1
|
Xiong Z, Zhuang RL, Yu SL, Xie ZX, Peng SR, Li ZA, Li BH, Xie JJ, Li YN, Li KW, Huang H. Cancer-associated fibroblasts regulate mitochondrial metabolism and inhibit chemosensitivity via ANGPTL4-IQGAP1 axis in prostate cancer. J Adv Res 2024:S2090-1232(24)00559-9. [PMID: 39647634 DOI: 10.1016/j.jare.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) are a critical component of the tumor microenvironment, being implicated in enhancing tumor growth and fostering drug resistance. Nonetheless, the mechanisms underlying their function in prostate cancer (PCa) remain incompletely understood, which is essential for devising effective therapeutic strategies. OBJECTIVES The main objective of this study was to explore the mechanisms by which CAFs mediate PCa growth and chemoresistance. METHODS We validated through data analysis and experimentation that CAFs significantly impact PCa cell proliferation and chemoresistance. Subsequently, we conducted a comprehensive proteomic analysis of the conditioned media from CAFs and PCa cells and identified angiopoietin-like protein 4 (ANGPTL4) as a key factor. We employed ELISA and multiplex immunofluorescence assays, all of which indicated that ANGPTL4 was primarily secreted by CAFs.Next, we conducted metabolomics analysis, GST pull-down assays, Co-IP, and other experiments to explore the specific molecular mechanisms of ANGPTL4 and its precise effects on PCa cells. Through drug screening, we identified Quercetin 3-O-(6'-galactopyranosyl)-β-D-galactopyranoside (QGGP) as an effective inhibitor of CAFs function. Finally, we thoroughly assessed the therapeutic potential of QGGP both as a monotherapy and in combination with docetaxel in PCa cells. RESULTS We discovered that the extracrine factor ANGPTL4 is primarily expressed in CAFs in PCa. When ANGPTL4 binds to IQ motif-containing GTPase-activating protein 1 (IQGAP1) on the PCa cell membrane, it activates the Raf-MEK-ERK-PGC1α axis, promoting mitochondrial biogenesis and OXPHOS metabolism, and thereby facilitating PCa growth and chemoresistance. Furthermore, virtual and functional screening strategies identified QGGP as a specific inhibitor of IQGAP1 that promotes its degradation. Combined with docetaxel treatment, QGGP can reverse the effects of CAFs and improve the responsiveness of PCa to chemotherapy. CONCLUSIONS This study uncovers a paracrine mechanism of chemoresistance in PCa and proposes that targeting the stroma could be a therapeutic choice.
Collapse
Affiliation(s)
- Zhi Xiong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui-Lin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shun-Li Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhao-Xiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shi-Rong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ze-An Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bing-Heng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun-Jia Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yi-Ning Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| | - Kai-Wen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| |
Collapse
|
2
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
4
|
Mossa F, Robesti D, Sumankalai R, Corey E, Titus M, Kang Y, Zhang J, Briganti A, Montorsi F, Vellano CP, Marszaleck JR, Frigo DE, Logothetis CJ, Gujral TS, Dondossola E. Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer. Mol Cancer Res 2023; 21:51-61. [PMID: 36112348 PMCID: PMC9812897 DOI: 10.1158/1541-7786.mcr-22-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023]
Abstract
Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. IMPLICATIONS These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.
Collapse
Affiliation(s)
- Federica Mossa
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Daniele Robesti
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030,Department of Urology, Urological Research Institute, Vita Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy, 20152
| | - Ramachandran Sumankalai
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, WA 98195
| | - Mark Titus
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Yuqi Kang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Alberto Briganti
- Department of Urology, Urological Research Institute, Vita Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy, 20152
| | - Francesco Montorsi
- Department of Urology, Urological Research Institute, Vita Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy, 20152
| | - Christopher P. Vellano
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Joseph R. Marszaleck
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Daniel E. Frigo
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Christopher J Logothetis
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
| | - Eleonora Dondossola
- David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030,Corresponding author: Eleonora Dondossola, 1515 Holcombe Blvd, Houston, Texas, 77030, +17137459200
| |
Collapse
|
5
|
Zheng K, Chen S, Hu X. Peroxisome Proliferator Activated Receptor Gamma Coactivator-1 Alpha: A Double-Edged Sword in Prostate Cancer. Curr Cancer Drug Targets 2022; 22:541-559. [PMID: 35362394 DOI: 10.2174/1568009622666220330194149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α/PPARGC1A) is a pivotal transcriptional coactivator involved in the regulation of mitochondrial metabolism, including biogenesis and oxidative metabolism. PGC-1α is finely regulated by AMP-activated protein kinases (AMPKs), the role of which in tumors remains controversial to date. In recent years, a growing amount of research on PGC-1α and tumor metabolism has emphasized its importance in a variety of tumors, including prostate cancer (PCA). Compelling evidence has shown that PGC-1α may play dual roles in promoting and inhibiting tumor development under certain conditions. Therefore, a better understanding of the critical role of PGC-1α in PCA pathogenesis will provide new insights into targeting PGC-1α for the treatment of this disease. In this review, we highlight the procancer and anticancer effects of PGC-1α in PCA and aim to provide a theoretical basis for targeting AMPK/PGC-1α to inhibit the development of PCA. In addition, our recent findings provide a candidate drug target and theoretical basis for targeting PGC-1α to regulate lipid metabolism in PCA.
Collapse
Affiliation(s)
- Kun Zheng
- Department of urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| | - Suzhen Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People\'s Hospital, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| |
Collapse
|
6
|
Sousa AP, Costa R, Alves MG, Soares R, Baylina P, Fernandes R. The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Front Cell Dev Biol 2022; 10:843458. [PMID: 35399507 PMCID: PMC8992047 DOI: 10.3389/fcell.2022.843458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) remains the second most common type of cancer in men worldwide in 2020. Despite its low death rate, the need for new therapies or prevention strategies is critical. The prostate carcinogenesis process is complex and multifactorial. PCa is caused by a variety of mutations and carcinogenic events that constitutes the disease's multifactorial focus, capable of not only remodeling cellular activity, but also modeling metabolic pathways to allow adaptation to the nutritional requirements of the tumor, creating a propitious microenvironment. Some risk factors have been linked to the development of PCa, including Metabolic Syndrome (MetS) and Type 2 Diabetes Mellitus (T2DM). MetS is intrinsically related to PCa carcinogenic development, increasing its aggressiveness. On the other hand, T2DM has the opposite impact, although in other carcinomas its effect is similar to the MetS. Although these two metabolic disorders may share some developmental processes, such as obesity, insulin resistance, and dyslipidemia, their influence on PCa prognosis appears to have an inverse effect, which makes this a paradox. Understanding the phenomena behind this paradoxical behavior may lead to new concepts into the comprehension of the diseases, as well as to evaluate new therapeutical targets. Thus, this review aimed to evaluate the impact of metabolic disorders in PCa's aggressiveness state and metabolism.
Collapse
Affiliation(s)
- André P. Sousa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Raquel Costa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marco G. Alves
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pilar Baylina
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Rúben Fernandes
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
7
|
Kim S, Li L, Zhang J, Jiang C, Lü J. Aqueous metabolome of tissue-specific conditional Pten-knockout mouse prostate cancer and TRAMP neuroendocrine carcinoma. Prostate 2022; 82:154-166. [PMID: 34662447 PMCID: PMC9298286 DOI: 10.1002/pros.24256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metabolic reprograming is now a recognized hallmark of cancer. The prostate-specific phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene-conditional knockout (KO) mouse carcinogenesis model is highly desirable for studying prostate cancer biology and prevention due to its close resemblance of primary molecular defects and histopathological features of human prostate cancer. We have recently published macromolecular profiling of this model by proteomics and transcriptomics, denoting a preeminence of inflammation and myeloid suppressive immune cell features. Here, we performed metabolomic analyses of Pten-KO prostate versus wild type (WT) counterpart for discernable changes in the aqueous metabolites and contrasted to those in the TRAMP neuroendocrine carcinoma (NECa). METHODS Three matched pairs of tissue-specific conditional Pten-KO mouse prostate and WT prostate of litter/cage-mates at 20-22 weeks of age and three pairs of TRAMP NECa versus WT (28-31 weeks) were profiled for their global aqueous metabolite changes, using hydrophilic interaction liquid chromatography-tandem mass spectrometry. RESULTS The Pten-KO prostate increased purine nucleotide pools, cystathionine, and both reduced and oxidized glutathione (GSH, GSSG), and gluconate/glucuronate species in addition to cholesteryl sulfate and polyamine precursor ornithine. On the contrary, Pten-KO prostate contained diminished pools of glycolytic intermediates and phosphorylcholine derivatives, select amino acids, and their metabolites. Bioinformatic integration revealed a significant shunting of glucose away from glycolysis-citrate cycle and glycerol-lipid genesis to pentose phosphate cycle for NADPH/GSH/GSSG redox and pentose moieties for purine and pyrimidine nucleotides, and glycosylation/glucuronidation. Implicit arginine catabolism to ornithine was consistent with immunosuppression in Pten-KO model. While also increased in cystathionine-GSH/GSSG, purine, and pyrimidine nucleotide pools and glucuronidation at the expense of glycolysis-citrate cycle, the TRAMP NECa increased abundance of many amino acids, methyl donor S-adenosyl-methionine, and intermediates for phospholipids without increasing cholesteryl sulfate or ornithine. CONCLUSIONS The aqueous metabolomic patterns in Pten-KO prostate and TRAMP NECa shared similarities in the greater pools of cystathionine, GSH/GSSG redox pair, and nucleotides and shunting away from glycolysis-citrate cycle in both models. Remarkable metabolic distinctions between them included metabolisms of many amino acids (protein synthesis; arginine-ornithine/immune suppression) and cholesteryl sulfate and methylation donor for epigenetic regulations.
Collapse
Affiliation(s)
- Sangyub Kim
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Present address:
Sangyub Kim, Zentalis PharmaceuticalsSan DiegoCaliforniaUSA
| | - Li Li
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
- Present address:
Li Li and Jinhui Zhang, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Jinhui Zhang
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
- Present address:
Li Li and Jinhui Zhang, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Cheng Jiang
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
| | - Junxuan Lü
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
| |
Collapse
|
8
|
Chen CL, Lin CY, Kung HJ. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int J Mol Sci 2021; 22:13435. [PMID: 34948229 PMCID: PMC8708687 DOI: 10.3390/ijms222413435] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Ching-Yu Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00408-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
11
|
Guo H, Zhang Z, Wang Y, Xue S. Identification of crucial genes and pathways associated with prostate cancer in multiple databases. J Int Med Res 2021; 49:3000605211016624. [PMID: 34082608 PMCID: PMC8182368 DOI: 10.1177/03000605211016624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Prostate cancer (PCa) is a malignant neoplasm of the urinary system. This study aimed to use bioinformatics to screen for core genes and biological pathways related to PCa. METHODS The GSE5957 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were constructed by R language. Furthermore, protein-protein interaction (PPI) networks were generated to predict core genes. The expression levels of core genes were examined in the Tumor Immune Estimation Resource (TIMER) and Oncomine databases. The cBioPortal tool was used to study the co-expression and prognostic factors of the core genes. Finally, the core genes of signaling pathways were determined using gene set enrichment analysis (GSEA). RESULTS Overall, 874 DEGs were identified. Hierarchical clustering analysis revealed that these 24 core genes have significant association with carcinogenesis and development. LONRF1, CDK1, RPS18, GNB2L1 (RACK1), RPL30, and SEC61A1 directly related to the recurrence and prognosis of PCa. CONCLUSIONS This study identified the core genes and pathways in PCa and provides candidate targets for diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Hanxu Guo
- School of Clinical Medicine, Bengbu Medical College, Bengbu,
China
| | - Zhichao Zhang
- School of Clinical Medicine, Bengbu Medical College, Bengbu,
China
| | - Yuhang Wang
- School of Clinical Medicine, Bengbu Medical College, Bengbu,
China
| | - Sheng Xue
- Department of Urology, The First Affiliated Hospital of Bengbu
Medical College, Bengbu, China
| |
Collapse
|
12
|
Paczkowski M, Kretzschmar WW, Markelc B, Liu SK, Kunz-Schughart LA, Harris AL, Partridge M, Byrne HM, Kannan P. Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer. Commun Biol 2021; 4:6. [PMID: 33398023 PMCID: PMC7782740 DOI: 10.1038/s42003-020-01529-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Intratumoural heterogeneity (ITH) contributes to local recurrence following radiotherapy in prostate cancer. Recent studies also show that ecological interactions between heterogeneous tumour cell populations can lead to resistance in chemotherapy. Here, we evaluated whether interactions between heterogenous populations could impact growth and response to radiotherapy in prostate cancer. Using mixed 3D cultures of parental and radioresistant populations from two prostate cancer cell lines and a predator-prey mathematical model to investigate various types of ecological interactions, we show that reciprocal interactions between heterogeneous populations enhance overall growth and reduce radiation sensitivity. The type of interaction influences the time of regrowth after radiation, and, at the population level, alters the survival and cell cycle of each population without eliminating either one. These interactions can arise from oxygen constraints and from cellular cross-talk that alter the tumour microenvironment. These findings suggest that ecological-type interactions are important in radiation response and could be targeted to reduce local recurrence.
Collapse
Affiliation(s)
| | - Warren W Kretzschmar
- School of Engineering Sciences in Chemistry Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bostjan Markelc
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stanley K Liu
- Sunnybrook Research Institute and Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum, Dresden, Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Partner Site, Dresden, Germany
| | - Adrian L Harris
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mike Partridge
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK.
| | - Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Gómez-Cebrián N, García-Flores M, Rubio-Briones J, López-Guerrero JA, Pineda-Lucena A, Puchades-Carrasco L. Targeted Metabolomics Analyses Reveal Specific Metabolic Alterations in High-Grade Prostate Cancer Patients. J Proteome Res 2020; 19:4082-4092. [PMID: 32924497 DOI: 10.1021/acs.jproteome.0c00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is a hormone-dependent tumor characterized by an extremely heterogeneous prognosis. Despite recent advances in partially uncovering some of the biological processes involved in its progression, there is still an urgent need for identifying more accurate and specific prognostic procedures to differentiate between disease stages. In this context, targeted approaches, focused on mapping dysregulated metabolic pathways, could play a critical role in identifying the mechanisms driving tumorigenesis and metastasis. In this study, a targeted analysis of the nuclear magnetic resonance-based metabolomic profile of PCa patients with different tumor grades, guided by transcriptomics profiles associated with their stages, was performed. Serum and urine samples were collected from 73 PCa patients. Samples were classified according to their Gleason score (GS) into low-GS (GS < 7) and high-GS PCa (GS ≥ 7) groups. A total of 36 metabolic pathways were found to be dysregulated in the comparison between different PCa grades. Particularly, the levels of glucose, glycine and 1-methlynicotinamide, metabolites involved in energy metabolism and nucleotide synthesis were significantly altered between both groups of patients. These results underscore the potential of targeted metabolomic profiling to characterize relevant metabolic changes involved in the progression of this neoplastic process.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.,Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia 46009, Spain
| | - María García-Flores
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia 46009, Spain.,IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Centre (CIPF), Valencia 46012, Spain
| | - José Rubio-Briones
- Department of Urology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia 46009, Spain
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia 46009, Spain.,IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Centre (CIPF), Valencia 46012, Spain.,Department of Basic Medical Sciences, School of Medicine, Catholic University of Valencia 'San Vicente Martir', Valencia 46001, Spain
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.,Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Navarra 31008, Spain
| | | |
Collapse
|
14
|
Markin PA, Brito A, Moskaleva N, Lartsova EV, Shpot YV, Lerner YV, Mikhajlov VY, Potoldykova NV, Enikeev DV, La Frano MR, Appolonova SA. Plasma metabolomic profile in prostatic intraepithelial neoplasia and prostate cancer and associations with the prostate-specific antigen and the Gleason score. Metabolomics 2020; 16:74. [PMID: 32556743 DOI: 10.1007/s11306-020-01694-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The metabolic alterations reflecting the influence of prostate cancer cells can be captured through metabolomic profiling. OBJECTIVE To characterize the plasma metabolomic profile in prostatic intraepithelial neoplasia (PIN) and prostate cancer (PCa). METHODS Metabolomics analyses were performed in plasma samples from individuals classified as non-cancerous control (n = 36), with PIN (n = 16), or PCa (n = 27). Untargeted [26 moieties identified after pre-processing by gas chromatography/mass spectrometry (GC/MS)] and targeted [46 amino acids, carbohydrates, organic acids and fatty acids by GC/MS, and 16 nucleosides and amino acids by ultra performance liquid chromatography-triple quadrupole/mass spectrometry (UPLC-TQ/MS)] analyses were performed. Prostate specific antigen (PSA) concentrations were measured in all samples. In PCa patients, the Gleason scores were determined. RESULTS The metabolites that were best discriminated (p < 0.05, FDR < 0.2) for the Kruskal-Wallis test with Dunn's post-hoc comparing the control versus the PIN and PCa groups included isoleucine, serine, threonine, cysteine, sarcosine, glyceric acid, among several others. PIN was mainly characterized by alterations on steroidogenesis, glycine and serine metabolism, methionine metabolism and arachidonic acid metabolism, among others. In the case of PCa, the most predominant metabolic alterations were ubiquinone biosynthesis, catecholamine biosynthesis, thyroid hormone synthesis, porphyrin and purine metabolism. In addition, we identified metabolites that were correlated to the PSA [i.e. hypoxanthine (r = - 0.60, p < 0.05; r = - 0.54, p < 0.01) and uridine (r = - 0.58, p < 0.05; r = - 0.50, p < 0.01) in PIN and PCa groups, respectively] and metabolites that were significantly different in PCa patients with Gleason score < 7 and ≥ 7 [i.e. arachidonic acid, median (P25-P75) = 883.0 (619.8-956.4) versus 570.8 (505.6-651.8), respectively (p < 0.01)]. CONCLUSIONS This human plasma metabolomic assessment contributes to the understanding of the unique metabolic features exhibited in PIN and PCa and provides a list of metabolites that can have the potential to be used as biomarkers for early detection of disease progression and management.
Collapse
Affiliation(s)
- Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
- PhD Program in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991.
| | - Natalia Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
| | - Ekaterina V Lartsova
- University Clinical Hospital, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yevgeny V Shpot
- Research Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yulia V Lerner
- Department of Pathological Anatomy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vasily Y Mikhajlov
- University Clinical Hospital, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia V Potoldykova
- Research Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dimitry V Enikeev
- Research Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991.
| |
Collapse
|
15
|
Slovin SF. Immunotherapy for castration-resistant prostate cancer: has its time arrived? Expert Opin Biol Ther 2020; 20:481-487. [PMID: 32097050 DOI: 10.1080/14712598.2020.1735345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Within the last decade, multiple innovative immune platforms have been developed and tested in patients with metastatic castration-resistant prostate cancer (mCRPC) with only one demonstrating a survival benefit. The advent of immunogenomics along with the availability of diverse checkpoint inhibitors provides inroads in treating these patients, in many cases with significant clinical impact but unfortunately not in all patients. How to exploit these novel platforms remains an area of increased interest especially in the setting of new agents that can affect the tumor microenvironment and potentially render a 'cold' tumor to become 'hot.'Areas covered: This review highlights the current changes and challenges in this field and how to best use our current knowledge for better trial designs in patients with mCRPC.Expert opinion: Recent understanding of the inhibitory milieu within the tumor microenvironment has fostered the use of combinatorial strategies that target not only tumor cells but capitalize on controlling inhibitory cell populations and cytokines that induce a hostile setting for immune cells. Immunogenomics and genomic interrogation of prostate cancers have opened a vista as to how patients' tumors that can respond to immune agents that previously were thought have minimal antitumor activity.
Collapse
Affiliation(s)
- Susan F Slovin
- Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
16
|
Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol 2020; 17:214-231. [PMID: 32112053 DOI: 10.1038/s41585-020-0288-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.
Collapse
Affiliation(s)
- David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Huang J, Mondul AM, Weinstein SJ, Derkach A, Moore SC, Sampson JN, Albanes D. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer 2019; 145:3231-3243. [PMID: 30779128 PMCID: PMC6698432 DOI: 10.1002/ijc.32218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Impaired metabolism may play an important role in the pathogenesis of lethal prostate cancer, yet there is a paucity of evidence regarding the association. We conducted a large prospective serum metabolomic analysis of lethal prostate cancer in 523 cases and 523 matched controls nested within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Median time from baseline fasting serum collection to prostate cancer death was 18 years (maximum 30 years). We identified 860 known biochemicals through an ultrahigh-performance LC-MS/MS platform. Conditional logistic regression models estimated odds ratios (OR) and 95% confidence intervals of risk associated with 1-standard deviation (s.d.) increases in log-metabolite signals. We identified 34 metabolites associated with lethal prostate cancer with a false discovery rate (FDR) < 0.15. Notably, higher serum thioproline, and thioproline combined with two other cysteine-related amino acids and redox metabolites, cystine and cysteine, were associated with reduced risk (1-s.d. OR = 0.75 and 0.71, respectively; p ≤ 8.2 × 10-5 ). By contrast, the dipeptide leucylglycine (OR = 1.36, p = 8.2 × 10-5 ), and three gamma-glutamyl amino acids (OR = 1.28-1.30, p ≤ 4.6 × 10-4 ) were associated with increased risk of lethal prostate cancer. Cases with metastatic disease at diagnosis (n = 179) showed elevated risk for several lipids, including especially the ketone body 3-hydroxybutyrate (BHBA), acyl carnitines, and dicarboxylic fatty acids (1.37 ≤ OR ≤ 1.49, FDR < 0.15). These findings provide a prospective metabolomic profile of lethal prostate cancer characterized by altered biochemicals in the redox, dipeptide, pyrimidine, and gamma-glutamyl amino acid pathways, whereas ketone bodies and fatty acids were associated specifically with metastatic disease.
Collapse
Affiliation(s)
- Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alison M. Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andriy Derkach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven C. Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J Proteome Res 2019; 19:2631-2642. [PMID: 31682457 DOI: 10.1021/acs.jproteome.9b00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 μm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.
Collapse
Affiliation(s)
- Anna Mantsiou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Konstantinos Fasoulakis
- Ippokrateio General Hospital of Athens, Department of Urology, 114 Vasilissis Sofias Avenue, Athens 11527, Greece
| | - Ioannis Katafigiotis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Maria G Roubelakis
- National and Kapodistrian University of Athens, Medical School, Laboratory of Biology, 75 Mikras Assias Street, Athens 11527, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
19
|
Yu C, Li C, Chen I, Lai M, Lin Z, Korla PK, Chai C, Ko G, Chen C, Hwang T, Lee S, Sheu JJ. YWHAZ amplification/overexpression defines aggressive bladder cancer and contributes to chemo-/radio-resistance by suppressing caspase-mediated apoptosis. J Pathol 2019; 248:476-487. [PMID: 30945298 PMCID: PMC6767422 DOI: 10.1002/path.5274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
The objective of this study was to characterize the oncogenic actions of a recently identified cancer-associated gene YWHAZ (also named as 14-3-3 ζ/δ) in urothelial carcinomas of the urinary bladder (UCUB). A genome-wide study revealed YWHAZ to be involved in the amplicon at 8q22.3, and its genetic amplification was detected predominantly in muscle-invasive bladder cancer (MIBC). Immunohistochemical staining confirmed the association of YWHAZ overexpression with higher tumor stages, lymph node/vascular invasion, and mitotic activity. Univariate and multivariate analyses further indicated the prognostic potential of YWHAZ for more aggressive cancer types. Both gene set enrichment analysis and STRING network studies suggested involvement of YWHAZ in regulating caspase-mediated apoptosis. Ectopic expression of YWHAZ in bladder cells with low endogenous YWHAZ levels boosted cell resistance to doxorubicin and cisplatin, as well as to ionizing radiation. Conversely, YWHAZ-knockdown using specific shRNA in cells with high endogenous YWHAZ levels diminished survival activity, suppressing cell growth and increasing cell death. Our findings confirm the essential role played by YWHAZ in sustaining cell proliferation during chemo/radiotherapy. Treatments based on anti-YWHAZ strategies may thus be beneficial for UCUB patients overexpressing YWHAZ. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chia‐Cheng Yu
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
- Department of PharmacyCollege of Pharmacy and Health Care, Tajen UniversityPingtung CountyTaiwan
- Department of SurgeryTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Chien‐Feng Li
- Department of PathologyChi‐Mei Medical CenterTainanTaiwan
- National Institute of Cancer ResearchNational Health Research InstitutesMiaoliTaiwan
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - I‐Hsuan Chen
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
- Department of SurgeryTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ming‐Tsung Lai
- Department of PathologyTaichung Hospital, Ministry of Health and WelfareTaichungTaiwan
| | - Zi‐Jun Lin
- Human Genetic CenterChina Medical University HospitalTaichungTaiwan
- Department of Medical Imaging and Radiological SciencesChung Shan Medical UniversityTaichungTaiwan
| | - Praveen K Korla
- Institute of Biomedical SciencesNational Sun Yatsen UniversityKaohsiungTaiwan
| | - Chee‐Yin Chai
- Department of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Grace Ko
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yatsen UniversityKaohsiungTaiwan
| | - Chih‐Mei Chen
- Human Genetic CenterChina Medical University HospitalTaichungTaiwan
| | - Tritium Hwang
- Institute of Biomedical SciencesNational Sun Yatsen UniversityKaohsiungTaiwan
| | - Shan‐Chih Lee
- Department of Medical Imaging and Radiological SciencesChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ImagingChung Shan Medical University HospitalTaichungTaiwan
| | - Jim J‐C Sheu
- Human Genetic CenterChina Medical University HospitalTaichungTaiwan
- Institute of Biomedical SciencesNational Sun Yatsen UniversityKaohsiungTaiwan
- School of Chinese MedicineChina Medical UniversityTaichungTaiwan
- Department of Health and Nutrition BiotechnologyAsia UniversityTaichungTaiwan
| |
Collapse
|
20
|
Chaiswing L, Weiss HL, Jayswal RD, St. Clair DK, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018; 23:39-67. [PMID: 29953367 PMCID: PMC6231577 DOI: 10.1615/critrevoncog.2018025946] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation therapy (RT) is commonly used for the treatment of localized prostate cancer (PCa). However, cancer cells often develop resistance to radiation through unknown mechanisms and pose an intractable challenge. Radiation resistance is highly unpredictable, rendering the treatment less effective in many patients and frequently causing metastasis and cancer recurrence. Understanding the molecular events that cause radioresistance in PCa will enable us to develop adjuvant treatments for enhancing the efficacy of RT. Radioresistant PCa depends on the elevated DNA repair system and the intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and scavenge anti-cancer regimens, whereas the elevated heat shock protein 90 (HSP90) and the epithelial-mesenchymal transition (EMT) enable radioresistant PCa cells to metastasize after exposure to radiation. The up-regulation of the DNA repairing system, ROS, HSP90, and EMT effectors has been studied extensively, but not targeted by adjuvant therapy of radioresistant PCa. Here, we emphasize the effects of ionizing radiation and the mechanisms driving the emergence of radioresistant PCa. We also address the markers of radioresistance, the gene signatures for the predictive response to radiotherapy, and novel therapeutic platforms for targeting radioresistant PCa. This review provides significant insights into enhancing the current knowledge and the understanding toward optimization of these markers for the treatment of radioresistant PCa.
Collapse
Affiliation(s)
| | - Heidi L. Weiss
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | - Rani D. Jayswal
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | | | - Natasha Kyprianou
- Department of Toxicology and Cancer Biology
- Department of Urology
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Srihari S, Kwong R, Tran K, Simpson R, Tattam P, Smith E. Metabolic deregulation in prostate cancer. Mol Omics 2018; 14:320-329. [DOI: 10.1039/c8mo00170g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using RNAseq data from prostate cancer tissues we identified up to six metabolic subtypes of prostate cancer that show distinct disease-free and/or metastasis-free survival.
Collapse
Affiliation(s)
| | - Ray Kwong
- MaxwellPlus+
- Fortitude Valley
- Australia
| | - Khoa Tran
- MaxwellPlus+
- Fortitude Valley
- Australia
| | | | | | | |
Collapse
|
22
|
Li X, Liu Y, Lu J, Zhao M. Integrative analysis to identify oncogenic gene expression changes associated with copy number variations of enhancer in ovarian cancer. Oncotarget 2017; 8:91558-91567. [PMID: 29207666 PMCID: PMC5710946 DOI: 10.18632/oncotarget.21227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Enhancers are short regulatory regions (50-1500 bp) of DNA that control the tissue-specific activation of gene expression by long distance interaction with targeting gene regions. Recently, genome-wide identification of enhancers in diverse tissues and cell lines was achieved using high-throughput sequencing. Enhancers have been associated with malfunctions in cancer development resulting from point mutations in regulatory regions. However, the potential impact of copy number variations (CNVs) on enhancer regions is unknown. To learn more about the relationship between enhancers and cancer, we integrated the CNVs data on enhancers and explored their targeting gene expression pattern in high-grade ovarian cancer. Using human enhancer-gene interaction data with 13,691 interaction pairs between 7,905 enhancers and 5,297 targeting genes, we found that the 2,910 copy number gain events of enhancer are significantly correlated with the up-regulation of targeting genes. We further identified that a number of highly mutated super-enhancers, with concordant gene expression change on their targeting genes. We also identified 18 targeting genes by super-enhancers with prognostic significance for ovarian cancer, such as the tumour suppressor CDKN1B. We are the first to report that abundant copy number variations on enhancers could change the expression of their targeting genes which would be valuable for the design of enhancer-based cancer treatment strategy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The School of Public Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
23
|
Stynen B, Abd-rabbo D, Kowarzyk J, Miller-fleming L, Ralser M, Michnick S. A Yeast Global Genetic Screen Reveals that Metformin Induces an Iron Deficiency-Like State.. [DOI: 10.1101/190389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractWe report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins or other small molecules based on “homomer dynamics” Protein-fragment Complementation Assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health-span-affecting drugs, immunosuppressant rapamycin and type II diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatments of diabetes, cancers and other chronic diseases of aging.
Collapse
|
24
|
Audet-Walsh É, Dufour CR, Yee T, Zouanat FZ, Yan M, Kalloghlian G, Vernier M, Caron M, Bourque G, Scarlata E, Hamel L, Brimo F, Aprikian AG, Lapointe J, Chevalier S, Giguère V. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev 2017; 31:1228-1242. [PMID: 28724614 PMCID: PMC5558925 DOI: 10.1101/gad.299958.117] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Audet-Walsh et al. reveal the existence of a nuclear mTOR–androgen receptor transcriptional axis integral to the metabolic rewiring of prostate cancer cells. Androgen receptor (AR) signaling reprograms cellular metabolism to support prostate cancer (PCa) growth and survival. Another key regulator of cellular metabolism is mTOR, a kinase found in diverse protein complexes and cellular localizations, including the nucleus. However, whether nuclear mTOR plays a role in PCa progression and participates in direct transcriptional cross-talk with the AR is unknown. Here, via the intersection of gene expression, genomic, and metabolic studies, we reveal the existence of a nuclear mTOR–AR transcriptional axis integral to the metabolic rewiring of PCa cells. Androgens reprogram mTOR–chromatin associations in an AR-dependent manner in which activation of mTOR-dependent metabolic gene networks is essential for androgen-induced aerobic glycolysis and mitochondrial respiration. In models of castration-resistant PCa cells, mTOR was capable of transcriptionally regulating metabolic gene programs in the absence of androgens, highlighting a potential novel castration resistance mechanism to sustain cell metabolism even without a functional AR. Remarkably, we demonstrate that increased mTOR nuclear localization is indicative of poor prognosis in patients, with the highest levels detected in castration-resistant PCa tumors and metastases. Identification of a functional mTOR targeted multigene signature robustly discriminates between normal prostate tissues, primary tumors, and hormone refractory metastatic samples but is also predictive of cancer recurrence. This study thus underscores a paradigm shift from AR to nuclear mTOR as being the master transcriptional regulator of metabolism in PCa.
Collapse
Affiliation(s)
- Étienne Audet-Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Catherine R Dufour
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Fatima Z Zouanat
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Ming Yan
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Georges Kalloghlian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Mathieu Vernier
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Maxime Caron
- Génome Québec Innovation Centre, McGill University, Montréal, Québec H3A 0G1, Canada
| | - Guillaume Bourque
- Génome Québec Innovation Centre, McGill University, Montréal, Québec H3A 0G1, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Eleonora Scarlata
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Fadi Brimo
- Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Armen G Aprikian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada.,Department of Pathology, McGill University and MUHC, Montréal, Québec H4A 3J1, Canada
| | - Jacques Lapointe
- Department of Surgery (Urology), McGill University and MUHC, Montréal, Québec H4A 3J1, Canada.,Department of Oncology, McGill University and MUHC, Montréal, Québec H4A 3J1, Canada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada.,Department of Pathology, McGill University and MUHC, Montréal, Québec H4A 3J1, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|