extreme environmental conditions. Therefore, it is essential to characterize the microbial community in this unique microbiome to predict how environmental changes will affect it. The aim of this study was to conduct metagenomic sequencing of 16S rRNA and ITS rRNA genes for the taxonomic classification of the microbial community in soil samples associated with the halophytic plants Tamarix aphylla and Halopeplis perfoliata. Fifteen soil samples were collected in triplicate to enhance robustness and minimize sampling bias. Firstly, to identify novel microbial candidates, the gDNAs were isolated from the saline soil samples surrounding each plant, and then bacterial 16S (V3-V4) and fungal ITS1 regions were sequenced utilizing a high-throughput approach (next-generation sequencing; NGS) on an Illumina MiSeq platform. Quality assessment of the constructed amplicon libraries was conducted using Agilent Bioanalyzer and fluorometric quantification methods. The raw data were processed and analyzed using the Pipeline (Nova Lifetech, Singapore) for bioinformatics analysis. Based on the total number of readings, it was determined that the phylum Actinobacteriota was the most prevalent in the soil samples examined, followed by the phylum Proteobacteria. Based on ITS rRNA gene analysis, the alpha and beta fungal diversity in the studied soil samples revealed that the fungal population is structured into various groups according to the crust (c) and/or rhizosphere (r) plant parts. Fungal communities in the soil samples indicated that Ascomycota and Basidiomycota were the two most abundant phyla based on the total amount of sequence reads. Secondly, heat-map analysis of the diversity indices showed that the bacterial alpha diversity, as measured by Shannon, Simpson, and InvSimpson, was associated with soil crust (Hc and Tc enclosing H. perfoliata and T. aphylla, respectively) and that the soil rhizosphere (Hr and Tr) was strongly correlated with bacterial beta diversity. Finally, fungal-associated Tc and Hc samples clustered together, according to observations made using the Fisher and Chao1 methods, and Hr and Tr samples clustered together according to Shannon, Simpson, and InvSimpson analyses. As a result of the soil investigation, potential agents that have been identified could lead to innovative agricultural, medical, and industrial applications.
Collapse
Affiliation(s)
- Naseebh N Baeshen
- Department of Biology, College of Sciences and Arts at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashwag Y Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mazen A Majeed
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hayam Abdelkader
- Virus Research Department, Molecular Biology Laboratory, PPRI, ARC, Giza 12613, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
19
|
Sobol MS, Hoshino T, Delgado V, Futagami T, Kadooka C, Inagaki F, Kiel Reese B. Genome characterization of two novel deep-sea sediment fungi, Penicillium pacificagyrus sp. nov. and Penicillium pacificasedimenti sp. nov., from South Pacific Gyre subseafloor sediments, highlights survivability. BMC Genomics 2023; 24:249. [PMID: 37165355 PMCID: PMC10173653 DOI: 10.1186/s12864-023-09320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Marine deep subsurface sediments were once thought to be devoid of eukaryotic life, but advances in molecular technology have unlocked the presence and activity of well-known closely related terrestrial and marine fungi. Commonly detected fungi in deep marine sediment environments includes Penicillium, Aspergillus, Cladosporium, Fusarium, and Schizophyllum, which could have important implications in carbon and nitrogen cycling in this isolated environment. In order to determine the diversity and unknown metabolic capabilities of fungi in deep-sea sediments, their genomes need to be fully analyzed. In this study, two Penicillium species were isolated from South Pacific Gyre sediment enrichments during Integrated Ocean Drilling Program Expedition 329. The inner gyre has very limited productivity, organic carbon, and nutrients. RESULTS Here, we present high-quality genomes of two proposed novel Penicillium species using Illumina HiSeq and PacBio sequencing technologies. Single-copy homologues within the genomes were compared to other closely related genomes using OrthoMCL and maximum-likelihood estimation, which showed that these genomes were novel species within the genus Penicillium. We propose to name isolate SPG-F1 as Penicillium pacificasedimenti sp. nov. and SPG-F15 as Penicillium pacificagyrus sp. nov. The resulting genome sizes were 32.6 Mbp and 36.4 Mbp, respectively, and both genomes were greater than 98% complete as determined by the presence of complete single-copy orthologs. The transposable elements for each genome were 4.87% for P. pacificasedimenti and 10.68% for P. pacificagyrus. A total of 12,271 genes were predicted in the P. pacificasedimenti genome and 12,568 genes in P. pacificagyrus. Both isolates contained genes known to be involved in the degradation of recalcitrant carbon, amino acids, and lignin-derived carbon. CONCLUSIONS Our results provide the first constructed genomes of novel Penicillium isolates from deep marine sediments, which will be useful for future studies of marine subsurface fungal diversity and function. Furthermore, these genomes shed light on the potential impact fungi in marine sediments and the subseafloor could have on global carbon and nitrogen biogeochemical cycles and how they may be persisting in the most energy-limited sedimentary biosphere.
Collapse
Affiliation(s)
- Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Victor Delgado
- Department of Life Sciences, TX A&M University, Corpus Christi, Texas, USA
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Nishiku, Kumamoto, 860-0082, Japan
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236- 0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, 980-8574, Japan
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA.
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
20
|
Debeljak P, Baltar F. Fungal Diversity and Community Composition across Ecosystems. J Fungi (Basel) 2023; 9:jof9050510. [PMID: 37233221 DOI: 10.3390/jof9050510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Fungi have shaped the biosphere since the development of life on Earth. Despite fungi being present in all environments, most of the available fungal research has focused on soils. As a result, the role and composition of fungal communities in aquatic (marine and freshwater) environments remain largely unexplored. The use of different primers to characterise fungal communities has additionally complicated intercomparisons among studies. Consequently, we lack a basic global assessment of fungal diversity across major ecosystems. Here, we took advantage of a recently published 18S rRNA dataset comprising samples from major ecosystems (terrestrial, freshwater, and marine) to attempt a global assessment of fungal diversity and community composition. We found the highest fungal diversities for terrestrial > freshwater > marine environments, and pronounced gradients of fungal diversity along temperature, salinity, and latitude in all ecosystems. We also identified the most abundant taxa in each of these ecosystems, mostly dominated by Ascomycota and Basidiomycota, except in freshwater rivers where Chytridiomycota dominated. Collectively, our analysis provides a global analysis of fungal diversity across all major environmental ecosystems, highlighting the most distinct order and ASVs (amplicon sequencing variants) by ecosystem, and thus filling a critical gap in the study of the Earth's mycobiome.
Collapse
Affiliation(s)
- Pavla Debeljak
- Fungal & Biogeochemical Oceanography, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
- SupBiotech, 94800 Villejuif, France
| | - Federico Baltar
- Fungal & Biogeochemical Oceanography, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
21
|
Breyer E, Espada-Hinojosa S, Reitbauer M, Karunarathna SC, Baltar F. Physiological Properties of Three Pelagic Fungi Isolated from the Atlantic Ocean. J Fungi (Basel) 2023; 9:439. [PMID: 37108894 PMCID: PMC10143427 DOI: 10.3390/jof9040439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Oceanic fungi are widely understudied compared to their terrestrial counterparts. However, they have been shown to be important degraders of organic matter in the global pelagic oceans. By examining the physiological characteristics of fungi isolated from the pelagic waters of the ocean it is possible to infer specific functions of each species in the biogeochemical processes that occur in the marine ecosystem. In this study, we isolated three pelagic fungi from different stations and depths across a transect in the Atlantic Ocean. We identified two yeasts [(Scheffersomyces spartinae (Debaryomycetaceae, Saccharomycetes, Ascomycota) and Rhodotorula sphaerocarpa (Sporidiobolaceae, Microbotryomycetes, Basidiomycota)], and the hyphae-morphotype fungus Sarocladium kiliense (Hypocreales, Sordariomycetes, Ascomycota), and conducted physiological experiments to investigate their preferred carbon uptake as well as their growth patterns under different environmental conditions. Despite their taxonomic and morphological differences, all species exhibited a high tolerance towards a wide range of salinities (0-40 g/L) and temperatures (5-35 °C). Furthermore, a shared metabolic preference for oxidizing amino acids was found among all fungal isolates. Collectively, this study provides relevant information on the physiological properties of oceanic pelagic fungi, revealing a high tolerance towards salinity and temperature changes, ultimately contributing to understanding their ecology and distribution in the oceanic water column.
Collapse
Affiliation(s)
- Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | | | - Magdalena Reitbauer
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
22
|
Heitger M, Baltar F. Respiration, Production, and Growth Efficiency of Marine Pelagic Fungal Isolates. J Fungi (Basel) 2023; 9:417. [PMID: 37108872 PMCID: PMC10146783 DOI: 10.3390/jof9040417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Despite recent studies suggesting that marine fungi are ubiquitous in oceanic systems and involved in organic matter degradation, their role in the carbon cycle of the oceans is still not characterized and fungal respiration and production are understudied. This study focused on determining fungal growth efficiencies and its susceptibility to temperature differences and nutrient concentration. Hence, respiration and biomass production of three fungal isolates (Rhodotorula mucilaginosa, Rhodotorula sphaerocarpa, Sakaguchia dacryoidea) were measured in laboratory experiments at two temperatures and two nutrient concentrations. We found that fungal respiration and production rates differed among species, temperature, and nutrient concentration. Fungal respiration and production were higher at higher temperatures, but higher fungal growth efficiencies were observed at lower temperatures. Nutrient concentration affected fungal respiration, production, and growth efficiency, but its influence differed among species. Altogether, this study provides the first growth efficiency estimates of pelagic fungi, providing novel insights into the role of fungi as source/sink of carbon during organic matter remineralization. Further research is now needed to unravel the role of pelagic fungi in the marine carbon cycle, a topic that gains even more importance in times of increasing CO2 concentrations and global warming.
Collapse
Affiliation(s)
- Marilena Heitger
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
23
|
Shekarriz E, Chen J, Xu Z, Liu H. Disentangling the Functional Role of Fungi in Cold Seep Sediment. Microbiol Spectr 2023; 11:e0197822. [PMID: 36912690 PMCID: PMC10100914 DOI: 10.1128/spectrum.01978-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/22/2022] [Indexed: 03/14/2023] Open
Abstract
Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane. Still, no study has ever explored the functional role of the mycobiota in the cold seep biome. To assess the complex role of fungi and fill in the gaps, we performed network analysis on 147 samples to disentangle fungal-prokaryotic interactions (fungal 18S and prokaryotic 16S) in the Haima cold seep region. We demonstrated that fungi are central species with high connectivity at the epicenter of prokaryotic networks, reduce their random-attack vulnerability by 60%, and enhance information transfer efficiency by 15%. We then scavenged a global metagenomic and metatranscriptomic data set from 10 cold seep regions for fungal genes of interest (hydrophobins, cytochrome P450s, and ligninolytic family of enzymes); this is the first study to report active transcription of 2,500+ fungal genes in the cold seep sediment. The genera Fusarium and Moniliella were of notable importance and directly correlated with high methane abundance in the sulfate-methane transition zone (SMTZ), likely due to their ability to degrade and solubilize methane and oils. Overall, our results highlight the essential yet overlooked contribution of fungi to cold seep biological networks and the role of fungi in regulating cold seep biogeochemistry. IMPORTANCE The challenges we face when analyzing eukaryotic metagenomic and metatranscriptomic data sets have hindered our understanding of cold seep fungi and microbial eukaryotes. This fact does not make the mycobiota any less critical in mediating cold seep biogeochemistry. On the contrary, many fungal genera can oxidize and solubilize methane, produce methane, and play a unique role in nutrient recycling via saprotrophic enzymatic activity. In this study, we used network analysis to uncover key fungal-prokaryotic interactions that can mediate methane biogeochemistry and metagenomics and metatranscriptomics to report that fungi are transcriptionally active in the cold seep sediment. With concerns over rising methane levels and cold seeps being a pivotal source of global methane input, our holistic understanding of methane biogeochemistry with all domains of life is essential. We ultimately encourage scientists to utilize state-of-the-art tools and multifaceted approaches to uncover the role of microeukaryotic organisms in understudied systems.
Collapse
Affiliation(s)
- Erfan Shekarriz
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
24
|
Breyer E, Zhao Z, Herndl GJ, Baltar F. Global contribution of pelagic fungi to protein degradation in the ocean. MICROBIOME 2022; 10:143. [PMID: 36050758 PMCID: PMC9434897 DOI: 10.1186/s40168-022-01329-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/19/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fungi are important degraders of organic matter responsible for reintegration of nutrients into global food chains in freshwater and soil environments. Recent evidence suggests that they are ubiquitously present in the oceanic water column where they play an active role in the degradation of carbohydrates. However, their role in processing other abundant biomolecules in the ocean in comparison with that of prokaryotes remains enigmatic. Here, we performed a global-ocean multi-omics analysis of all fungal-affiliated peptidases (main enzymes responsible for cleaving proteins), which constitute the major fraction (> 50%) of marine living and detrital biomass. We determined the abundance, expression, diversity, taxonomic affiliation, and functional classification of the genes encoding all pelagic fungal peptidases from the epi- and mesopelagic layers. RESULTS We found that pelagic fungi are active contributors to protein degradation and nitrogen cycling in the global ocean. Dothideomycetes are the main fungi responsible for protease activity in the surface layers, whereas Leotiomycetes dominate in the mesopelagic realm. Gene abundance, diversity, and expression increased with increasing depth, similar to fungal CAZymes. This contrasts with the total occurrence of prokaryotic peptidases and CAZymes which are more uniformly distributed in the oceanic water column, suggesting potentially different ecological niches of fungi and prokaryotes. In-depth analysis of the most widely expressed fungal protease revealed the potentially dominating role of saprotrophic nutrition in the oceans. CONCLUSIONS Our findings expand the current knowledge on the role of oceanic fungi in the carbon cycle (carbohydrates) to the so far unknown global participation in nitrogen (proteins) degradation, highlighting potentially different ecological niches occupied by fungi and prokaryotes in the global ocean. Video Abstract.
Collapse
Affiliation(s)
- Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, AB Den Burg, The Netherlands
- Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
25
|
Salazar Alekseyeva K, Herndl GJ, Baltar F. Extracellular Enzymatic Activities of Oceanic Pelagic Fungal Strains and the Influence of Temperature. J Fungi (Basel) 2022; 8:571. [PMID: 35736054 PMCID: PMC9225461 DOI: 10.3390/jof8060571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Although terrestrial and aquatic fungi are well-known decomposers of organic matter, the role of marine fungi remains largely unknown. Recent studies based on omics suggest that marine fungi potentially play a major role in elemental cycles. However, there is very limited information on the diversity of extracellular enzymatic activities performed by pelagic fungi in the ocean and how these might be affected by community composition and/or critical environmental parameters such as temperature. In order to obtain information on the potential metabolic activity of marine fungi, extracellular enzymatic activities (EEA) were investigated. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown at 5 °C and 20 °C, and fluorogenic enzymatic assays were performed using six substrate analogues for the hydrolysis of carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase), amino acids (leucine aminopeptidase), and of organic phosphorus (alkaline phosphatase) and sulfur compounds (sulfatase). Remarkably, all fungal strains were capable of hydrolyzing all the offered substrates. However, the hydrolysis rate (Vmax) and half-saturation constant (Km) varied among the fungal strains depending on the enzyme type. Temperature had a strong impact on the EEAs, resulting in Q10 values of up to 6.1 and was species and substrate dependent. The observed impact of temperature on fungal EEA suggests that warming of the global ocean might alter the contribution of pelagic fungi in marine biogeochemical cycles.
Collapse
Affiliation(s)
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 Texel, The Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
26
|
Sen K, Sen B, Wang G. Diversity, Abundance, and Ecological Roles of Planktonic Fungi in Marine Environments. J Fungi (Basel) 2022; 8:jof8050491. [PMID: 35628747 PMCID: PMC9147564 DOI: 10.3390/jof8050491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Fungi are considered terrestrial and oceans are a “fungal desert”. However, with the considerable progress made over past decades, fungi have emerged as morphologically, phylogenetically, and functionally diverse components of the marine water column. Although their communities are influenced by a plethora of environmental factors, the most influential include salinity, temperature, nutrients, and dissolved oxygen, suggesting that fungi respond to local environmental gradients. The biomass carbon of planktonic fungi exhibits spatiotemporal dynamics and can reach up to 1 μg CL−1 of seawater, rivaling bacteria on some occasions, which suggests their active and important role in the water column. In the nutrient-rich coastal water column, there is increasing evidence for their contribution to biogeochemical cycling and food web dynamics on account of their saprotrophic, parasitic, hyper-parasitic, and pathogenic attributes. Conversely, relatively little is known about their function in the open-ocean water column. Interestingly, methodological advances in sequencing and omics approach, the standardization of sequence data analysis tools, and integration of data through network analyses are enhancing our current understanding of the ecological roles of these multifarious and enigmatic members of the marine water column. This review summarizes the current knowledge of the diversity and abundance of planktonic fungi in the world’s oceans and provides an integrated and holistic view of their ecological roles.
Collapse
Affiliation(s)
- Kalyani Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Zhou YL, Mara P, Cui GJ, Edgcomb VP, Wang Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat Commun 2022; 13:1515. [PMID: 35314706 PMCID: PMC8938466 DOI: 10.1038/s41467-022-29144-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Hadal trenches are the deepest and most remote regions of the ocean. The 11-kilometer deep Challenger Deep is the least explored due to the technical challenges of sampling hadal depths. It receives organic matter and heavy metals from the overlying water column that accumulate differently across its V-shaped topography. Here, we collected sediments across the slope and bottom-axis of the Challenger Deep that enable insights into its in situ microbial communities. Analyses of 586 metagenome-assembled genomes retrieved from 37 metagenomes show distinct diversity and metabolic capacities between bottom-axis and slope sites. 26% of prokaryotic 16S rDNA reads in metagenomes were novel, with novelty increasing with water and sediment depths. These predominantly heterotrophic microbes can recycle macromolecules and utilize simple and complex hydrocarbons as carbon sources. Metagenome and metatranscriptome data support reduction and biotransformation of arsenate for energy gain in sediments that present a two-fold greater accumulation of arsenic compared to non-hadal sites. Complete pathways for anaerobic ammonia oxidation are predominantly identified in genomes recovered from bottom-axis sediments compared to slope sites. Our results expand knowledge of microbially-mediated elemental cycling in hadal sediments, and reveal differences in distribution of processes involved in nitrogen loss across the trench.
Collapse
Affiliation(s)
- Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Guo-Jie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
28
|
Autofluorescence Is a Common Trait in Different Oceanic Fungi. J Fungi (Basel) 2021; 7:jof7090709. [PMID: 34575747 PMCID: PMC8468643 DOI: 10.3390/jof7090709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Natural autofluorescence is a widespread phenomenon observed in different types of tissues and organisms. Depending on the origin of the autofluorescence, its intensity can provide insights on the physiological state of an organism. Fungal autofluorescence has been reported in terrestrial and human-derived fungal samples. Yet, despite the recently reported ubiquitous presence and importance of marine fungi in the ocean, the autofluorescence of pelagic fungi has never been examined. Here, we investigated the existence and intensity of autofluorescence in five different pelagic fungal isolates. Preliminary experiments of fungal autofluorescence at different growth stages and nutrient conditions were conducted, reflecting contrasting physiological states of the fungi. In addition, we analysed the effect of natural autofluorescence on co-staining with DAPI. We found that all the marine pelagic fungi that were studied exhibited autofluorescence. The intensity of fungal autofluorescence changed depending on the species and the excitation wavelength used. Furthermore, fungal autofluorescence varied depending on the growth stage and on the concentration of available nutrients. Collectively, our results indicate that marine fungi can be auto-fluorescent, although its intensity depends on the species and growth condition. Hence, oceanic fungal autofluorescence should be considered in future studies when fungal samples are stained with fluorescent probes (i.e., fluorescence in situ hybridization) since this could lead to misinterpretation of results.
Collapse
|
29
|
Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass. J Fungi (Basel) 2021; 7:jof7090690. [PMID: 34575728 PMCID: PMC8468844 DOI: 10.3390/jof7090690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/01/2023] Open
Abstract
Ergosterol has traditionally been used as a proxy to estimate fungal biomass as it is almost exclusively found in fungal lipid membranes. Ergosterol determination has been mostly used for fungal samples from terrestrial, freshwater, salt marsh- and mangrove-dominated environments or to describe fungal degradation of plant matter. In the open ocean, however, the expected concentrations of ergosterol are orders of magnitude lower than in terrestrial or macrophyte-dominated coastal systems. Consequently, the fungal biomass in the open ocean remains largely unknown. Recent evidence based on microscopy and -omics techniques suggests, however, that fungi contribute substantially to the microbial biomass in the oceanic water column, highlighting the need to accurately determine fungal biomass in the open ocean. We performed ergosterol extractions of an oceanic fungal isolate (Rhodotorula sphaerocarpa) with biomass concentrations varying over nine orders of magnitude. While after the initial chloroform-methanol extraction ~87% of the ergosterol was recovered, a second extraction recovered an additional ~10%. Testing this extraction method on samples collected from the open Atlantic Ocean, we successfully determined ergosterol concentrations as low as 0.12 pM. Thus, this highly sensitive method is well suited for measuring fungal biomass from open ocean waters, including deep-sea environments.
Collapse
|
30
|
Laundon D, Cunliffe M. A Call for a Better Understanding of Aquatic Chytrid Biology. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:708813. [PMID: 37744140 PMCID: PMC10512372 DOI: 10.3389/ffunb.2021.708813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/09/2021] [Indexed: 09/26/2023]
Abstract
The phylum Chytridiomycota (the "chytrids") is an early-diverging, mostly unicellular, lineage of fungi that consists of significant aquatic saprotrophs, parasites, and pathogens, and is of evolutionary interest because its members retain biological traits considered ancestral in the fungal kingdom. While the existence of aquatic chytrids has long been known, their fundamental biology has received relatively little attention. We are beginning to establish a detailed understanding of aquatic chytrid diversity and insights into their ecological functions and prominence. However, the underpinning biology governing their aquatic ecological activities and associated core processes remain largely understudied and therefore unresolved. Many biological questions are outstanding for aquatic chytrids. What are the mechanisms that control their development and life cycle? Which core processes underpin their aquatic influence? What can their biology tell us about the evolution of fungi and the wider eukaryotic tree of life? We propose that the field of aquatic chytrid ecology could be further advanced through the improved understanding of chytrid biology, including the development of model aquatic chytrids and targeted studies using culture-independent approaches.
Collapse
Affiliation(s)
- Davis Laundon
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|