1
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
2
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
3
|
Ntafoulis I, Koolen SLW, van Tellingen O, den Hollander CWJ, Sabel-Goedknegt H, Dijkhuizen S, Haeck J, Reuvers TGA, de Bruijn P, van den Bosch TPP, van Dis V, Gao Z, Dirven CMF, Leenstra S, Lamfers MLM. A Repurposed Drug Selection Pipeline to Identify CNS-Penetrant Drug Candidates for Glioblastoma. Pharmaceuticals (Basel) 2024; 17:1687. [PMID: 39770529 PMCID: PMC11678797 DOI: 10.3390/ph17121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials. Therefore, selecting drugs that can reach the tumor region in pharmacologically effective concentrations is of major importance. METHODS In the current study, we utilized a drug selection platform to identify candidate drugs by combining in vitro oncological drug screening data and pharmacokinetic (PK) profiles for central nervous system (CNS) penetration using the multiparameter optimization (MPO) score. Furthermore, we developed intracranial patient-derived xenograft (PDX) models that recapitulated the in situ characteristics of glioblastoma and characterized them in terms of vascular integrity, BBB permeability and expression of ATP-binding cassette (ABC) transporters. Omacetaxine mepesuccinate (OMA) was selected as a proof-of-concept drug candidate to validate our drug selection pipeline. RESULTS We assessed OMA's PK profile in three different orthotopic mouse PDX models and found that OMA reaches the brain tumor tissue at concentrations ranging from 2- to 11-fold higher than in vitro IC50 values on patient-derived glioblastoma cell cultures. CONCLUSIONS This study demonstrates that OMA, a drug selected for its in vitro anti-glioma activity and CNS- MPO score, achieves brain tumor tissue concentrations exceeding its in vitro IC50 values in patient-derived glioblastoma cell cultures, as shown in three orthotopic mouse PDX models. We emphasize the importance of such approaches at the preclinical level, highlighting both their significance and limitations in identifying compounds with potential clinical implementation in glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Chelsea W. J. den Hollander
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | | | - Stephanie Dijkhuizen
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Joost Haeck
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Thom G. A. Reuvers
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Vera van Dis
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.P.P.v.d.B.)
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Clemens M. F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| |
Collapse
|
4
|
Bao H, Ai S, Wang G, Yi L, Lai J, Wang S, Lv Z, Li C, Liu Q, Zhao X, Wu C, Liu C, Mi S, Sun X, Hao C, Liang P. Intraoperative radiotherapy in recurrent IDH-wildtype glioblastoma with gross total resection: A single-center retrospective study. Clin Neurol Neurosurg 2024; 236:108103. [PMID: 38199118 DOI: 10.1016/j.clineuro.2023.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Isocitrate dehydrogenase-wildtype (IDHwt) glioblastoma (GBM) is one of the most aggressive primary brain tumors. The recurrence of GBM is almost inevitable. As an adjuvant option to surgery, intraoperative radiotherapy (IORT) is gaining increasing attention in the treatment of glioma. This study is aimed to evaluate the therapeutic efficacy of IORT on recurrent IDHwt GBM. METHODS In total, 34 recurrent IDHwt GBM patients who received a second surgery were included in the analysis (17 in the surgery group and 17 in the surgery + IORT group). RESULTS The progression-free survival and overall survival after the second surgery were defined as PFS2 and OS2, respectively. The median PFS2 was 7.3 months (95% CI: 6.3-10.5) and 10.6 months (95% CI: 9.3-14.6) for those patients who received surgery and surgery + IORT, respectively. Patients in the surgery + IORT group also had a longer OS2 (12.8 months, 95% CI: 11.4-17.2) than those in the surgery group (9.3 months, 95% CI: 8.9-12.9). The Kaplan-Meier survival curves, analyzed by log-rank test, revealed a statistically significant difference in PFS2 and OS2 between both groups, suggesting that IORT plays an active role in the observed benefits for PFS2 and OS2. The effects of IORT on PFS2 and OS2 were further confirmed by multivariate Cox hazards regression analysis. Two patients in the surgery group developed distant glioma metastases, and no radiation-related complications were observed in the IORT group. CONCLUSIONS This study suggests that low-dose IORT may improve the prognosis of recurrent IDHwt GBM patients. Future prospective large-scale studies are needed to validate the efficacy and safety of IORT.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiacheng Lai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuai Wang
- Department of Imaging Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyu Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chou Wu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chang Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shan Mi
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chuncheng Hao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Brynjulvsen M, Solli E, Walewska M, Zucknick M, Djirackor L, Langmoen IA, Mughal AA, Skaga E, Vik-Mo EO, Sandberg CJ. Functional and Molecular Heterogeneity in Glioma Stem Cells Derived from Multiregional Sampling. Cancers (Basel) 2023; 15:5826. [PMID: 38136371 PMCID: PMC10741477 DOI: 10.3390/cancers15245826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly heterogeneous primary brain tumor. Glioma stem cells represent a subpopulation of tumor cells with stem cell traits that are presumed to be the cause of tumor relapse. There exists complex tumor heterogeneity in drug sensitivity patterns between glioma stem cell (GSC) cultures derived from different patients. Here, we describe that heterogeneity also exists between GSC cultures derived from multiple biopsies within a single tumor. From biopsies harvested within spatially distinct regions representing the entire tumor mass, we established seven GSC cultures and compared their stem cell properties, mutations, gene expression profiles, and drug sensitivity patterns against 115 different anticancer drugs. The results were compared to 14 GSC cultures derived from other patients. Between the multiregional-derived GSC cultures, we observed only minor differences in their phenotype, proliferative capacity, and global gene expression. Further, they displayed intratumoral heterogeneity in mutational profiles and sensitivity patterns to anticancer drugs. This heterogeneity, however, did not exceed the extensive heterogeneity found between GSC cultures derived from other GBM patients. Our results suggest that the use of GSC cultures from one single focal biopsy may underestimate the overall complexity of the GSC population and display the importance of including GSC cultures reflecting the entire tumor mass in drug screening strategies.
Collapse
Affiliation(s)
- Marit Brynjulvsen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Elise Solli
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Maria Walewska
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Blindern, P.O. Box 1122, 0317 Oslo, Norway
| | - Luna Djirackor
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Iver A. Langmoen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Awais Ahmad Mughal
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Erlend Skaga
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Einar O. Vik-Mo
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Cecilie J. Sandberg
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| |
Collapse
|
6
|
Potdar S, Ianevski F, Ianevski A, Tanoli Z, Wennerberg K, Seashore-Ludlow B, Kallioniemi O, Östling P, Aittokallio T, Saarela J. Breeze 2.0: an interactive web-tool for visual analysis and comparison of drug response data. Nucleic Acids Res 2023:7161532. [PMID: 37178002 DOI: 10.1093/nar/gkad390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023] Open
Abstract
Functional precision medicine (fPM) offers an exciting, simplified approach to finding the right applications for existing molecules and enhancing therapeutic potential. Integrative and robust tools ensuring high accuracy and reliability of the results are critical. In response to this need, we previously developed Breeze, a drug screening data analysis pipeline, designed to facilitate quality control, dose-response curve fitting, and data visualization in a user-friendly manner. Here, we describe the latest version of Breeze (release 2.0), which implements an array of advanced data exploration capabilities, providing users with comprehensive post-analysis and interactive visualization options that are essential for minimizing false positive/negative outcomes and ensuring accurate interpretation of drug sensitivity and resistance data. The Breeze 2.0 web-tool also enables integrative analysis and cross-comparison of user-uploaded data with publicly available drug response datasets. The updated version incorporates new drug quantification metrics, supports analysis of both multi-dose and single-dose drug screening data and introduces a redesigned, intuitive user interface. With these enhancements, Breeze 2.0 is anticipated to substantially broaden its potential applications in diverse domains of fPM.
Collapse
Affiliation(s)
- Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Filipp Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Brinton Seashore-Ludlow
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Olli Kallioniemi
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Päivi Östling
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| |
Collapse
|
7
|
Panovska D, Nazari P, Cole B, Creemers PJ, Derweduwe M, Solie L, Van Gassen S, Claeys A, Verbeke T, Cohen EF, Tolstorukov MY, Saeys Y, Van der Planken D, Bosisio FM, Put E, Bamps S, Clement PM, Verfaillie M, Sciot R, Ligon KL, De Vleeschouwer S, Antoranz A, De Smet F. Single-cell molecular profiling using ex vivo functional readouts fuels precision oncology in glioblastoma. Cell Mol Life Sci 2023; 80:147. [PMID: 37171617 PMCID: PMC11071868 DOI: 10.1007/s00018-023-04772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Functional profiling of freshly isolated glioblastoma (GBM) cells is being evaluated as a next-generation method for precision oncology. While promising, its success largely depends on the method to evaluate treatment activity which requires sufficient resolution and specificity. METHODS Here, we describe the 'precision oncology by single-cell profiling using ex vivo readouts of functionality' (PROSPERO) assay to evaluate the intrinsic susceptibility of high-grade brain tumor cells to respond to therapy. Different from other assays, PROSPERO extends beyond life/death screening by rapidly evaluating acute molecular drug responses at single-cell resolution. RESULTS The PROSPERO assay was developed by correlating short-term single-cell molecular signatures using mass cytometry by time-of-flight (CyTOF) to long-term cytotoxicity readouts in representative patient-derived glioblastoma cell cultures (n = 14) that were exposed to radiotherapy and the small-molecule p53/MDM2 inhibitor AMG232. The predictive model was subsequently projected to evaluate drug activity in freshly resected GBM samples from patients (n = 34). Here, PROSPERO revealed an overall limited capacity of tumor cells to respond to therapy, as reflected by the inability to induce key molecular markers upon ex vivo treatment exposure, while retaining proliferative capacity, insights that were validated in patient-derived xenograft (PDX) models. This approach also allowed the investigation of cellular plasticity, which in PDCLs highlighted therapy-induced proneural-to-mesenchymal (PMT) transitions, while in patients' samples this was more heterogeneous. CONCLUSION PROSPERO provides a precise way to evaluate therapy efficacy by measuring molecular drug responses using specific biomarker changes in freshly resected brain tumor samples, in addition to providing key functional insights in cellular behavior, which may ultimately complement standard, clinical biomarker evaluations.
Collapse
Affiliation(s)
- Dena Panovska
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Pouya Nazari
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Basiel Cole
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Pieter-Jan Creemers
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Marleen Derweduwe
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Lien Solie
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
- Department of Neurosurgery, University Hospitals (UZ) Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine Group, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Annelies Claeys
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Tatjana Verbeke
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Elizabeth F Cohen
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine Group, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - Francesca M Bosisio
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Eric Put
- Neurosurgery Department, Faculty of Medicine and Life Sciences UHasselt, Hasselt, Belgium
| | - Sven Bamps
- Neurosurgery Department, Faculty of Medicine and Life Sciences UHasselt, Hasselt, Belgium
| | - Paul M Clement
- Department of Oncology, KU Leuven/UZ Leuven, Leuven, Belgium
| | - Michiel Verfaillie
- Europaziekenhuizen, Cliniques de l'Europe, Sint-Elisabeth, Brussels, Belgium
| | - Raf Sciot
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Keith L Ligon
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Steven De Vleeschouwer
- Department of Neurosurgery, University Hospitals (UZ) Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium
| | - Frederik De Smet
- Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 1032, Leuven, Belgium.
- Leuven Institute for single-cell omics (LISCO), Leuven, Belgium.
| |
Collapse
|
8
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Skaga E, Kulesskiy E, Potdar S, Panagopoulos I, Micci F, Langmoen IA, Sandberg CJ, Vik-Mo EO. Functional temozolomide sensitivity testing of patient-specific glioblastoma stem cell cultures is predictive of clinical outcome. Transl Oncol 2022; 26:101535. [PMID: 36115076 PMCID: PMC9483808 DOI: 10.1016/j.tranon.2022.101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
Serum-free culturing of patient-derived glioblastoma biopsies enrich for glioblastoma stem cells (GSCs) and is recognized as a disease-relevant model system in glioblastoma (GBM). We hypothesized that the temozolomide (TMZ) drug sensitivity of patient-derived GSC cultures correlates to clinical sensitivity patterns and has clinical predictive value in a cohort of GBM patients. To this aim, we established 51 individual GSC cultures from surgical biopsies from both treatment-naïve primary and pretreated recurrent GBM patients. The cultures were evaluated for sensitivity to TMZ over a dosing range achievable in normal clinical practice. Drug efficacy was quantified by the drug sensitivity score. MGMT-methylation status was investigated by pyrosequencing. Correlative, contingency, and survival analyses were performed for associations between experimental and clinical data. We found a heterogeneous response to temozolomide in the GSC culture cohort. There were significant differences in the sensitivity to TMZ between the newly diagnosed and the TMZ-treated recurrent disease (p <0.01). There was a moderate correlation between MGMT-status and sensitivity to TMZ (r=0.459, p=0.0009). The relationship between MGMT status and TMZ efficacy was statistically significant on multivariate analyses (p=0.0051). We found a predictive value of TMZ sensitivity in individual GSC cultures to patient survival (p=0.0089). We conclude that GSC-enriched cultures hold clinical and translational relevance by their ability to reflect the clinical heterogeneity in TMZ-sensitivity, substantiate the association between TMZ-sensitivity and MGMT-promotor methylation status and appear to have a stronger predictive value than MGMT-promotor methylation on clinical responses to TMZ.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 4954 Nydalen, 0424, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 4954 Nydalen, 0424, Oslo, Norway
| | - Iver A Langmoen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| | - Einar O Vik-Mo
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| |
Collapse
|
10
|
Functional Precision Oncology: The Next Frontier to Improve Glioblastoma Outcome? Int J Mol Sci 2022; 23:ijms23158637. [PMID: 35955765 PMCID: PMC9369403 DOI: 10.3390/ijms23158637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma remains the most malignant and intrinsically resistant brain tumour in adults. Despite intensive research over the past few decades, through which numerous potentially druggable targets have been identified, virtually all clinical trials of the past 20 years have failed to improve the outcome for the vast majority of GBM patients. The observation that small subgroups of patients displayed a therapeutic response across several unsuccessful clinical trials suggests that the GBM patient population probably consists of multiple subgroups that probably all require a distinct therapeutic approach. Due to extensive inter- and intratumoral heterogeneity, assigning the right therapy to each patient remains a major challenge. Classically, bulk genetic profiling would be used to identify suitable therapies, although the success of this approach remains limited due to tumor heterogeneity and the absence of direct relationships between mutations and therapy responses in GBM. An attractive novel strategy aims at implementing methods for functional precision oncology, which refers to the evaluation of treatment efficacies and vulnerabilities of (ex vivo) living tumor cells in a highly personalized way. Such approaches are currently being implemented for other cancer types by providing rapid, translatable information to guide patient-tailored therapeutic selections. In this review, we discuss the current state of the art of transforming technologies, tools and challenges for functional precision oncology and how these could improve therapy selection for GBM patients.
Collapse
|
11
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
12
|
Application of High-Efficiency Cell Expansion and High-Throughput Drug Sensitivity Screening for Leukemia Treatment. DISEASE MARKERS 2022; 2022:4052591. [PMID: 35845130 PMCID: PMC9277151 DOI: 10.1155/2022/4052591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
This study is to assess the clinical value of in vitro primary cell high-efficiency expansion and high-throughput drug sensitivity screening (HEHDS) system in leukemia, and we evaluated a cohort of 121 patients with acute myeloid leukemia (AML) and 27 patients with acute lymphoblastic leukemia (ALL) using HEHDS. Bone marrow aspirates were collected from patients with leukemia. Purified leukemic cancer cells were obtained, cultured, and screened with a panel of 247 FDA-approved compounds by HEHDS technology. Ninety-six patients received HEHDS-guided therapy while 52 patients who were subjected to physician directed therapy served as controls. ALL patients who received treatment guided by HEHDS showed higher rate of complete remission (CR) than that of patients in the non-HEHDS group (90.91% vs. 56.25%). Similarly, AML patients received HEHDS-guided therapy were found to have greater CR rate, when compared with patients who received physician-directed therapy (45.88% vs. 25%). There was a significantly higher rate of CR in HEHDS-guided therapy group compared to the non-HEHDS group. The application of HEHDS could be beneficial for leukemia treatment.
Collapse
|
13
|
Vasileva NS, Ageenko AB, Richter VA, Kuligina EV. The Signaling Pathways Controlling the Efficacy of Glioblastoma Therapy. Acta Naturae 2022; 14:62-70. [PMID: 35923561 PMCID: PMC9307987 DOI: 10.32607/actanaturae.11623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
The resistance of glioblastoma to existing therapies puts limits on quality-of-life improvements and patient survival with a glioblastoma diagnosis. The development of new effective glioblastoma therapies is based on knowledge about the mechanisms governing tumor resistance to therapeutic agents. Virotherapy is one of the most actively developing approaches to the treatment of malignant neoplasms: glioblastoma in particular. Previously, we demonstrated that the recombinant vaccinia virus VV-GMCSF-Lact exhibits in vitro cytotoxic activity and in vivo antitumor efficacy against human glioblastoma. However, the studied glioblastoma cell cultures had different sensitivities to the oncotoxic effect of the virus. In this study, we investigated cancer stem cell (CSC) surface markers in glioblastoma cells with different sensitivities to VV-GMCSFLact using flow cytometry and we assessed the levels of proteins affecting viral entry into cells and virus infection efficiency by western blotting. We showed that cell cultures more sensitive to VV-GMCSF-Lact are characterized by a greater number of cells with CSC markers and a lower level of activated Akt kinase. Akt probably inhibits lactaptin-induced apoptosis in virus-resistant cells. Hence, we suggest that the sensitivity of glioblastoma cells to the oncotoxic effect of VV-GMCSF-Lact is determined by the nature and extent of the disturbances in cell death regulation in various cultures. Further investigation of the factors affecting glioblastoma resistance to virotherapy will test this hypothesis and identify targets for antitumor therapy, combined with VV-GMCSF-Lact.
Collapse
Affiliation(s)
- N. S. Vasileva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - A. B. Ageenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - E. V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| |
Collapse
|
14
|
Kohtamäki L, Arjama M, Mäkelä S, Ianevski P, Välimäki K, Juteau S, Ilmonen S, Ungureanu D, Kallioniemi O, Murumägi A, Hernberg M. High-throughput ex vivo drug testing identifies potential drugs and drug combinations for NRAS-positive malignant melanoma. Transl Oncol 2022; 15:101290. [PMID: 34837846 PMCID: PMC8633005 DOI: 10.1016/j.tranon.2021.101290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Therapy options for patients with metastatic melanoma (MM) have considerably improved over the past decade. However, many patients still need effective therapy after unsuccessful immunotherapy, especially patients with BRAF-negative tumors who lack the option of targeted treatment second line. Therefore, the elucidation of efficient and personalized therapy options for these patients is required. In this study, three patient-derived cancer cells (PDCs) were established from NRAS Q61-positive MM patients. The response of PDCs and five established melanoma cell lines (two NRAS-positive, one wild type, and two BRAF V600-positive) was evaluated toward a panel of 527 oncology drugs using high-throughput drug sensitivity and resistance testing. The PDCs and cell lines displayed strong responses to MAPK inhibitors, as expected. Additionally, the PDCs and cell lines were responsive to PI3K/mTOR, mTOR, and PLK1 inhibitors among other effective drugs currently undergoing clinical trials. Combinations with a MEK inhibitor were tested with other targeted agents to identify effective synergies. MEK inhibitor showed synergy with multikinase inhibitor ponatinib, ABL inhibitor nilotinib, PI3K/mTOR inhibitor pictilisib, and pan-RAF inhibitor LY3009120. The application of the patients' cancer cells for functional drug testing ex vivo is one step further in the process of identifying potential agents and agent combinations to personalize treatment for patients with MM. Our preliminary study results suggest that this approach has the potential for larger-scale drug testing and personalized treatment applications in our expansion trial. Our results show that drug sensitivity and resistance testing may be implementable in the treatment planning of patients with MM.
Collapse
Affiliation(s)
- Laura Kohtamäki
- Helsinki University Hospital, Comprehensive Cancer Center, Department of Oncology, Helsinki and University of Helsinki, Finland.
| | - Mariliina Arjama
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland and University of Helsinki, Finland
| | - Siru Mäkelä
- Helsinki University Hospital, Comprehensive Cancer Center, Department of Oncology, Helsinki and University of Helsinki, Finland
| | - Philipp Ianevski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland and University of Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland and University of Helsinki, Finland
| | - Susanna Juteau
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Ilmonen
- Helsinki University Hospital, Department of Surgery, Helsinki and University of Helsinki, Finland
| | - Daniela Ungureanu
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland and University of Helsinki, Finland; Science for Life Laboratory (SciLifeLab), Department of Oncology and Pathology, Karolinska Institutet, Sweden
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland and University of Helsinki, Finland.
| | - Micaela Hernberg
- Helsinki University Hospital, Comprehensive Cancer Center, Department of Oncology, Helsinki and University of Helsinki, Finland
| |
Collapse
|
15
|
Vasileva N, Ageenko A, Dmitrieva M, Nushtaeva A, Mishinov S, Kochneva G, Richter V, Kuligina E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma. Life (Basel) 2021; 11:life11101084. [PMID: 34685455 PMCID: PMC8538059 DOI: 10.3390/life11101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors. Given the poor prognosis of this disease, novel methods for glioblastoma treatment are needed. Virotherapy is one of the most actively developed approaches for cancer therapy today. VV-GMCSF-Lact is a recombinant vaccinia virus with deletions of the viral thymidine kinase and growth factor genes and insertions of the granulocyte–macrophage colony-stimulating factor and oncotoxic protein lactaptin genes. The virus has high cytotoxic activity against human cancer cells of various histogenesis and antitumor efficacy against breast cancer. In this work, we show VV-GMCSF-Lact to be a promising therapeutic agent for glioblastoma treatment. VV-GMCSF-Lact effectively decreases the viability of glioblastoma cells of both immortalized and patient-derived cultures in vitro, crosses the blood–brain barrier, selectively replicates into orthotopically transplanted human glioblastoma when intravenously injected, and inhibits glioblastoma xenograft and metastasis growth when injected intratumorally.
Collapse
Affiliation(s)
- Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(913)-949-6585
| | - Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Maria Dmitrieva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Anna Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Sergey Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street 17, 630091 Novosibirsk, Russia;
| | - Galina Kochneva
- The State Research Center of Virology and Biotechnology “VECTOR”, Department of Molecular Virology of Flaviviruses and Viral Hepatitis, Novosibirsk Region, 630559 Koltsovo, Russia;
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res 2021; 55:853-864. [PMID: 34323631 DOI: 10.1080/10715762.2021.1962009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma is one of the most frequent malignant tumors derived from the brain in adults with very poor prognosis. Ferroptosis is implicated in the initiation and progression of various tumors, including the glioblastoma. The present study aims to investigate the function of microRNA (miR)-670-3p in glioblastoma, and tries to demonstrate whether ferroptosis is involved in this process. Human glioblastoma cell lines, U87MG and A172, were transfected with the inhibitor, mimic and matched negative controls of miR-670-3p to manipulate intracellular miR-670-3p level. To validate the involvement of ferroptosis in miR-670-3p inhibitor-mediated tumor suppressive effects, ferrostain-1 and liproxstatin-1 were used to inhibit ferroptosis in the presence of miR-670-3p inhibitor. In addition, the small interfering RNA against acyl-CoA synthase long chain family member 4 (ACSL4) was used to knock down endogenous ACSL4 expression. To validate the combined effects between miR-670-3p inhibitor and temozolomide (TMZ), cells were pretreated with TMZ and then transfected with or without miR-670-3p inhibitor. miR-670-3p level was elevated in human glioblastoma, but decreased upon ferroptotic stimulation. miR-670-3p inhibitor suppressed, while miR-670-3p mimic promoted glioblastoma cell growth through modulating ferroptosis. Mechanistically, ACSL4 was required for the regulation on ferroptosis and growth of glioblastoma cells by miR-670-3p. Moreover, U87MG and A172 cells treated with miR-670-3p inhibitor showed an increased chemosensitivity to TMZ. We prove that miR-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4, and that inhibiting miR-670-3p can be an alternative, at least adjuvant strategy to treat glioblastoma.
Collapse
Affiliation(s)
- Chong Bao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu-Yue Xian
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Wahab A, Hyytiäinen A, Wahbi W, Tuomainen K, Tervo S, Conesa-Zamora P, Jauhiainen L, Mäkinen LK, Paavonen T, Toppila-Salmi S, Salem A, Almangush A, Salo T, Al-Samadi A. The effect of fascin 1 inhibition on head and neck squamous cell carcinoma cells. Eur J Oral Sci 2021; 129:e12819. [PMID: 34346523 DOI: 10.1111/eos.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Fascin 1 plays important pro-metastatic roles in head and neck carcinoma (HNSCC) migration, invasion, and metastasis. However, limited advancement in targeting metastasis remains a major obstacle in improving HNSCC patients' survival. Therefore, we assessed the therapeutic potential of fascin 1 targeted inhibition and its potential prognostic value in HNSCC patients. Using in vitro and in vivo approaches, we investigated the effect of compound G2, a novel fascin 1 inhibitor, on HNSCC cells migration, invasion, and metastasis. High-throughput screening (HTS) was used to assess cytotoxic activity of compound G2 alone or combined with irradiation. We also evaluated the prognostic potential of fascin 1 in HNSCC patients. Interestingly, compound G2 reduced carcinoma cells migration and invasion in vitro and inhibited metastasis in vivo. Moreover, HTS revealed a modest cytotoxic activity of the compound G2 on HNSCC cell lines. Irradiation did not synergistically enhance the compound G2-mediated cytotoxic activity. Survival analyses showed that high fascin 1 immunoexpression, at the tumor invasive front, was associated with cancer-specific mortality in the advanced stages of HNSCC. Collectively, our findings suggest that fascin 1 represents a promising anti-metastatic therapeutic target and a useful prognostic marker in patients with HNSCC. Novel anti-metastatic agents could provide a valuable addition to cancer therapy.
Collapse
Affiliation(s)
- Awais Wahab
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Tuomainen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanni Tervo
- Haartman Institute, University of Helsinki, Helsinki, Finland.,Department of Pathology, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Pablo Conesa-Zamora
- Pathology and Histology Department, Health Faculty, Universidad Católica de Murcia, Campus de los Jerónimos, Guadalupe, Murcia, Spain.,Clinical Analysis Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute Murcia, Hospital Universitario Santa Lucía, Cartagena, Spain
| | | | - Laura K Mäkinen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Paavonen
- Department of Pathology, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Xie J, Kumar A, Dolman MEM, Mayoh C, Khuong-Quang DA, Cadiz R, Wong-Erasmus M, Mould EVA, Grebert-Wade D, Barahona P, Kamili A, Tsoli M, Failes TW, Chow SO, Arndt GM, Bhatia K, Marshall GM, Ziegler DS, Haber M, Lock RB, Tyrrell V, Lau L, Athanasatos P, Gifford AJ. The important role of routine cytopathology in pediatric precision oncology. Cancer Cytopathol 2021; 129:805-818. [PMID: 34043284 DOI: 10.1002/cncy.22448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The development of high-throughput drug screening (HTS) using primary cultures provides a promising, clinically translatable approach to tailoring treatment strategies for patients with cancer. However, this has been challenging for solid tumors because of often limited amounts of tissue available. In most cases, in vitro expansion is required before HTS, which may lead to overgrowth and contamination by non-neoplastic cells. METHODS In this study, hematoxylin and eosin staining and immunohistochemical staining were performed on 129 cytopathology cases from 95 patients. These cytopathology cases comprised cell block preparations derived from primary tumor specimens or patient-derived xenografts as part of a pediatric precision oncology trial. Cytopathology cases were compared with the morphology and immunohistochemical staining profile of the original tumor. Cases were reported as tumor cells present, equivocal, or tumor cells absent. The HTS results from cytopathologically validated cultures were incorporated into a multidisciplinary tumor board report issued to the treating clinician to guide clinical decision making. RESULTS On cytopathologic examination, tumor cells were present in 77 of 129 cases (60%) and were absent in 38 of 129 cases (29%), whereas 14 of 129 cases (11%) were equivocal. Cultures that contained tumor cells resembled the tumors from which they were derived. CONCLUSIONS Cytopathologic examination of tumor cell block preparations is feasible and provides detailed morphologic characterization. Cytopathologic examination is essential for ensuring that samples submitted for HTS contain representative tumor cells and that in vitro drug sensitivity data are clinically translatable.
Collapse
Affiliation(s)
- Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Amit Kumar
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - M Emmy M Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Center, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Marie Wong-Erasmus
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Emily V A Mould
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Dylan Grebert-Wade
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Timothy W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Australian Cancer Research Foundation Drug Discovery Center, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Shu-Oi Chow
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Australian Cancer Research Foundation Drug Discovery Center, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Australian Cancer Research Foundation Drug Discovery Center, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Kanika Bhatia
- Children's Cancer Center, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Kids Cancer Center, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia.,Kids Cancer Center, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Loretta Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Children's Cancer Center, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Penny Athanasatos
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia.,Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
19
|
Warrier S, Patil M, Bhansali S, Varier L, Sethi G. Designing precision medicine panels for drug refractory cancers targeting cancer stemness traits. Biochim Biophys Acta Rev Cancer 2020; 1875:188475. [PMID: 33188876 DOI: 10.1016/j.bbcan.2020.188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sanyukta Bhansali
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore
| |
Collapse
|
20
|
Vargas-Toscano A, Khan D, Nickel AC, Hewera M, Kamp MA, Fischer I, Steiger HJ, Zhang W, Muhammad S, Hänggi D, Kahlert UD. Robot technology identifies a Parkinsonian therapeutics repurpose to target stem cells of glioblastoma. CNS Oncol 2020; 9:CNS58. [PMID: 32462934 PMCID: PMC7341159 DOI: 10.2217/cns-2020-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Glioblastoma is a heterogeneous lethal disease, regulated by a stem-cell hierarchy and the neurotransmitter microenvironment. The identification of chemotherapies targeting individual cancer stem cells is a clinical need. Methodology: A robotic workstation was programmed to perform a drug concentration to cell-growth analysis on an in vitro model of glioblastoma stem cells (GSCs). Mode-of-action analysis of the selected top substance was performed with manual repetition assays and acquisition of further parameters. Results: We identified 22 therapeutic potential substances. Three suggested a repurpose potential of neurotransmitter signal-modulating agents to target GSCs, out of which the Parkinson's therapeutic trihexyphenidyl was most effective. Manual repetition assays and initial mode of action characterization revealed suppression of cell proliferation, cell cycle and survival. Conclusion: Anti-neurotransmitter signaling directed therapy has potential to target GSCs. We established a drug testing facility that is able to define a mid-scale chemo responsome of in vitro cancer models, possibly also suitable for other cell systems.
Collapse
Affiliation(s)
- Andres Vargas-Toscano
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Dilaware Khan
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Michael Hewera
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Marcel Alexander Kamp
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Igor Fischer
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Hans-Jakob Steiger
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Wei Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, PR China
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Germany.,German Consortium for Translational Cancer Research (DKTK), Essen/Düsseldorf, 45147, Germany.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, PR China
| |
Collapse
|
21
|
Hou J, Cao X, Cheng Y, Wang X. Roles of TP53 gene in the development of resistance to PI3K inhibitor resistances in CRISPR-Cas9-edited lung adenocarcinoma cells. Cell Biol Toxicol 2020; 36:481-492. [PMID: 32239370 DOI: 10.1007/s10565-020-09523-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
The mutation rates of tumor suppressor protein p53 gene (TP53) are high in lung adenocarcinoma and promote the development of acquired drug resistance. The present study evaluated the p53-dependent role in lung cancer cell sensitivity to PI3K-specific inhibitors, PI3K-associated inhibitors, PI3K-non-related inhibitors, and protein-based stimuli using designed p53 mutation. We found that the deletion of p53 key regions from amino acid 96 to 393 with the CRISPR-Cas9 altered multi-dimensional structure and sequencing of p53, probably leading the secondary changes in chemical structures and properties of PI3K subunit proteins or in interactions between p53 and PI3K isoform genes. The p53-dependent cell sensitivity varied among target specificities, drug chemical properties, mechanism-specific signal pathways, and drug efficacies, independently upon the size of molecules. The effects of the designed p53 mutation highly depend upon p53-involved molecular mechanisms in the cell. Our results indicate that lung cancer cell resistance to drug can develop with dynamic formations of p53 mutations changing the cell sensitivity. This may explain the real-time occurrence of cancer cell resistance to drug treatment, during which drugs may induce the new mutations of p53. Thus, it is important to dynamically monitor the formation of new mutations during the therapy and discover new drug resistance-specific targets.
Collapse
Affiliation(s)
- Jiayun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China.
| | - Yunfeng Cheng
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China. .,Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China. .,Shanghai Engineering Research Center of AI-Technology for Cardiopulmonary Diseases, Shanghai, China. .,Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China. .,Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China. .,Shanghai Engineering Research Center of AI-Technology for Cardiopulmonary Diseases, Shanghai, China. .,Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|