1
|
VandenHeuvel SN, Nash LL, Raghavan SA. Dormancy in Metastatic Colorectal Cancer: Tissue Engineering Opportunities for In Vitro Modeling. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40195931 DOI: 10.1089/ten.teb.2025.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Colorectal cancer (CRC) recurs at a striking rate, specifically in patients with liver metastasis. Dormant CRC cells disseminated following initial primary tumor resection or treatment often resurface years later to form aggressive, therapy-resistant tumors that result in high patient mortality. Routine imaging-based screenings often fail to detect dormant cancer cell clusters, and there are no overt symptomatic presentations, making dormant CRC a major clinical challenge to diagnose and treat. Tissue engineering approaches are ideally suited to model dormant cancer cells and enable the discovery of therapeutic vulnerabilities or unique mechanistic dependencies of dormant CRC. Emerging evidence suggests that tissue-engineered approaches have been successfully used to model dormant breast and lung cancer. With CRC responsible for the second most cancer-related deaths worldwide and CRC patients commonly experiencing recurrence, it is essential to expand dormancy models to understand this phenomenon in the context of CRC. Most published in vitro models of CRC dormancy simplify the complex tumor microenvironment with two-dimensional culture systems to elucidate dormancy-driving mechanisms. Building on this foundation, future research should apply tissue engineering methods to this growing field to generate competent three-dimensional models and increase mechanistic knowledge. This review summarizes the current state of in vitro CRC dormancy models, highlighting the techniques utilized to give rise to dormant CRC cells: nutrient depletion, anticancer drugs, physical extracellular matrix interactions, and genetic manipulation. The metrics used to validate dormancy within each model are also consolidated to demonstrate the lack of established standards and the ambiguity around comparing studies that have been validated differently. The methods of these studies are organized in this review to increase comprehensibility and identify needs and opportunities for future bioengineered in vitro models to address dormancy-driven mortality in patients with CRC liver metastasis. Impact Statement Dormant cancer drives high patient mortality, especially in metastatic colorectal cancer, owing to the clinical inability to identify dormant cells prior to their overt recurrence. Lacking clinical insights, in vitro modeling for mechanistic and therapeutic discovery is hindered. Here, we review models and methods of inducing colorectal cancer dormancy with the goal of consolidating findings for reference. We also highlight the need for advanced, tissue-engineered models to better mimic the organ-specific 3D microenvironment of metastatic colorectal cancer. New models would enable breakthroughs in understanding mechanisms driving dormancy progression and reversal, thereby providing context for therapeutic advances to improve patient survival.
Collapse
Affiliation(s)
| | - Lucia L Nash
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Regional Excellence Center in Cancer, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Jin Z, Li Y, Yi H, Wang M, Wang C, Du S, Zeng W, Zong Z. Pathogenetic development, diagnosis and clinical therapeutic approaches for liver metastasis from colorectal cancer (Review). Int J Oncol 2025; 66:22. [PMID: 39950314 PMCID: PMC11844340 DOI: 10.3892/ijo.2025.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy and a significant proportion of patients with CRC develop liver metastasis (CRLM), which is a major contributor to CRC‑related mortality. The present review aimed to comprehensively examine the pathogenetic development and diagnosis of CRLM and the clinical therapeutic approaches for treatment of this disease. The molecular mechanisms underlying CRLM were discussed, including the role of the tumour microenvironment and epithelial‑mesenchymal transition. The present review also highlighted the importance of early detection and the current challenges in predicting the development of CRLM. Various treatment strategies were reviewed, including surgical resection, chemotherapy and immunotherapy, and the potential of novel therapies, such as selective internal radiation therapy and Traditional Chinese Medicine. Despite recent advancements in treatment options, the treatment of CRLM remains a therapeutic challenge due to the complexity of the liver microenvironment and the heterogeneity of CRC. The present review emphasized the need for a multidisciplinary approach and the integration of emerging therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Li
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chaofeng Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaokun Du
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Cui Y, Chang Y, Ma X, Sun M, Huang Y, Yang F, Li S, Zhuo W, Liu W, Yang B, Lin A, Ou G, Yang Y, Xie S, Zhou T. Ephrin A1 Stimulates CCL2 Secretion to Facilitate Premetastatic Niche Formation and Promote Gastric Cancer Liver Metastasis. Cancer Res 2025; 85:263-276. [PMID: 39412948 DOI: 10.1158/0008-5472.can-24-1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/04/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
The liver is a primary target for distal metastasis of gastric cancer. The hepatic premetastatic niche (PMN) facilitates crucial communications between primary tumor and liver, thereby playing an essential role in hepatic metastasis. Identification of the molecular mechanisms driving PMN formation in gastric cancer could facilitate development of strategies to prevent and treat liver metastasis. Here, we uncovered a role for ephrin A1 (EFNA1) signaling in development of the PMN. EFNA1 overexpression in gastric cancer cells significantly increased C-C motif chemokine ligand 2 (CCL2) secretion through the Hippo-YAP pathway. Secreted CCL2 activated hepatic stellate cells (HStC) within the hepatic PMN via the WNT/β-catenin pathway. Inhibition of CCL2 significantly suppressed HStC activation and reduced liver metastasis triggered by EFNA1 signaling in gastric cancer cells. Moreover, high CCL2 expression correlated with poor survival in patients with cancer. Overall, these findings reveal that EFNA1 signaling in gastric cancer cells upregulates CCL2, which activates HStCs to engender establishment of a hepatic PMN that supports liver metastasis. Significance: Cross-talk between gastric cancer cells and hepatic stellate cells mediated by the EFNA1/CCL2 axis induces premetastatic niche development to facilitate metastatic spread, nominating CCL2 as a therapeutic target to suppress liver metastasis.
Collapse
Affiliation(s)
- Yun Cui
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yongxia Chang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xixi Ma
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Meng Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Yuliang Huang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yang
- Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Shuang Li
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Metabolic Medicine Center, International Institutes of Medicine and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guangshuo Ou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuehong Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhu J, Zhou T, Chen G, Wu Y, Chen X, Song Y, Tuohetali A, Gao H, Pang D, Wen H, Aimulajiang K. Inhibition of the MyD88 signaling pathway could upregulates Ghrelin expression to synergistically regulate hepatic Echinococcus multilocularis-infected progression. Front Immunol 2024; 15:1512180. [PMID: 39749332 PMCID: PMC11693510 DOI: 10.3389/fimmu.2024.1512180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction AE and whether the inhibition of the MyD88 inflammatory pathway can enhance Ghrelin expression to collaboratively modulate AE progression remains unclear. Methods In this study, we evaluated Ghrelin serum levels and changes in TLR4/MyD88/NF-κB pathway proteins and inflammatory factors in AE patients and E. multilocularis mouse models at different stages of infection (-4, -8, and -12 weeks). Additionally, we administered the MyD88 inhibitor TJ-M2010-5 intraperitoneally to infected mice to evaluate alterations in inflammation and Ghrelin levels, as well as disease progression. Results A decrease in serum Ghrelin levels in AE patients, whereas both Ghrelin and GHSR, along with TLR4/MyD88/NF-κB pathway proteins and markers of M1/M2 macrophage polarization, exhibited increased expression in the inflammatory cell zones surrounding hepatic lesions. Similar findings were observed in E. multilocularis-infected mice. M1-type inflammatory expression predominated throughout the infection's progression, with sustained high levels of Ghrelin counteracting inflammation. The TLR4/ MyD88/NF-κB pathway remained suppressed during the first 8 weeks, becoming activated only at 12 weeks. Inhibition of the MyD88 pathway resulted in reduced inflammation levels and upregulated Ghrelin expression, thereby collaboratively regulating the progression of hepatic infection. Conclusion These findings suggest an interactive regulation between the MyD88 inflammatory signaling pathway and Ghrelin, indicating that MyD88 inhibition could enhance Ghrelin expression to modulate the progression of E. multilocularis infection.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guangfeng Chen
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yuhui Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xia Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ya Song
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ayinula Tuohetali
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Huijing Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dongming Pang
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
6
|
Zhou T, Xu X, Zhu J, Aizezi M, Aierken A, Meng M, He R, Aimulajiang K, Wen H. Association of IL-9 Cytokines with Hepatic Injury in Echinococcus granulosus Infection. Biomolecules 2024; 14:1007. [PMID: 39199394 PMCID: PMC11352830 DOI: 10.3390/biom14081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic disease caused by the parasite Echinococcus granulosus (E. granulosus), which can lead to the formation of liver lesions. Research indicates that E. granulosus releases both Toll-like receptor 2 (TLR2) and Interleukin-9 (IL-9), which can potentially impair the body's innate immune defenses and compromise the liver's ability to fight against diseases. To investigate the role of TLR2 and IL-9 in liver damage caused by E. granulosus infection, samples were initially collected from individuals diagnosed with CE. Subsequently, BALB/c mice were infected with E. granulosus at multiple time points (4 weeks, 12 weeks, 32 weeks) and the expression levels of these markers was then assessed at each of these phases. Furthermore, a BALB/c mouse model was generated and administered anti-IL-9 antibody via intraperitoneal injection. The subsequent analysis focused on the TLR2/MyD88/NF-κB signaling pathway and the expression of IL-9 in E. granulosus was examined. A co-culture experiment was conducted using mouse mononuclear macrophage cells (RAW264.7) and hepatic stellate cells (HSCs) in the presence of E. granulosus Protein (EgP). The findings indicated elevated levels of IL-9 and TLR2 in patients with CE, with the activation of the signaling pathway significantly increased as the duration of infection progressed. Administration of anti-IL-9 in mice reduced the activation of the TLR2/MyD88/NF-κB signaling pathway, exacerbating liver injury. Moreover, EgP stimulates the TLR2/MyD88/NF-κB signaling pathway, resulting in the synthesis of α-SMA and Collagen I. The data suggest that infection with E. granulosus may stimulate the production of IL-9 through the activation of the TLR2/MyD88/NF-κB signaling pathway, which is mediated by TLR2. This activation stimulates RAW264.7 and HSCs, exacerbating liver injury and fibrosis.
Collapse
Affiliation(s)
- Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
- Digestive and Vascular Surgery Center Therapy Center, Department of Hepatobiliary and Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xinlu Xu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
- Digestive and Vascular Surgery Center Therapy Center, Department of Hepatobiliary and Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
- Digestive and Vascular Surgery Center Therapy Center, Department of Hepatobiliary and Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang, Urumqi 830000, China
| | - Mayire Aizezi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
| | - Aili Aierken
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
| | - Menggen Meng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
| | - Rongdong He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
- Digestive and Vascular Surgery Center Therapy Center, Department of Hepatobiliary and Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (T.Z.); (X.X.); (J.Z.); (M.A.); (A.A.); (M.M.); (R.H.)
- Digestive and Vascular Surgery Center Therapy Center, Department of Hepatobiliary and Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
7
|
Narita Y, Ogata T, Ishizuka Y, Sakakida T, Wakabayashi M, Kodama H, Honda K, Masuishi T, Taniguchi H, Kadowaki S, Ando M, Tajika M, Muro K. Trifluridine/tipiracil with and without ramucirumab for advanced gastric cancer: a comparative observational study. Sci Rep 2024; 14:12658. [PMID: 38830895 PMCID: PMC11148118 DOI: 10.1038/s41598-024-61975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
The combination of trifluridine/tipiracil hydrochloride (FTD/TPI) plus ramucirumab has demonstrated clinical activity in patients with advanced gastric cancer (AGC). We evaluated the efficacy and safety of this combination compared with those of FTD/TPI monotherapy in patients with AGC. We retrospectively reviewed data of patients with AGC who received FTD/TPI plus ramucirumab or FTD/TPI monotherapy as third- or later-line treatment. This study included 36 patients treated with FTD/TPI plus ramucirumab and 70 patients receiving FTD/TPI monotherapy. The objective response rate (ORR) and disease control rate (DCR) were 25.8% and 58.1%, respectively, in the FTD/TPI plus ramucirumab group and 5.0% and 38.3%, respectively, in the FTD/TPI group (ORR, P = 0.007; DCR, P = 0.081). The median progression-free survival (PFS) was significantly longer in the FTD/TPI plus ramucirumab group (median PFS, 2.9 vs. 1.8 months; hazard ratio [HR]: 0.52; P = 0.001). A numerical survival benefit was also observed (median overall survival, 7.9 months vs. 5.0 months; HR: 0.68, P = 0.089). In the multivariate analysis, PFS was significantly longer in the FTD/TPI plus ramucirumab group than in the FTD/TPI monotherapy group (HR: 0.61, P = 0.030). The incidence of febrile neutropenia was higher in the FTD/TPI plus ramucirumab group than in the FTD/TPI group (13.8% vs. 2.9%); however, no new safety signals were identified. Compared with FTD/TPI monotherapy, FTD/TPI plus ramucirumab offers clinical benefits with acceptable toxicity in heavily pretreated patients with AGC. Further investigation via randomized trials is warranted to confirm these findings.
Collapse
Affiliation(s)
- Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
| | - Takatsugu Ogata
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yasunobu Ishizuka
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Tomoki Sakakida
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Munehiro Wakabayashi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroyuki Kodama
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kazunori Honda
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Toshiki Masuishi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Masashi Ando
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Masahiro Tajika
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
8
|
Wang P, Jie Y, Yao L, Sun YM, Jiang DP, Zhang SQ, Wang XY, Fan Y. Cells in the liver microenvironment regulate the process of liver metastasis. Cell Biochem Funct 2024; 42:e3969. [PMID: 38459746 DOI: 10.1002/cbf.3969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
The research of liver metastasis is a developing field. The ability of tumor cells to invade the liver depends on the complicated interactions between metastatic cells and local subpopulations in the liver (including Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells, and immune-related cells). These interactions are mainly mediated by intercellular adhesion and the release of cytokines. Cell populations in the liver microenvironment can play a dual role in the progression of liver metastasis through different mechanisms. At the same time, we can see the participation of liver parenchymal cells and nonparenchymal cells in the process of liver metastasis of different tumors. Therefore, the purpose of this article is to summarize the relationship between cellular components of liver microenvironment and metastasis and emphasize the importance of different cells in the occurrence or potential regression of liver metastasis.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Jie
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lin Yao
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi-Meng Sun
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Da-Peng Jiang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi-Qi Zhang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Xie H, Chen D, Feng Y, Mo F, Liu L, Xing J, Xiao W, Gong Y, Tang S, Tan Z, Liang G, Zhao S, Yin W, Huang J. Evaluation of the TLR3 involvement during Schistosoma japonicum-induced pathology. BMC Immunol 2024; 25:2. [PMID: 38172683 PMCID: PMC10765740 DOI: 10.1186/s12865-023-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dianhui Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanfa Feng
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Feng Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Xiao
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanni Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guikuan Liang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shan Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
10
|
Xiang J, Zhang N, Du A, Li J, Luo M, Wang Y, Liu M, Yang L, Li X, Wang L, Liu Q, Chen D, Wang T, Bian X, Qin Z, Su L, Wen L, Wang B. A Ubiquitin-Dependent Switch on MEF2D Senses Pro-Metastatic Niche Signals to Facilitate Intrahepatic Metastasis of Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305550. [PMID: 37828611 PMCID: PMC10724427 DOI: 10.1002/advs.202305550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 10/14/2023]
Abstract
Effective treatment for metastasis, a leading cause of cancer-associated death, is still lacking. To seed on a distal organ, disseminated cancer cells (DCCs) must adapt to the local tissue microenvironment. However, it remains elusive how DCCs respond the pro-metastatic niche signals. Here, systemic motif-enrichment identified myocyte enhancer factor 2D (MEF2D) as a critical sensor of niche signals to regulate DCCs adhesion and colonization, leading to intrahepatic metastasis and recurrence of liver cancer. In this context, MEF2D transactivates Itgb1 (coding β1-integrin) and Itgb4 (coding β4-integrin) to execute temporally unique functions, where ITGB1 recognizes extracellular matrix for early seeding, and ITGB4 acts as a novel sensor of neutrophil extracellular traps-DNA (NETs-DNA) for subsequent chemotaxis and colonization. In turn, an integrin-FAK circuit promotes a phosphorylation-dependent USP14-orchastrated deubiquitination switch to stabilize MEF2D via circumventing degradation by the E3-ubiquitin-ligase MDM2. Clinically, the USP14(pS432)-MEF2D-ITGB1/4 feedback loop is often hyper-active and indicative of inferior outcomes in human malignancies, while its blockade abrogated intrahepatic metastasis of DCCs. Together, DCCs exploit a deubiquitination-dependent switch on MEF2D to integrate niche signals in the liver mesenchyme, thereby amplifying the pro-metastatic integrin-FAK signaling. Disruption of this feedback loop is clinically applicable with fast-track potential to block microenvironmental cues driving metastasis.
Collapse
Affiliation(s)
- Junyu Xiang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Ni Zhang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Aibei Du
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Jinyang Li
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Mengyun Luo
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Yuzhu Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Meng Liu
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Luming Yang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Xianfeng Li
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Lin Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Qin Liu
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Dongfeng Chen
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Tao Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Centerand Key Laboratory of Tumor Immunopathology of Ministry of Education of ChinaSouthwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Zhong‐yi Qin
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
- Institute of Pathology and Southwest Cancer Centerand Key Laboratory of Tumor Immunopathology of Ministry of Education of ChinaSouthwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Li Su
- Department of Oncology and HematologyChongqing Hospital of Traditional Chinese MedicineChongqing400030China
| | - Liangzhi Wen
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Bin Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
- Institute of Pathology and Southwest Cancer Centerand Key Laboratory of Tumor Immunopathology of Ministry of Education of ChinaSouthwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038China
- Jinfeng LaboratoryChongqing401329China
| |
Collapse
|
11
|
Ye J, Guo W, Wang C, Egelston CA, D'Apuzzo M, Shankar G, Fakih MG, Lee PP. Peritumoral Immune-suppressive Mechanisms Impede Intratumoral Lymphocyte Infiltration into Colorectal Cancer Liver versus Lung Metastases. CANCER RESEARCH COMMUNICATIONS 2023; 3:2082-2095. [PMID: 37768208 PMCID: PMC10569153 DOI: 10.1158/2767-9764.crc-23-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Patients with microsatellite stable (MSS) colorectal cancer with liver metastases are resistant to immune checkpoint inhibitor (ICI) therapy, while about one-third of patients with colorectal cancer without liver metastases, particularly those with lung-only metastases, respond to ICI. We analyzed primary colorectal cancer tumors and major metastatic sites (liver, lung, peritoneal) using multiplex immunofluorescence and whole-slide spatial analyses to identify variations in immune contexture and regional localization within the tumor microenvironment. While levels of T and B cells within peritumoral regions were similar, their levels were significantly lower within the tumor core of liver and peritoneal metastases compared with lung metastases. In contrast, antigen-presenting cells (APC) and APC-T cell interactions were more abundant in all regions of lung metastases. We also identified an abundance of lymphoid aggregates throughout lung metastases, but these were present only within peritumoral regions of liver and peritoneal metastases. Larger lymphoid aggregates consistent with features of tertiary lymphoid structures were observed within or adjacent to primary tumors, but not metastatic lesions. Our findings were validated using NanoString GeoMx DSP, which further showed that liver metastases had higher expression of immune-suppressive markers, while lung metastases showed higher proinflammatory activity and T-cell activation markers. Peritoneal metastases demonstrated higher expression of cancer-associated fibroblast-related proteins and upregulated PD-1/PD-L1 signaling molecules. Our results demonstrate that functional status and spatial distribution of immune cells vary significantly across different metastatic sites. These findings suggest that metastatic site-dependent immune contexture may underlie discordant responses to ICI therapy in patients with MSS colorectal cancer. SIGNIFICANCE Our results demonstrate that functional status and spatial distribution of immune cells vary significantly across different metastatic sites in MSS colorectal cancer. These findings suggest that metastatic site-dependent immune contexture may underlie discordant responses to ICI therapy in patients with MSS colorectal cancer.
Collapse
Affiliation(s)
- Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | | | - Marwan G. Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
12
|
Li S, Qu Y, Liu L, Wang C, Yuan L, Bai H, Wang J. Tumour-derived exosomes in liver metastasis: A Pandora's box. Cell Prolif 2023; 56:e13452. [PMID: 36941028 PMCID: PMC10542622 DOI: 10.1111/cpr.13452] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The liver is a common secondary metastasis site of many malignant tumours, such as the colorectum, pancreas, stomach, breast, prostate, and lung cancer. The clinical management of liver metastases is challenging because of their strong heterogeneity, rapid progression, and poor prognosis. Now, exosomes, small membrane vesicles that are 40-160 nm in size, are released by tumour cells, namely, tumour-derived exosomes (TDEs), and are being increasingly studied because they can retain the original characteristics of tumour cells. Cell-cell communication via TDEs is pivotal for liver pre-metastatic niche (PMN) formation and liver metastasis; thus, TDEs can provide a theoretical basis to intensively study the potential mechanisms of liver metastasis and new insights into the diagnosis and treatment of liver metastasis. Here, we systematically review current research progress about the roles and possible regulatory mechanisms of TDE cargos in liver metastasis, focusing on the functions of TDEs in liver PMN formation. In addition, we discuss the clinical utility of TDEs in liver metastasis, including TDEs as potential biomarkers, and therapeutic approaches for future research reference in this field.
Collapse
Affiliation(s)
- Sini Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Kim SK, Lee NH, Son CG. A Review of Herbal Resources Inducing Anti-Liver Metastasis Effects in Gastrointestinal Tumors via Modulation of Tumor Microenvironments in Animal Models. Cancers (Basel) 2023; 15:3415. [PMID: 37444525 PMCID: PMC10340630 DOI: 10.3390/cancers15133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Liver metastases remain a major obstacle for the management of all types of tumors arising from digestive organs, and the tumor microenvironment has been regarded as an important factor in metastasis. To discover herbal candidates inhibiting the liver metastasis of tumors originating from the digestive system via the modulation of the tumor microenvironment and liver environment, we searched three representative public databases and conducted a systematic review. A total of 21 studies that employed experimental models for pancreatic (9), colon (8), and stomach cancers (4) were selected. The herbal agents included single-herb extracts (5), single compounds (12), and multiherbal decoctions (4). Curcuma longa Linn was most frequently studied for its anti-colon-liver metastatic effects, and its possible mechanisms involved the modulation of tumor microenvironment components such as vascular endothelial cells and immunity in both tumor tissues and circulating cells. The list of herbal agents and their mechanisms produced in this study is helpful for the development of anti-liver metastasis drugs in the future.
Collapse
Affiliation(s)
- Sul-Ki Kim
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea;
| | - Nam-Hun Lee
- East-West Cancer Center, Cheonan Korean Medicine Hospital, Daejeon University, Cheonan 31099, Republic of Korea;
| | - Chang-Gue Son
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea;
| |
Collapse
|
14
|
Li D, Ainiwaer A, Zheng X, Wang M, Shi Y, Rousu Z, Hou X, Kang X, Maimaiti M, Wang H, Li J, Zhang C. Upregulation of LAG3 modulates the immune imbalance of CD4+ T-cell subsets and exacerbates disease progression in patients with alveolar echinococcosis and a mouse model. PLoS Pathog 2023; 19:e1011396. [PMID: 37172058 DOI: 10.1371/journal.ppat.1011396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023] Open
Abstract
Infection with the cestode Echinococcus multilocularis (E. multilocularis) causes alveolar echinococcosis (AE), a tumor-like disease predominantly affecting the liver but able to spread to any organ. T cells develop functional defects during chronic E. multilocularis infection, mostly due to upregulation of inhibitory receptors such as T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) and programmed death-1 (PD-1). However, the role of lymphocyte activation gene-3 (LAG3), an inhibitory receptor, in AE infection remains to be determined. Here, we discovered that high expression of LAG3 was mainly found in CD4+ T cells and induced regulatory T cells (iTregs) in close liver tissue (CLT) from AE patients. In a mouse model of E. multilocularis infection, LAG3 expression was predominantly found in T helper 2 (Th2) and Treg subsets, which secreted significantly more IL-4 and IL-10, resulting in host immune tolerance and disease progression at a late stage. Furthermore, LAG3 deficiency was found to drive the development of effector memory CD4+ T cells and enhance the type 1 CD4+ T-cell immune response, thus inhibiting metacestode growth in vivo. In addition, CD4+ T cells from LAG3-deficient mice produced more IFN-γ and less IL-4 when stimulated by E. multilocularis protoscoleces (EmP) antigen in vitro. Finally, adoptive transfer experiments showed that LAG3-knockout (KO) CD4+ T cells were more likely to develop into Th1 cells and less likely to develop into Tregs in recipient mice. Our work reveals that high expression of LAG3 accelerates AE disease progression by modulating the immune imbalance of CD4+ T-cell subsets. These findings may provide a novel immunotherapeutic strategy against E. multilocularis infection.
Collapse
Affiliation(s)
- Dewei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abidan Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zibigu Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinling Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Muesier Maimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
金 杯, 张 晔, 潘 景. [The Role and Significance of Hepatic Environmental Cells in Tumor Metastatic Colonization to Liver]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:469-474. [PMID: 37248570 PMCID: PMC10475444 DOI: 10.12182/20230560301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Metastasis, a main cause of death in tumor patients, is a complicated process that involves multiple steps, presenting a major clinical challenge. Tumor cells break the physical boundaries of a primary tumor, intravasate into the lumina of blood vessels, travel around through blood circulation, extravasate into distant organs, colonize the host organs, and eventually develop into the foci of metastatic cancer. The metastasis of tumor cells exhibits organ-tropism, i.e., tumor cells preferentially spread to specific organs. Liver is a common site for metastasis. The pattern of metastasis in uveal melanoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma shows organ-tropism for liver. The anatomical structure of liver determines its hemodynamic characteristics, e.g., low pressure and slow blood flow, which tend to facilitate the stasis and colonization of tumor cells in the liver. Besides the hemodynamic features, the metastatic colonization of liver depends largely on the interaction between tumor cells and the hepatic microenvironment (especially liver-resident cellular components). Resident cells of the hepatic microenvironment include hepatocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KCs), etc. Herein, we discussed the role and significance of liver-resident cells in the metastatic colonization of tumor in the liver.
Collapse
Affiliation(s)
- 杯 金
- 中山大学中山眼科中心,眼科学国家重点实验室,广东省眼科视觉科学重点实验室 (广州 510060)State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - 晔昱 张
- 中山大学中山眼科中心,眼科学国家重点实验室,广东省眼科视觉科学重点实验室 (广州 510060)State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - 景轩 潘
- 中山大学中山眼科中心,眼科学国家重点实验室,广东省眼科视觉科学重点实验室 (广州 510060)State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
16
|
Buxton AK, Abbasova S, Bevan CL, Leach DA. Liver Microenvironment Response to Prostate Cancer Metastasis and Hormonal Therapy. Cancers (Basel) 2022; 14:6189. [PMID: 36551674 PMCID: PMC9777323 DOI: 10.3390/cancers14246189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer-associated deaths arise from disease progression and metastasis. Metastasis to the liver is associated with the worst clinical outcomes for prostate cancer patients, and these metastatic tumors can be particularly resistant to the currently widely used chemotherapy and hormonal therapies, such as anti-androgens which block androgen synthesis or directly target the androgen receptor. The incidence of liver metastases is reportedly increasing, with a potential correlation with use of anti-androgen therapies. A key player in prostate cancer progression and therapeutic response is the microenvironment of the tumor(s). This is a dynamic and adaptive collection of cells and proteins, which impart signals and stimuli that can alter biological processes within prostate cancer cells. Investigation in the prostate primary site has demonstrated that cells of the microenvironment are also responsive to hormones and hormonal therapies. In this review, we collate information about what happens when cancer moves to the liver: the types of prostate cancer cells that metastasize there, the response of resident mesenchymal cells of the liver, and how the interactions between the cancer cells and the microenvironment may be altered by hormonal therapy.
Collapse
Affiliation(s)
| | | | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Damien A. Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
17
|
Zheng Z, Wei J, Hou X, Jia F, Zhang Z, Guo H, Yuan F, He F, Ke Z, Wang Y, Zhao L. A High Hepatic Uptake of Conjugated Bile Acids Promotes Colorectal Cancer-Associated Liver Metastasis. Cells 2022; 11:cells11233810. [PMID: 36497071 PMCID: PMC9736302 DOI: 10.3390/cells11233810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The liver is the most common site for colorectal cancer (CRC)-associated metastasis. There remain unsatisfactory medications in liver metastasis given the incomplete understanding of pathogenic mechanisms. Herein, with an orthotopic implantation model fed either regular or high-fat diets (HFD), more liver metastases were associated with an expansion of conjugated bile acids (BAs), particularly taurocholic acid (TCA) in the liver, and an increased gene expression of Na+-taurocholate cotransporting polypeptide (NTCP). Such hepatic BA change was more apparently shown in the HFD group. In the same model, TCA was proven to promote liver metastases and induce a tumor-favorable microenvironment in the liver, characterizing a high level of fibroblast activation and increased proportions of myeloid-derived immune cells. Hepatic stellate cells, a liver-residing source of fibroblasts, were dose-dependently activated by TCA, and their conditioned medium significantly enhanced the migration capability of CRC cells. Blocking hepatic BA uptake with NTCP neutralized antibody can effectively repress TCA-triggered liver metastases, with an evident suppression of tumor microenvironment niche formation. This study points to a new BA-driven mechanism of CRC-associated liver metastases, suggesting that a reduction of TCA overexposure by limiting liver uptake is a potential therapeutic option for CRC-associated liver metastasis.
Collapse
Affiliation(s)
- Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhou Zhang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
18
|
Chen W, Wang R, Zhao Y, Li Y, Wang X, Peng W, Bai S, Zheng M, Liu M, Cheng B. CD44v6+ Hepatocellular Carcinoma Cells Maintain Stemness Properties through Met/cJun/Nanog Signaling. Stem Cells Int 2022; 2022:5853707. [PMID: 36387747 PMCID: PMC9663228 DOI: 10.1155/2022/5853707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/07/2024] Open
Abstract
Cancer stem cells (CSCs) are characterized by their self-renewal and differentiation abilities. CD44v6 is a novel CSC marker that can activate various signaling pathways. Here, we hypothesized that the HGF/Met signaling pathway promotes stemness properties in CD44v6+ hepatocellular carcinoma (HCC) cells via overexpression of the transcription factor, cJun, thus representing a valuable target for HCC therapy. Magnetic activated cell sorting was used to separate the CD44v6+ from CD44v6- cells, and Met levels were regulated using lentiviral particles and the selective Met inhibitor, PHA665752. An orthotopic liver xenograft tumor model was used to assess the self-renewal ability of CD44v6+ cells in immunodeficient NOD/SCID mice. Luciferase reporter and chromatin immunoprecipitation assays were also conducted using cJun-overexpressing 293 T cells to identify the exact binding site of cJun in the Nanog promoter. Our data demonstrate that CD44v6 is an ideal surface marker of liver CSCs. CD44v6+ HCC cells express higher levels of Met and possess self-renewal and tumor growth abilities. Xenograft liver tumors were smaller in nude mice injected with shMet HCC cells. Immunohistochemical analysis of liver tissue specimens revealed that high Met levels in HCC cells were associated with poor patient prognosis. Further, a cJun binding site was identified 1700 bp upstream of the Nanog transcription start site and mutation of the cJun binding site reduced Nanog expression. In conclusion, the HGF/Met signaling pathway is important for maintenance of stemness in CD44v6+ HCC cells by enhancing expression of cJun, which binds 1700 bp upstream of the Nanog transcription start site.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563003
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyi Street No. 28, Guiyang, Guizhou, China 550000
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology and Hepatology, Taikang Tongji Wuhan Hospital, Wuhan, China 430050
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| |
Collapse
|
19
|
Ahmad M, Dhasmana A, Harne PS, Zamir A, Hafeez BB. Chemokine clouding and liver cancer heterogeneity: Does it impact clinical outcomes? Semin Cancer Biol 2022; 86:1175-1185. [PMID: 35189322 DOI: 10.1016/j.semcancer.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
Tumor heterogeneity is a predominant feature of hepatocellular carcinoma (HCC) that plays a crucial role in chemoresistance and limits the efficacy of available chemo/immunotherapy regimens. Thus, a better understanding regarding the molecular determinants of tumor heterogeneity will help in developing newer strategies for effective HCC management. Chemokines, a sub-family of cytokines are one of the key molecular determinants of tumor heterogeneity in HCC and are involved in cell survival, growth, migration, and angiogenesis. Herein, we provide a panoramic insight into the role of chemokines in HCC heterogeneity at genetic, epigenetic, metabolic, immune cell composition, and tumor microenvironment levels and its impact on clinical outcomes. Interestingly, our in-silico analysis data showed that expression of chemokine receptors impacts infiltration of various immune cell populations into the liver tumor and leads to heterogeneity. Thus, it is evident that aberrant chemokines clouding impacts HCC tumor heterogeneity and understanding this phenomenon in depth could be harnessed for the development of personalized medicine strategies in future.
Collapse
Affiliation(s)
- Mudassier Ahmad
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States; Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Prateek Suresh Harne
- DHR Health Gastroenterology, 5520 Leonardo da Vinci Drive, Suite 100, Edinburg, TX 78539, United States
| | - Asif Zamir
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States; DHR Health Gastroenterology, 5520 Leonardo da Vinci Drive, Suite 100, Edinburg, TX 78539, United States
| | - Bilal Bin Hafeez
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States.
| |
Collapse
|
20
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
21
|
Guarin JR, Fatherree JP, Oudin MJ. Chemotherapy treatment induces pro-invasive changes in liver ECM composition. Matrix Biol 2022; 112:20-38. [PMID: 35940338 PMCID: PMC10690958 DOI: 10.1016/j.matbio.2022.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 10/16/2022]
Abstract
Metastasis accounts for 90% of cancer-related deaths, yet the mechanisms by which cancer cells colonize secondary organs remain poorly understood. For breast cancer patients, metastasis to the liver is associated with poor prognosis and a median survival of 6 months. Standard of care is chemotherapy, but recurrence occurs in 30% of patients. Systemic chemotherapy has been shown to induce hepatotoxicity and fibrosis, but how chemotherapy impacts the composition of the liver extracellular matrix (ECM) remains unknown. Individual ECM proteins drive tumor cell proliferation and invasion, features that are essential for metastatic outgrowth in the liver. First, we find that the ECM of livers isolated from chemotherapy-treated MMTV-PyMT mice increases the invasion, but not proliferation, of metastatic breast cancer cells. Proteomic analysis of the liver ECM identified Collagen V to be more abundant in paclitaxel-treated livers. We show that Collagen V increases cancer cell invasion via α1β1 integrins and MAPK signaling, while also increasing the alignment of Collagen I, which has been associated with increased invasion. Treatment with obtustatin, an inhibitor specific to α1β1 integrins, inhibits tumor cell invasion in decellularized ECM from paclitaxel-treated livers. Overall, we show chemotherapy treatment alters the liver microenvironment, priming it as a pro-metastatic niche for cancer metastasis.
Collapse
Affiliation(s)
- Justinne R Guarin
- Department of Biomedical Engineering, Tufts University, Room 134, 200 College Ave, Medford, MA 20155, United States
| | - Jackson P Fatherree
- Department of Biomedical Engineering, Tufts University, Room 134, 200 College Ave, Medford, MA 20155, United States
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Room 134, 200 College Ave, Medford, MA 20155, United States.
| |
Collapse
|
22
|
Accumulation of Microcystin from Oscillatoria limnetica Lemmermann and Microcystis aeruginosa (Kützing) in Two Leafy Green Vegetable Crop Plants Lactuca sativa L. and Eruca sativa. PLANTS 2022; 11:plants11131733. [PMID: 35807685 PMCID: PMC9269519 DOI: 10.3390/plants11131733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
The use of contaminated water to irrigate crop plants poses a risk to human health from the bioaccumulation potential of microcystins (MCs) in the edible tissues of vegetable plants. The main objective of this study is to determine the concentration of total microcystins (MC-LR and MC-RR) in leafy green plants (Lactuca sativa L. var. longifolia and Eruca sativa) that have previously been irrigated with polluted water. Integrated water samples were collected by cleaned plastic bottles at a depth of about 30 cm from one of the sources of water used to irrigate agricultural lands for crop plants. At the same time, samples from plants were also collected because this water from the lake farm is used for the irrigation of surrounding vegetable plants such as Lactuca sativa L. var. longifolia and Eruca sativa. The dominant species of cyanobacteria in water samples are Microcystis aeruginosa (Kützing) and Oscillatoria limnetica Lemmermann, which were detected with an average cell count 2,300,000 and 450,000 cells/mL, respectively. These two dominant species in water produced two MCs variants (MC-LR, -RR) that were quantified by high-performance liquid chromatography (HPLC). Dissolve and particulate MCs were detected in the irrigation waters by HPLC with concentrations of 45.04–600 μg/L. MCs in the water samples exceeded the WHO safety limit (1 μg/L) of MC in drinking water. In addition, the total concentration of Microcystin in Lactuca sativa L. var. longifolia and Eruca sativa were 1044 and 1089 ng/g tissues, respectively. The estimated daily intake (EDI) of microcystins by a person (60 kg) consuming 300 g of fresh plants exceeded the total daily intake guidelines (0.04 μg kg−1 body weight) for human food consumption. According to the findings of this study, irrigation water and plants used for human consumption should be tested for the presence of MCs regularly through critical and regularly monitored programs to prevent the accumulation and transfer of such toxins through the food web.
Collapse
|
23
|
Li Y, Wu J, Lu Q, Liu X, Wen J, Qi X, Liu J, Lian B, Zhang B, Sun H, Tian G. GA&HA-Modified Liposomes for Co-Delivery of Aprepitant and Curcumin to Inhibit Drug-Resistance and Metastasis of Hepatocellular Carcinoma. Int J Nanomedicine 2022; 17:2559-2575. [PMID: 35698562 PMCID: PMC9188407 DOI: 10.2147/ijn.s366180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumor microenvironment (TME) plays a vital role in the development of hepatocellular carcinoma (HCC). Mounting evidence indicates that peripheral nerves could induce a shift from quiescent hepatic stellate cells (HSCs) to cancer-associated fibroblasts (CAFs) by secreting substance P (SP). The anti-tumor strategy by targeting “SP-HSCs-HCC” axis might be an effective therapy to inhibit tumor growth and metastasis. Objective In this study, we prepared novel liposomes (CUR-APR/HA&GA-LPs) modified with hyaluronic acid (HA) and glycyrrhetinic acid (GA) for co-delivery aprepitant (APR) and curcumin (CUR), in which APR was chosen to inhibit the activation of HSCs by blocking SP/neurokinin-1 receptor (NK-1R), and CUR was used to induce apoptosis of tumor cells. Results To mimic the TME, we established “SP+HSCs+HCC” co-cultured cell model in vitro. The results showed that CUR-APR/HA&GA-LPs could be taken up by CAFs and HCC simultaneously, and inhibit tumor cell migration. Meanwhile, the “SP+m-HSCs+HCC” co-implanted mice model was established to evaluate the anti-tumor effect in vivo. The results showed that CUR-APR/HA&GA-LPs could inhibit tumor proliferation and metastasis, and reduce extracellular matrix (ECM) deposition and tumor angiogenesis, indicating a superior anti-HCC effect. Conclusion Overall, the combination therapy based on HA&GA-LPs could be a potential nano-sized formulation for anti-HCC therapy.
Collapse
Affiliation(s)
- Yanying Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China.,School of Nursing, Weifang University of Science and Technology, Weifang, 262700, People's Republic of China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, People's Republic of China
| | - Qiao Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xuemin Liu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, People's Republic of China
| | - Jiaxuan Wen
- School of Nursing, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Jianhao Liu
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bo Lian
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Hengyi Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Guixiang Tian
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| |
Collapse
|
24
|
Liao H, Du J, Wang H, Lan T, Peng J, Wu Z, Yuan K, Zeng Y. Integrated proteogenomic analysis revealed the metabolic heterogeneity in noncancerous liver tissues of patients with hepatocellular carcinoma. J Hematol Oncol 2021; 14:205. [PMID: 34895304 PMCID: PMC8665512 DOI: 10.1186/s13045-021-01195-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Understanding the adjacent liver microenvironment of hepatocellular carcinoma (HCC) with possible metastasis tendency might provide a strategy for risk classification of patients and potential therapies by converting the unique metastasis-inclined microenvironment to a metastasis-averse one. In this study, we performed an integrated proteogenomic analysis to have a comprehensive view on the heterogeneity of hepatic microenvironment contributing to HCC metastasis. Pairing mRNA-protein analysis revealed consistent and discordant mRNA-protein expressions in metabolism regulations and cancer-related pathways, respectively. Proteomic profiling identified three subgroups associated with the recurrence-free survival of patients. These proteomic subgroups demonstrated distinct features in metabolic reprogramming, which was potentially modified by epigenetic alterations. This study raises the point of metabolic heterogeneity in HCC noncancerous tissues and may offer a new perspective on HCC treatment.
Collapse
Affiliation(s)
- Haotian Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinpeng Du
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Haichuan Wang
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, China
| | - Zhenru Wu
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| | - Yong Zeng
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
25
|
Feng Y, Xie H, Shi F, Chen D, Xie A, Li J, Fang C, Wei H, Huang H, Pan X, Tang X, Huang J. Roles of TLR7 in Schistosoma japonicum Infection-Induced Hepatic Pathological Changes in C57BL/6 Mice. Front Cell Infect Microbiol 2021; 11:754299. [PMID: 34692568 PMCID: PMC8531751 DOI: 10.3389/fcimb.2021.754299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
S. japonicum infection can induce granulomatous inflammation in the liver of the host. Granulomatous inflammation limits the spread of infection and plays a role in host protection. Toll-like receptor 7 (TLR7) is an endosomal TLR that recognizes single-stranded RNA (ssRNA). In this study, the role of TLR7 in S. japonicum infection-induced hepatitis was investigated in both normal and TLR7 knockout (KO) C57BL/6 mice. The results indicated that TLR7 KO could aggravate S. japonicum infection-induced damage in the body, with less granuloma formation in the tissue, lower WBCs in blood, and decreased ALT and AST in the serum. Then, the expression of TLR7 was detected in isolated hepatic lymphocytes. The results indicated that the percentage of TLR7+ cells was increased in the infected mice. Hepatic macrophages, DCs, and B cells could express TLR7, and most of the TLR7-expressing cells in the liver of infected mice were macrophages. The percentage of TLR7-expressing macrophages was also increased after infection. Moreover, macrophages, T cells, and B cells showed significant changes in the counts, activation-associated molecule expression, and cytokine secretion between S. japonicum-infected WT and TLR7 KO mice. Altogether, this study indicated that TLR7 could delay the progression of S. japonicum infection-induced hepatitis mainly through macrophages. DCs, B cells, and T cells were involved in the TLR7-mediated immune response.
Collapse
Affiliation(s)
- Yuanfa Feng
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - He Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Wang L, Wang E, Prado Balcazar J, Wu Z, Xiang K, Wang Y, Huang Q, Negrete M, Chen K, Li W, Fu Y, Dohlman A, Mines R, Zhang L, Kobayashi Y, Chen T, Shi G, Shen JP, Kopetz S, Tata PR, Moreno V, Gersbach C, Crawford G, Hsu D, Huang E, Bu P, Shen X. Chromatin Remodeling of Colorectal Cancer Liver Metastasis is Mediated by an HGF-PU.1-DPP4 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004673. [PMID: 34378358 PMCID: PMC8498885 DOI: 10.1002/advs.202004673] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) metastasizes mainly to the liver, which accounts for the majority of CRC-related deaths. Here it is shown that metastatic cells undergo specific chromatin remodeling in the liver. Hepatic growth factor (HGF) induces phosphorylation of PU.1, a pioneer factor, which in turn binds and opens chromatin regions of downstream effector genes. PU.1 increases histone acetylation at the DPP4 locus. Precise epigenetic silencing by CRISPR/dCas9KRAB or CRISPR/dCas9HDAC revealed that individual PU.1-remodeled regulatory elements collectively modulate DPP4 expression and liver metastasis growth. Genetic silencing or pharmacological inhibition of each factor along this chromatin remodeling axis strongly suppressed liver metastasis. Therefore, microenvironment-induced epimutation is an important mechanism for metastatic tumor cells to grow in their new niche. This study presents a potential strategy to target chromatin remodeling in metastatic cancer and the promise of repurposing drugs to treat metastasis.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ergang Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Zhenzhen Wu
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kun Xiang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Yi Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Qiang Huang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Marcos Negrete
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Kai‐Yuan Chen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Wei Li
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Yujie Fu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Anders Dohlman
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Robert Mines
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Liwen Zhang
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yoshihiko Kobayashi
- Department of Cell BiologyRegeneration NextDuke University School of MedicineDurhamNC27710USA
| | - Tianyi Chen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Guizhi Shi
- Laboratory Animal Research CenterInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - John Paul Shen
- Department of Gastrointestinal Medical OncologyMD AndersonDurhamNC77030USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical OncologyMD AndersonDurhamNC77030USA
| | - Purushothama Rao Tata
- Department of Cell BiologyRegeneration NextDuke University School of MedicineDurhamNC27710USA
| | - Victor Moreno
- Department of Clinical SciencesUniversity of BarcelonaBarcelona08193Spain
- Prevention and Control ProgramCatalan Institute of Oncology‐IDIBELLCIBERESPBarcelonaE08907Spain
| | - Charles Gersbach
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Gregory Crawford
- Department of PediatricsDuke University School of MedicineDurhamNC27710USA
| | - David Hsu
- Department of MedicineDuke University School of MedicineDurhamNC27710USA
| | - Emina Huang
- Department of Cancer Biology and Colorectal SurgeryLerner Research Institute, Cleveland ClinicClevelandOH44195USA
| | - Pengcheng Bu
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Center for Excellence in BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Xiling Shen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
27
|
Bayir Garbioglu D, Demir N, Ozel C, Avci H, Dincer M. Determination of therapeutic agents efficiencies of microsatellite instability high colon cancer cells in post-metastatic liver biochip modeling. FASEB J 2021; 35:e21834. [PMID: 34403553 DOI: 10.1096/fj.202100333r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Two distinct genetic mutational pathways characterized by either chromosomal instability or high-frequency microsatellite instability (MSI-H) are recognized in the pathogenesis of colorectal cancer (CRC). Recently, it has been shown that patients with primary CRC that displays MSI-H have a significant, stage-independent, multivariate survival advantage. Biological properties of CMS1 (MSI-H type) can affect therapeutic efficiencies of agents used in the treatment of CRC, and therefore become a new predictive factor of the treatment. But, the predictive impact of MSI-H status for adjuvant chemotherapy remains controversial. This study will assess whether there is any unnecessary or inappropriate use of treatment agents recommended for adjuvant therapy of stage 2 and 3 of disease and for palliative or curative treatment of liver metastatic disease in microsatellite instability high group, a molecular subtype of colon cancer. Within this scope, the efficiencies of fluorouracil- and oxaliplatin-based chemotherapeutic agents will be shown on stage 3 microsatellite instability high colon tumor cell lines first, and then a microfluidic model will be created, imitating the metastasis of colon cancer to the liver. In the microfluidic chip model, we will create in liver tissue, where the metastasis of microsatellite instability high colon cancer will be simulated; the effectiveness of chemotherapeutic agents, immunotherapy agents, and targeted agents on tumor cells as well as drug response will be assessed according to cell viability through released biomarkers from the cells. The proposed hypothesis study includes the modeling and treatment of patient-derived post-metastatic liver cancer in microfluidics which has priority at the global and our region and consequently develop personal medication.
Collapse
Affiliation(s)
- Duygu Bayir Garbioglu
- Faculty of Medicine, Department of Medical Oncology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nazan Demir
- Faculty of Medicine, Department of Medical Oncology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ceren Ozel
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hüseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey.,Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Murat Dincer
- Faculty of Medicine, Department of Medical Oncology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
28
|
Gillot L, Baudin L, Rouaud L, Kridelka F, Noël A. The pre-metastatic niche in lymph nodes: formation and characteristics. Cell Mol Life Sci 2021; 78:5987-6002. [PMID: 34241649 PMCID: PMC8316194 DOI: 10.1007/s00018-021-03873-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dissemination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining (sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions that research could possibly take and the clinical impact are discussed.
Collapse
Affiliation(s)
- Lionel Gillot
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Loïc Rouaud
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Frédéric Kridelka
- Department of Obstetrics and Gynecology, CHU of Liege, 4000 Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| |
Collapse
|
29
|
Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. Proc Natl Acad Sci U S A 2021; 118:2026271118. [PMID: 34183415 DOI: 10.1073/pnas.2026271118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver is a major metastatic target organ, and little is known about the role of immunity in controlling hepatic metastases. Here, we discovered that the concerted and nonredundant action of two innate lymphocyte subpopulations, conventional natural killer cells (cNKs) and tissue-resident type I innate lymphoid cells (trILC1s), is essential for antimetastatic defense. Using different preclinical models for liver metastasis, we found that trILC1 controls metastatic seeding, whereas cNKs restrain outgrowth. Whereas the killing capacity of trILC1s was not affected by the metastatic microenvironment, the phenotype and function of cNK cells were affected in a cancer type-specific fashion. Thus, individual cancer cell lines orchestrate the emergence of unique cNK subsets, which respond differently to tumor-derived factors. Our findings will contribute to the development of therapies for liver metastasis involving hepatic innate cells.
Collapse
|
30
|
Romayor I, Márquez J, Benedicto A, Herrero A, Arteta B, Olaso E. Tumor DDR1 deficiency reduces liver metastasis by colon carcinoma and impairs stromal reaction. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1002-G1013. [PMID: 33851541 DOI: 10.1152/ajpgi.00078.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor DDR1 acts as a key factor during the desmoplastic response surrounding hepatic colorectal metastasis. Hepatic sinusoidal cell-derived soluble factors stimulate tumor DDR1 activation. DDR1 modulates matrix remodeling to promote metastasis in the liver through the interaction with hepatic stromal cells, specifically liver sinusoidal endothelial cells and hepatic stellate cells.
Collapse
Affiliation(s)
- Irene Romayor
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Joana Márquez
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Benedicto
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alba Herrero
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Arteta
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Elvira Olaso
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
31
|
Yang D, Guo P, He T, Powell CA. Role of endothelial cells in tumor microenvironment. Clin Transl Med 2021; 11:e450. [PMID: 34185401 PMCID: PMC8214858 DOI: 10.1002/ctm2.450] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dawei Yang
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital Institute for Clinical Science, Shanghai Medical CollegeShanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghai Engineer & Technology Research Center of Internet of Things for Respiratory MedicineZhongshan Hospital Fudan UniversityShanghai200032China
- Division of Pulmonary, Critical Care and Sleep MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Tianrui He
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital Institute for Clinical Science, Shanghai Medical CollegeShanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghai Engineer & Technology Research Center of Internet of Things for Respiratory MedicineZhongshan Hospital Fudan UniversityShanghai200032China
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
32
|
Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, Cheng C, Xin Z, He Y, Zhao H, Ji Z, Zhang P, Gao WQ, Zhu HH, Zhang K. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif 2021; 54:e13056. [PMID: 34021647 PMCID: PMC8249794 DOI: 10.1111/cpr.13056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives In contrast to extensive studies on bone metastasis in advanced prostate cancer (PCa), liver metastasis has been under‐researched so far. In order to decipher molecular and cellular mechanisms underpinning liver metastasis of advanced PCa, we develop a rapid and immune sufficient mouse model for liver metastasis of PCa via orthotopic injection of organoids from PbCre+; rb1f/f;p53f/f mice. Materials and Methods PbCre+;rb1f/f;p53f/f and PbCre+;ptenf/f;p53f/f mice were used to generate PCa organoid cultures in vitro. Immune sufficient liver metastasis models were established via orthotopic transplantation of organoids into the prostate of C57BL/6 mice. Immunofluorescent and immunohistochemical staining were performed to characterize the lineage profile in primary tumour and organoid‐derived tumour (ODT). The growth of niche‐labelling reporter infected ODT can be visualized by bioluminescent imaging system. Immune cells that communicated with tumour cells in the liver metastatic niche were determined by flow cytometry. Results A PCa liver metastasis model with full penetrance is established in immune‐intact mouse. This model reconstitutes the histological and lineage features of original tumours and reveals dynamic tumour‐immune cell communication in liver metastatic foci. Our results suggest that a lack of CD8+ T cell and an enrichment of CD163+ M2‐like macrophage as well as PD1+CD4+ T cell contribute to an immuno‐suppressive microenvironment of PCa liver metastasis. Conclusions Our model can be served as a reliable tool for analysis of the molecular pathogenesis and tumour‐immune cell crosstalk in liver metastasis of PCa, and might be used as a valuable in vivo model for therapy development.
Collapse
Affiliation(s)
- Kaiyuan Liu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Jing
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Deng Wang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Penghui Xu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinming Wang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Chen
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiang Xin
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuman He
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ZhongZhong Ji
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Qiang Gao
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Helen He Zhu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Chen H, Dai S, Fang Y, Chen L, Jiang K, Wei Q, Ding K. Hepatic Steatosis Predicts Higher Incidence of Recurrence in Colorectal Cancer Liver Metastasis Patients. Front Oncol 2021; 11:631943. [PMID: 33767997 PMCID: PMC7986714 DOI: 10.3389/fonc.2021.631943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: Colorectal liver metastasis (CRLM) is the major cause of death due to colorectal cancer. Although great efforts have been made in treatment of CRLM, about 60–70% of patients will develop hepatic recurrence. Hepatic steatosis was reported to provide fertile soil for metastasis. However, whether hepatic steatosis predicts higher incidence of CRLM recurrence is not clear. Therefore, we aimed to determine the role of hepatic steatosis in CRLM recurrence in the present study. Methods: Consecutive CRLM patients undergoing curative treatment were retrospectively enrolled and CT liver-spleen attenuation ratio was used to detect the presence of hepatic steatosis. In patients with hepatic steatosis, we also detected the presence of fibrosis. Besides, a systematic literature search was performed to do meta-analysis to further analyze the association between hepatic steatosis and CRLM recurrence. Results: A total of 195 eligible patients were included in our center. Patients with hepatic steatosis had a significantly worse overall (P = 0.0049) and hepatic recurrence-free survival (RFS) (P = 0.0012). Univariate and multivariate analysis confirmed its essential role in prediction of RFS. Besides, hepatic fibrosis is associated with worse overall RFS (P = 0.039) and hepatic RFS (P = 0.048). In meta-analysis, we included other four studies, with a total of 1,370 patients in the case group, and 3,735 patients in the control group. The odds ratio was 1.98 (95% CI: 1.25–3.14, P = 0.004), indicating that patients with steatosis had a significantly higher incidence of CRLM recurrence. Conclusion: In summary, patients with hepatic steatosis had a significantly worse overall and hepatic RFS and it's associated with higher incidence of CRLM recurrence.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Siqi Dai
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yimin Fang
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liubo Chen
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Jiang
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Kefeng Ding
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
刘 婷, 葛 玉, 袁 敏, 熊 巧, 赵 建. [A review on cell-based models of human liver disease in vitro]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:178-184. [PMID: 33899443 PMCID: PMC10307582 DOI: 10.7507/1001-5515.202004027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/31/2020] [Indexed: 11/03/2022]
Abstract
Unhealthy diet, habits and drug abuse cause a variety of liver diseases, including steatohepatitis, liver fibrosis, liver cirrhosis and liver cancer, which seriously affect human health. The fabrication of highly simulated cell models in vitro is important in the treatment of liver diseases and drug development. This article summarized the common strategies for the construction of liver pathology models in vitro. It introduced four typical cell models in vitro related to liver disease and provided a reference for the study of liver disease models.
Collapse
Affiliation(s)
- 婷 刘
- 上海理工大学 医疗器械与食品学院(上海 200093)School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China
- 中国科学院 上海微系统与信息技术研究所 传感技术联合国家重点实验室(上海 200050)State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China
| | - 玉卿 葛
- 中国科学院 上海微系统与信息技术研究所 传感技术联合国家重点实验室(上海 200050)State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China
| | - 敏 袁
- 上海理工大学 医疗器械与食品学院(上海 200093)School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China
| | - 巧 熊
- 海军军医大学附属长海医院 泌尿外科(上海 200433)Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R.China
| | - 建龙 赵
- 中国科学院 上海微系统与信息技术研究所 传感技术联合国家重点实验室(上海 200050)State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China
| |
Collapse
|
35
|
Wang X, Fan J. Spatiotemporal molecular medicine: A new era of clinical and translational medicine. Clin Transl Med 2021; 11:e294. [PMID: 33463066 PMCID: PMC7811994 DOI: 10.1002/ctm2.294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Dominijanni A, Devarasetty M, Soker S. Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. iScience 2020; 23:101851. [PMID: 33319176 PMCID: PMC7724203 DOI: 10.1016/j.isci.2020.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors comprised a tightly surrounded tumor microenvironment, made up of non-cellular extracellular matrix (ECM) and stromal cells. Although treatment response is often attributed to tumor heterogeneity, progression and malignancy are profoundly influenced by tumor cell interactions with the surrounding ECM. Here, we used a tumor organoid model, consisting of hepatic stellate cells (HSCs) embedded in collagen type 1 (Col1) and colorectal cancer cell (HCT-116) spheroids, to determine the relationship between the ECM architecture, cancer cell malignancy, and chemoresistance. Exogenous transforming growth factor beta (TGF-β) used to activate the HSCs increased the remodeling and bundling of Col1 in the ECM around the cancer spheroid. A dense ECM architecture inhibited tumor cell growth, reversed their mesenchymal phenotype, preserved stem cell population, and reduced chemotherapy response. Overall, our results demonstrate that controlled biofabrication and manipulation of the ECM in tumor organoids results enables studying tumor cell-ECM interactions and better understand tumor cell response to chemotherapies.
Collapse
Affiliation(s)
- Anthony Dominijanni
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Mahesh Devarasetty
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Shay Soker
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
37
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
38
|
Wang L, Sun Y, Luo X, Han H, Yin H, Zhao B, Chen X, Yu Q, Qiu H, Yuan X. Prophylactical Low Dose Whole-Liver Irradiation Inhibited Colorectal Liver Metastasis by Regulating Hepatic Niche in Mice. Onco Targets Ther 2020; 13:8451-8462. [PMID: 32922035 PMCID: PMC7455754 DOI: 10.2147/ott.s263858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background The liver is the most common target for metastatic colorectal cancer. Changes of the local hepatic niche due to hepatic diseases such as cirrhosis decrease the incidence of colorectal cancer liver metastasis. Hepatic niche heterogeneity could influence the risk of hepatic metastasis. Materials and Methods We simulated changes of the hepatic niche via prophylactical liver irradiation with a safe dose of 6 Gy. GEO dataset and GO analysis revealed a difference in the expression of matrix metalloproteinase 1 (MMP1) in primary colorectal cancer versus liver metastasis, as well as synchronous versus metachronous liver metastasis. Western blotting, Immunofluorescence and qRT-PCR were conducted to measure protein expressions, location and RNA expressions. Colony formation, wound-healing, transwell assays experiments were performed to determine the malignant biological properties of colorectal cancer cells. shRNA transfection was used to conduct stable transfected cell lines. Results Tissue inhibitor of metalloproteinases 1 (TIMP1) expression was significantly higher in metastases lesions than primary tumors. In vivo, TIMP1 expression in the hepatic niche increased after a safe dose of 6 Gy irradiation, along with MMP1 decreased, leading to collagen fiber deposition and impairment of hepatic microcirculation. In vitro, irradiated hepatic stellate cells-conditioned media reduced the migration and clone formation ability of colon cancer cells SW480 and HCT116. Low TIMP1 expression in hepatic stellate cells reduced tumor cell invasion and migration. Conclusion Prophylactical 6 Gy whole-liver irradiation could inhibit colorectal cancer liver metastasis by regulating TIMP1/MMP1 balance in the hepatic niche before liver metastatic lesion formed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yinan Sun
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hu Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ben Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
39
|
Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W, Feng Y, Wang HKS, Tsang SW, Chow KL, Yeung PC, Wong J, Lai PBS, Chan AWH, To KF, Chan SL, Xia Q, Xue J, Chen X, Yu J, Peng S, Sung JJY, Kuang M, Cheng ASL. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol 2020; 18:1005-1015. [PMID: 32879468 DOI: 10.1038/s41423-020-00534-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The liver is an immunologically tolerant organ and a common metastatic site of multiple cancer types. Although a role for cancer cell invasion programs has been well characterized, whether and how liver-intrinsic factors drive metastatic spread is incompletely understood. Here, we show that aberrantly activated hepatocyte-intrinsic cell cycle-related kinase (CCRK) signaling in chronic liver diseases is critical for cancer metastasis by reprogramming an immunosuppressive microenvironment. Using an inducible liver-specific transgenic model, we found that CCRK overexpression dramatically increased both B16F10 melanoma and MC38 colorectal cancer (CRC) metastasis to the liver, which was highly infiltrated by polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and lacking natural killer T (NKT) cells. Depletion of PMN-MDSCs in CCRK transgenic mice restored NKT cell levels and their interferon gamma production and reduced liver metastasis to 2.7% and 0.7% (metastatic tumor weights) in the melanoma and CRC models, respectively. Mechanistically, CCRK activated nuclear factor-kappa B (NF-κB) signaling to increase the PMN-MDSC-trafficking chemokine C-X-C motif ligand 1 (CXCL1), which was positively correlated with liver-infiltrating PMN-MDSC levels in CCRK transgenic mice. Accordingly, CRC liver metastasis patients exhibited hyperactivation of hepatic CCRK/NF-κB/CXCL1 signaling, which was associated with accumulation of PMN-MDSCs and paucity of NKT cells compared to healthy liver transplantation donors. In summary, this study demonstrates that immunosuppressive reprogramming by hepatic CCRK signaling undermines antimetastatic immunosurveillance. Our findings offer new mechanistic insights and therapeutic targets for liver metastasis intervention.
Collapse
Affiliation(s)
- Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanyong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingqing Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hector Kwong-Sang Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shun-Wa Tsang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - King-Lau Chow
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Philip Chun Yeung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
40
|
Zhao Z, Meng J, Su R, Zhang J, Chen J, Ma X, Xia Q. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. J Hepatol 2020; 73:664-679. [PMID: 32330603 DOI: 10.1016/j.jhep.2020.04.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
The development of next-generation sequencing technology and the discovery of specific antibodies targeting chemically modified nucleotides have paved the way for a new era of epitranscriptomics. Cellular RNA is known to dynamically and reversibly undergo different chemical modifications after transcription, such as N6-methyladenosine (m6A), N1-methyladenosine, N6,2'-O-dimethyladenosine, 5-methylcytosine, and 5-hydroxymethylcytidine, whose identity and location comprise the field of epitranscriptomics. Dynamic post-transcriptional modifications determine the fate of target RNAs by regulating various aspects of their processing, including RNA export, transcript processing, splicing, and degradation. The most abundant internal mRNA modification in eukaryotic cells is m6A, which exhibits essential roles in physiological processes, such as embryogenesis, carcinogenesis, and neurogenesis. m6A is deposited by the m6A methyltransferase complex (composed of METTL3/14/16, WTAP, KIAA1429, and RBM15/15B), erased by demethylases (FTO and ALKBH5), and recognised by binding proteins (e.g., YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3). The liver is the largest digestive and metabolic organ, and m6A modifications play unique roles in critical physiological hepatic functions and various liver diseases. This review focuses on the biological roles of m6A RNA methylation in lipid metabolism, viral hepatitis, non-alcoholic fatty liver disease, liver cancer, and tumour metastasis. In addition, we summarise the existing inhibitors targeting m6A regulators and discuss the potential of modulating m6A modifications as a therapeutic strategy.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jiaxiang Meng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai 200001, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
41
|
Vidal-Vanaclocha F, Crende O, García de Durango C, Herreros-Pomares A, López-Doménech S, González Á, Ruiz-Casares E, Vilboux T, Caruso R, Durán H, Gil A, Ielpo B, Lapuente F, Quijano Y, Vicente E, Vidal-Lartitegui L, Sotomayor EM. Liver prometastatic reaction: Stimulating factors and responsive cancer phenotypes. Semin Cancer Biol 2020; 71:122-133. [PMID: 32805395 DOI: 10.1016/j.semcancer.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cancer is first a localized tissue disorder, whose soluble and exosomal molecules and invasive cells induce a host response providing the stromal components of the primary tumor microenvironment (TME). Once the TME is developed, cancer-derived molecules and cells can more efficiently spread out and a whole-body response takes place, whose pathophysiological changes may result in a paraneoplastic syndrome. Remote organ-specific prometastatic reactions may also occur at this time, facilitating metastatic activities of circulating tumor cells (CTCs) through premetastatic niche development at targeted organs. However, additional signaling factors from the inter-organ communication network involved in the pathophysiology and comorbidities of cancer patients may also regulate prometastatic reaction-stimulating effects of cancer and non-cancer tissue factors. This article provides a conceptual overview of our ongoing clinical research on the liver prometastatic reaction (LPR) of patients with colorectal cancer (CRC), their portal vein- and hepatic artery-driven LPR-Stimulating Factors (LPR-SF), and their resulting LPR-derived Metastasis-Stimulating Factors (LPR-MSF) acting on liver-invading CRC cells. In addition, we also provide new insights on the molecular subtyping of LPR-responsive cancer phenotypes in patients with CRC and melanoma; and on how to investigate and interpret the prometastatic infrastructure in the real pathophysiological context of patients with cancer undergoing surgical procedures and receiving pharmacological treatments with multiple side effects, including those affecting the LPR, its stimulating factors and responsive cancer phenotypes.
Collapse
Affiliation(s)
- Fernando Vidal-Vanaclocha
- Dept. Biochemistry and Molecular Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain; Persona Biomed Inc., Alexandria, Virginia, USA.
| | - Olatz Crende
- Dept Cell Biology and Histology, Basque Country University School of Pharmacy, Vitoria/Gasteiz, Spain
| | | | | | | | - Álvaro González
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Eva Ruiz-Casares
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | | | - Riccardo Caruso
- Division of General Surgery, HM-Sanchinarro University Hospital, CEU San Pablo University, Madrid, Spain
| | - Hipólito Durán
- Division of General Surgery, HM-Sanchinarro University Hospital, CEU San Pablo University, Madrid, Spain
| | - Antonio Gil
- Division of General Surgery, HM-Sanchinarro University Hospital, CEU San Pablo University, Madrid, Spain
| | - Benedetto Ielpo
- Division of General Surgery, HM-Sanchinarro University Hospital, CEU San Pablo University, Madrid, Spain
| | - Fernando Lapuente
- Department General Surgery, Bariatric and Metabolic Surgery, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Yolanda Quijano
- Division of General Surgery, HM-Sanchinarro University Hospital, CEU San Pablo University, Madrid, Spain
| | - Emilio Vicente
- Division of General Surgery, HM-Sanchinarro University Hospital, CEU San Pablo University, Madrid, Spain
| | | | - Eduardo M Sotomayor
- Department of Hematology and Oncology, George Washington University, Washington, DC, USA
| |
Collapse
|
42
|
Ciner AT, Jones K, Muschel RJ, Brodt P. The unique immune microenvironment of liver metastases: Challenges and opportunities. Semin Cancer Biol 2020; 71:143-156. [PMID: 32526354 DOI: 10.1016/j.semcancer.2020.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Liver metastases from gastrointestinal and non-gastrointestinal malignancies remain a major cause of cancer-related mortality and a major clinical challenge. The liver has unique properties that facilitate metastatic expansion, including a complex immune system that evolved to dampen immunity to neoantigens entering the liver from the gut, through the portal circulation. In this review, we describe the unique microenvironment encountered by cancer cells in the liver, focusing on elements of the innate and adaptive immune response that can act as a double-edge sword, contributing to the elimination of cancer cells on the one hand and promoting their survival and growth, on the other. We discuss this microenvironment in a clinical context, particularly for colorectal carcinoma, and highlight how a better understanding of the role of the microenvironment has spurred an intense effort to develop novel and innovative strategies for targeting liver metastatic disease, some of which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Aaron T Ciner
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Keaton Jones
- Oxford Institute for Radiation Oncology, Department of Surgery, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Pnina Brodt
- Departments of Surgery, Medicine and Oncology, McGill University, and the Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
43
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020; 21:ijms21103494. [PMID: 32429087 PMCID: PMC7279011 DOI: 10.3390/ijms21103494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
44
|
Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1588. [PMID: 31566913 PMCID: PMC7027529 DOI: 10.1002/wnan.1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Paul A. Sutton
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Marianne B. Ashford
- AstraZeneca, Advanced Drug Delivery, Pharmaceutical Sciences, R&DMacclesfieldUK
| | - Kevin E. Treacher
- AstraZeneca, Pharmaceutical Technology and DevelopmentMacclesfieldUK
| | - Neill J. Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Steve P. Rannard
- Department of Chemistry, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
45
|
Shafiee A. Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine. Tissue Eng Part A 2020; 26:305-317. [PMID: 31992154 DOI: 10.1089/ten.tea.2019.0278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell-cell and cell-extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Impact statement Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
Collapse
Affiliation(s)
- Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia.,Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
46
|
Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci 2019; 20:ijms20194947. [PMID: 31591367 PMCID: PMC6802000 DOI: 10.3390/ijms20194947] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of extracellular-secreted macromolecules, such as collagen, enzymes and glycoproteins, whose main functions deal with structural scaffolding and biochemical support of cells and tissues. ECM homeostasis is essential for organ development and functioning under physiological conditions, while its sustained modification or dysregulation can result in pathological conditions. During cancer progression, epithelial tumor cells may undergo epithelial-to-mesenchymal transition (EMT), a morphological and functional remodeling, that deeply alters tumor cell features, leading to loss of epithelial markers (i.e., E-cadherin), changes in cell polarity and intercellular junctions and increase of mesenchymal markers (i.e., N-cadherin, fibronectin and vimentin). This process enhances cancer cell detachment from the original tumor mass and invasiveness, which are necessary for metastasis onset, thus allowing cancer cells to enter the bloodstream or lymphatic flow and colonize distant sites. The mechanisms that lead to development of metastases in specific sites are still largely obscure but modifications occurring in target tissue ECM are being intensively studied. Matrix metalloproteases and several adhesion receptors, among which integrins play a key role, are involved in metastasis-linked ECM modifications. In addition, cells involved in the metastatic niche formation, like cancer associated fibroblasts (CAF) and tumor associated macrophages (TAM), have been found to play crucial roles in ECM alterations aimed at promoting cancer cells adhesion and growth. In this review we focus on molecular mechanisms of ECM modifications occurring during cancer progression and metastatic dissemination to distant sites, with special attention to lung, liver and bone. Moreover, the functional role of cells forming the tumor niche will also be reviewed in light of the most recent findings.
Collapse
|