1
|
Xiong G, Yun F, Jiang L, Yi Z, Yi X, Yang L, Zhang X, Li X, Yang Z, Zhang Q, Sai B, Kuang Y, Zhu Y. NDUFS3 promotes proliferation via glucose metabolism reprogramming inducing AMPK phosphorylating PRPS1 to increase the purine nucleotide synthesis in melanoma. Cell Death Differ 2025:10.1038/s41418-025-01525-4. [PMID: 40404919 DOI: 10.1038/s41418-025-01525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/02/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUFS3) is the core subunit of the respiratory chain complex I (CI). We found NDUFS3 were abnormally elevated in human melanoma and promoted melanoma proliferation. Furthermore, NDUFS3 could promote the oxidative phosphorylation (OXPHOS) and the pentose phosphate pathway (PPP), as well as attenuated glycolysis. As NDUFS3-mediated the metabolic changes of OXPHOS and glucose metabolism, melanoma cells produced more ATP, resulting in the inhibition of AMP kinase (AMPK). AMPK induced phosphoribosyl pyrophosphate synthetase1 (PRPS1) phosphorylation, which resulted in suppressed PRPS1 activity. Briefly, the NDUFS3-AMPK-PRPS1 signaling axis coupled OXPHOS, glucose metabolism, and purine nucleotide biosynthesis to regulate melanoma proliferation. Our study highlighted an unrecognized role for NDUFS3 in melanoma, which might be used as a potential therapeutic target for the treatment of this type of cancer. NDUFS3 regulating PRPS1 activity through AMPK to affect melanoma proliferation.
Collapse
Affiliation(s)
- Guohang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Fang Yun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
| | - Lu Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210000, China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 434000, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
| | - Xiaoyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
2
|
Balasco N, Modjtahedi N, Monti A, Ruvo M, Vitagliano L, Doti N. CHCHD4 Oxidoreductase Activity: A Comprehensive Analysis of the Molecular, Functional, and Structural Properties of Its Redox-Regulated Substrates. Molecules 2025; 30:2117. [PMID: 40430290 PMCID: PMC12114033 DOI: 10.3390/molecules30102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The human CHCHD4 protein, which is a prototypical family member, carries a coiled-coil-helix-coiled-coil-helix motif that is stabilized by two disulfide bonds. Using its CPC sequence motif, CHCHD4 plays a key role in mitochondrial metabolism, cell survival, and response to stress conditions, controlling the mitochondrial import of diversified protein substrates that are specifically recognized through an interplay between covalent and non-covalent interactions. In the present review, we provide an updated and comprehensive analysis of CHCHD4 substrates controlled by its redox activities. A particular emphasis has been placed on the molecular and structural aspects of these partnerships. The literature survey has been integrated with the mining of structural databases reporting either experimental structures (Protein Data Bank) or structures predicted by AlphaFold, which provide protein three-dimensional models using machine learning-based approaches. In providing an updated view of the thirty-four CHCHD4 substrates that have been experimentally validated, our analyses highlight the notion that this protein can operate on a variety of structurally diversified substrates. Although in most cases, CHCHD4 plays a crucial role in the formation of disulfide bridges that stabilize helix-coil-helix motifs of its substrates, significant variations on this common theme are observed, especially for substrates that have been more recently identified.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Nazanine Modjtahedi
- Unité Physiopathologie et Génétique du Neurone et du Muscle, UMR CNRS 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (A.M.); (M.R.)
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (A.M.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (A.M.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (A.M.); (M.R.)
| |
Collapse
|
3
|
Wang Y, Qi D, Ge G, Cao N, Liu X, Zhu N, Li F, Huang X, Yu K, Zheng J, Wang D, Yao W, Chen L, Dong Z. WBP1 regulates mitochondrial function and ferroptosis to modulate chemoresistance in colorectal cancer. Mol Med 2025; 31:93. [PMID: 40075333 PMCID: PMC11900258 DOI: 10.1186/s10020-025-01151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Chemoresistance continues to pose a significant challenge in managing colorectal cancer (CRC), resulting in unfavorable outcomes for patients. Recent findings indicate that ferroptosis, an innovative type of regulated cell death, might influence chemoresistance. In this research, we explored how WW domain-binding protein 1 (WBP1) affects mitochondrial function, cell growth, ferroptosis, and chemoresistance in CRC cells. By employing both genetic and pharmacological methods, we found that WBP1 is essential for maintaining mitochondrial respiration in CRC cells. WBP1 depletion impaired mitochondrial function, leading to reduced cell proliferation and increased ferroptosis. Exogenous mitochondria from wild-type cells restored mitochondrial function, cell proliferation, and suppressed ferroptosis in WBP1-deficient cells, indicating that mitochondrial function acts downstream of WBP1. Importantly, we demonstrated that targeting WBP1 or its mediated mitochondrial function sensitized chemoresistant CRC cells to 5-fluorouracil and oxaliplatin by inducing ferroptosis. Furthermore, we analyzed transcriptome data from CRC patients, which indicated that increased WBP1 expression correlated with poor outcomes for patients receiving chemotherapy, thus highlighting the clinical significance of our observations. Collectively, our results pinpoint WBP1 as a significant modulator of mitochondrial function and ferroptosis in CRC cells and imply that targeting WBP1 may represent a viable approach to tackling chemoresistance. These insights offer a deeper understanding of the molecular pathways underlying CRC chemoresistance and may guide the development of new treatment options.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dachuan Qi
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guijie Ge
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Cao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiangdong Liu
- Medical Center of Gastrointestinal Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Na Zhu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Huang
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kui Yu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinzhou Zheng
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Daoheng Wang
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyan Yao
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyang Dong
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
4
|
Rothemann RA, Stobbe D, Hoehne-Wiechmann MN, Murschall LM, Peker E, Knaup LK, Racho J, Habich M, Gerlich S, Lapacz KJ, Ulrich K, Riemer J. Interaction with the cysteine-free protein HAX1 expands the substrate specificity and function of MIA40 beyond protein oxidation. FEBS J 2024; 291:5506-5522. [PMID: 39564806 DOI: 10.1111/febs.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
The mitochondrial disulphide relay machinery is essential for the import and oxidative folding of many proteins in the mitochondrial intermembrane space. Its core component, the import receptor MIA40 (also CHCHD4), serves as an oxidoreductase but also as a chaperone holdase, which initially interacts with its substrates non-covalently before introducing disulphide bonds for folding and retaining proteins in the intermembrane space. Interactome studies have identified diverse substrates of MIA40, among them the intrinsically disordered HCLS1-associated protein X-1 (HAX1). Interestingly, this protein does not contain cysteines, raising the question of how and to what end HAX1 can interact with MIA40. Here, we demonstrate that MIA40 non-covalently interacts with HAX1 independent of its redox-active cysteines. While HAX1 import is driven by its weak mitochondrial targeting sequence, its subsequent transient interaction with MIA40 stabilizes the protein in the intermembrane space. HAX1 solely depends on the holdase activity of MIA40, and the absence of MIA40 results in the aggregation, degradation and loss of HAX1. Collectively, our study introduces HAX1 as the first endogenous MIA40 substrate without cysteines and demonstrates the diverse functions of this highly conserved oxidoreductase and import receptor.
Collapse
Affiliation(s)
| | - Dylan Stobbe
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
| | | | | | - Esra Peker
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
| | - Lara Katharina Knaup
- Cellular Biochemistry, Institute of Biochemistry, University of Cologne, Germany
| | - Julia Racho
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
| | - Markus Habich
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
| | - Sarah Gerlich
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
| | - Kim Jasmin Lapacz
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
| | - Kathrin Ulrich
- Cellular Biochemistry, Institute of Biochemistry, University of Cologne, Germany
| | - Jan Riemer
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
5
|
Thomas LW, Stephen JM, Ashcroft M. CHCHD4 regulates the expression of mitochondrial genes that are essential for tumour cell growth. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167282. [PMID: 38909850 DOI: 10.1016/j.bbadis.2024.167282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
CHCHD4 (MIA40) is central to the functions of the mitochondrial disulfide relay system (DRS). CHCHD4 is essential and evolutionarily conserved. Previously, we have shown CHCHD4 to be a critical regulator of tumour cell growth. Here, we use integrated analysis of our genome-wide CRISPR/Cas9 and SILAC proteomic screening data to delineate mechanisms of CHCHD4 essentiality in cancer. We identify a shortlist of common essential genes/proteins regulated by CHCHD4, including subunits of complex I that are known DRS substrates, and genes/proteins involved in key metabolic pathways. Our study highlights a range of CHCHD4-regulated nuclear encoded mitochondrial genes/proteins essential for tumour cell growth.
Collapse
Affiliation(s)
- Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
| | - Jenna M Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
6
|
Ma Y, Li Z, Li D, Zheng B, Xue Y. G0 arrest gene patterns to predict the prognosis and drug sensitivity of patients with lung adenocarcinoma. PLoS One 2024; 19:e0309076. [PMID: 39159158 PMCID: PMC11332951 DOI: 10.1371/journal.pone.0309076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
G0 arrest (G0A) is widely recognized as a crucial factor contributing to tumor relapse. The role of genes related to G0A in lung adenocarcinoma (LUAD) was unclear. This study aimed to develop a gene signature based on for LUAD patients and investigate its relationship with prognosis, tumor immune microenvironment, and therapeutic response in LUAD. We use the TCGA-LUAD database as the discovery cohort, focusing specifically on genes associated with the G0A pathway. We used various statistical methods, including Cox and lasso regression, to develop the model. We validated the model using bulk transcriptome and single-cell transcriptome datasets (GSE50081, GSE72094, GSE127465, GSE131907 and EMTAB6149). We used GSEA enrichment and the CIBERSORT algorithm to gain insight into the annotation of the signaling pathway and the characterization of the tumor microenvironment. We evaluated the response to immunotherapy, chemotherapy, and targeted therapy in these patients. The expression of six genes was validated in cell lines by quantitative real-time PCR (qRT-PCR). Our study successfully established a six-gene signature (CHCHD4, DUT, LARP1, PTTG1IP, RBM14, and WBP11) that demonstrated significant predictive power for overall survival in patients with LUAD. It demonstrated independent prognostic value in LUAD. To enhance clinical applicability, we developed a nomogram based on this gene signature, which showed high reliability in predicting patient outcomes. Furthermore, we observed a significant association between G0A-related risk and tumor microenvironment as well as drug susceptibility, highlighting the potential of the gene signature to guide personalized treatment strategies. The expression of six genes were significantly upregulated in the LUAD cell lines. This signature holds the potential to contribute to improved prognostic prediction and new personalized therapies specifically for LUAD patients.
Collapse
Affiliation(s)
- Yong Ma
- Thoracic Surgery Department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi, China
| | - Zhilong Li
- Thoracic Surgery Department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi, China
| | - Dongbing Li
- Scientific Research Center, Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing, China
| | - Baozhen Zheng
- Radiation Oncology Department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanfeng Xue
- Special Need Medical Department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Wang Y, Zeng Z, Zeng Z, Chu G, Shan X. Elevated CHCHD4 orchestrates mitochondrial oxidative phosphorylation to disturb hypoxic pulmonary hypertension. J Transl Med 2023; 21:464. [PMID: 37438854 DOI: 10.1186/s12967-023-04268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a highly prevalent cardiopulmonary disorder characterized by vascular remodeling and increased resistance in pulmonary artery. Mitochondrial coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins have various important pathophysiological roles. However, the functional roles of CHCHD proteins in hypoxic PAH is still ambiguous. Here, we aimed to investigate the role of CHCHD4 in hypoxic PAH and provide new insight into the mechanism driving the development of PAH. METHODS Serotype 1 adeno-associated viral vector (AAV) carrying Chchd4 was intratracheally injected to overexpress CHCHD4 in Sprague Dawley (SD) rats. The Normoxia groups of animals were housed at 21% O2. Hypoxia groups were housed at 10% O2, for 8 h/day for 4 consecutive weeks. Hemodynamic and histological characteristics are investigated in PAH. Primary pulmonary artery smooth muscle cells of rats (PASMCs) are used to assess how CHCHD4 affects proliferation and migration. RESULTS We found CHCHD4 was significantly downregulated among CHCHD proteins in hypoxic PASMCs and lung tissues from hypoxic PAH rats. AAV1-induced CHCHD4 elevation conspicuously alleviates vascular remodeling and pulmonary artery resistance, and orchestrates mitochondrial oxidative phosphorylation in PASMCs. Moreover, we found overexpression of CHCHD4 impeded proliferation and migration of PASMCs. Mechanistically, through lung tissues bulk RNA-sequencing (RNA-seq), we further identified CHCHD4 modulated mitochondrial dynamics by directly interacting with SAM50, a barrel protein on mitochondrial outer membrane surface. Furthermore, knockdown of SAM50 reversed the biological effects of CHCHD4 overexpression in isolated PASMCs. CONCLUSIONS Collectively, our data demonstrated that CHCHD4 elevation orchestrates mitochondrial oxidative phosphorylation and antagonizes aberrant PASMC cell growth and migration, thereby disturbing hypoxic PAH, which could serve as a promising therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
8
|
Blacker TS, Duchen MR, Bain AJ. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 2023; 122:1240-1253. [PMID: 36793214 PMCID: PMC10111271 DOI: 10.1016/j.bpj.2023.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
NADH and NADPH play key roles in the regulation of metabolism. Their endogenous fluorescence is sensitive to enzyme binding, allowing changes in cellular metabolic state to be determined using fluorescence lifetime imaging microscopy (FLIM). However, to fully uncover the underlying biochemistry, the relationships between their fluorescence and binding dynamics require greater understanding. Here we accomplish this through time- and polarization-resolved fluorescence and polarized two-photon absorption measurements. Two lifetimes result from binding of both NADH to lactate dehydrogenase and NADPH to isocitrate dehydrogenase. The composite fluorescence anisotropy indicates the shorter (1.3-1.6 ns) decay component to be accompanied by local motion of the nicotinamide ring, pointing to attachment solely via the adenine moiety. For the longer lifetime (3.2-4.4 ns), the nicotinamide conformational freedom is found to be fully restricted. As full and partial nicotinamide binding are recognized steps in dehydrogenase catalysis, our results unify photophysical, structural, and functional aspects of NADH and NADPH binding and clarify the biochemical processes that underlie their contrasting intracellular lifetimes.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy, University College London, London, United Kingdom; Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Zhou Y, Zhao Y, Ma W, Zhang L, Jiang Y, Dong W. USF1-CHCHD4 axis promotes lung adenocarcinoma progression partially via activating the MYC pathway. Discov Oncol 2022; 13:136. [PMID: 36482116 PMCID: PMC9732179 DOI: 10.1007/s12672-022-00600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify genes related to lung adenocarcinoma (LUAD) and investigate the effects and molecular mechanisms of coiled-coil-helix-coiled-coil-helix domain containing 4 (CHCHD4) in the progression of LUAD. METHODS The GEPIA database was used to evaluate the differential expression of CHCHD4 and the survival data of LUAD patients compared to controls. TCGA-LUAD database, JASPAR website, and GSEA were used to analyse the relationship between CHCHD4 and the upstream stimulating factor 1 (USF1) or MYC pathways. The proliferation, apoptosis, migration, and invasion of LUAD cells were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, wound healing, and transwell assays. qRT-PCR, western blotting, and immunohistochemistry were used to detect the mRNA and protein expression, respectively. Furthermore, xenograft tumours from nude mice were used to verify the effect of CHCHD4 on LUAD in vivo. RESULTS CHCHD4 overexpression was found in LUAD tumor tissues and cells, and high CHCHD4 was associated with a poor prognosis. Interestingly, CHCHD4 knockdown suppressed the malignant phenotype of the LUAD cells. Moreover, we found that USF1 upregulated CHCHD4 and promoted LUAD progression. CHCHD4 knockdown also inhibited the progression of LUAD. In addition, CHCHD4 knockdown suppressed xenograft tumour growth. CONCLUSION USF1-CHCHD4 axis can promote LUAD progress, which may be through activating MYC pathway.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yunxia Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yuanzhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
10
|
Peters NA, Constantinides A, Ubink I, van Kuik J, Bloemendal HJ, van Dodewaard JM, Brink MA, Schwartz TP, Lolkema MP, Lacle MM, Moons LM, Geesing J, van Grevenstein WM, Roodhart JML, Koopman M, Elias SG, Borel Rinkes IH, Kranenburg O. Consensus molecular subtype 4 (CMS4)-targeted therapy in primary colon cancer: A proof-of-concept study. Front Oncol 2022; 12:969855. [PMID: 36147916 PMCID: PMC9486194 DOI: 10.3389/fonc.2022.969855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMesenchymal Consensus Molecular Subtype 4 (CMS4) colon cancer is associated with poor prognosis and therapy resistance. In this proof-of-concept study, we assessed whether a rationally chosen drug could mitigate the distinguishing molecular features of primary CMS4 colon cancer.MethodsIn the ImPACCT trial, informed consent was obtained for molecular subtyping at initial diagnosis of colon cancer using a validated RT-qPCR CMS4-test on three biopsies per tumor (Phase-1, n=69 patients), and for neoadjuvant CMS4-targeting therapy with imatinib (Phase-2, n=5). Pre- and post-treatment tumor biopsies were analyzed by RNA-sequencing and immunohistochemistry. Imatinib-induced gene expression changes were associated with molecular subtypes and survival in an independent cohort of 3232 primary colon cancer.ResultsThe CMS4-test classified 52/172 biopsies as CMS4 (30%). Five patients consented to imatinib treatment prior to surgery, yielding 15 pre- and 15 post-treatment samples for molecular analysis. Imatinib treatment caused significant suppression of mesenchymal genes and upregulation of genes encoding epithelial junctions. The gene expression changes induced by imatinib were associated with improved survival and a shift from CMS4 to CMS2.ConclusionImatinib may have value as a CMS-switching drug in primary colon cancer and induces a gene expression program that is associated with improved survival.
Collapse
Affiliation(s)
- Niek A. Peters
- Lab Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alexander Constantinides
- Lab Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Inge Ubink
- Lab Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joyce van Kuik
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Haiko J. Bloemendal
- Department of Internal Medicine, Meander Medical Center, Amersfoort, Netherlands
- Department of Internal Medicine/Oncology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | | | - Menno A. Brink
- Department of Gastroenterology, Meander Medical Center, Amersfoort, Netherlands
| | - Thijs P. Schwartz
- Department of Gastroenterology, Meander Medical Center, Amersfoort, Netherlands
| | | | - Miangela M. Lacle
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Leon M. Moons
- Department of Gastroenterology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joost Geesing
- Department of Gastroenterology, Diakonessenhuis, Utrecht, Netherlands
| | - Wilhelmina M.U. van Grevenstein
- Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeanine M. L. Roodhart
- Lab Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sjoerd G. Elias
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Inne H.M. Borel Rinkes
- Lab Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Inne H.M. Borel Rinkes, ; Onno Kranenburg,
| | - Onno Kranenburg
- Lab Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Inne H.M. Borel Rinkes, ; Onno Kranenburg,
| |
Collapse
|
11
|
Tang Y, Xu L, Ren Y, Li Y, Yuan F, Cao M, Zhang Y, Deng M, Yao Z. Identification and Validation of a Prognostic Model Based on Three MVI-Related Genes in Hepatocellular Carcinoma. Int J Biol Sci 2022; 18:261-275. [PMID: 34975331 PMCID: PMC8692135 DOI: 10.7150/ijbs.66536] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
MVI has significant clinical value for treatment selection and prognosis evaluation in hepatocellular carcinoma (HCC). We aimed to construct a model based on MVI-Related Genes (MVIRGs) for risk assessment and prognosis prediction in patients with HCC. This study utilized various statistical analysis methods for prognostic model construction and validation in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts, respectively. In addition, immunohistochemistry and qRT-PCR were used to analyze and identify the value of the model in our cohort. After the analyses, 153 differentially expressed MVIRGs were identified, and three key genes were selected to construct a prognostic model. The high-risk group showed significantly lower overall survival (OS), and this trend was observed in all subgroups: different age groups, genders, stages, and grades. Risk score was a risk factor independent of age, gender, stage, and grade. Moreover, the ICGC cohort validated the prognostic value of the model corresponding to the TCGA. In our cohort, qRT-PCR and immunohistochemistry showed that all three genes had higher expression levels in HCC samples than in normal controls. High expression levels of genes and high-risk scores showed significantly lower recurrence-free survival (RFS) and OS, especially in MVI-positive HCC samples. Therefore, the prognostic model constructed by three MVIRGs can reliably predict the RFS and OS of patients with HCC and is valuable for guiding clinical treatment selection and prognostic assessment of HCC.
Collapse
Affiliation(s)
- Yongchang Tang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xu
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yong Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
12
|
Finger Y, Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 2021; 401:749-763. [PMID: 32142475 DOI: 10.1515/hsz-2020-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The proteome of the mitochondrial intermembrane space (IMS) contains more than 100 proteins, all of which are synthesized on cytosolic ribosomes and consequently need to be imported by dedicated machineries. The mitochondrial disulfide relay is the major import machinery for soluble proteins in the IMS. Its major component, the oxidoreductase MIA40, interacts with incoming substrates, retains them in the IMS, and oxidatively folds them. After this reaction, MIA40 is reoxidized by the sulfhydryl oxidase augmenter of liver regeneration, which couples disulfide formation by this machinery to the activity of the respiratory chain. In this review, we will discuss the import of IMS proteins with a focus on recent findings showing the diversity of disulfide relay substrates, describing the cytosolic control of this import system and highlighting the physiological relevance of the disulfide relay machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Yannik Finger
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute for Biochemistry, Redox Biochemistry, University of Cologne, and Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| |
Collapse
|
13
|
Edwards R, Gerlich S, Tokatlidis K. The biogenesis of mitochondrial intermembrane space proteins. Biol Chem 2021; 401:737-747. [PMID: 32061164 DOI: 10.1515/hsz-2020-0114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial intermembrane space (IMS) houses a large spectrum of proteins with distinct and critical functions. Protein import into this mitochondrial sub-compartment is underpinned by an intriguing variety of pathways, many of which are still poorly understood. The constricted volume of the IMS and the topological segregation by the inner membrane cristae into a bulk area surrounded by the boundary inner membrane and the lumen within the cristae is an important factor that adds to the complexity of the protein import, folding and assembly processes. We discuss the main import pathways into the IMS, but also how IMS proteins are degraded or even retro-translocated to the cytosol in an integrated network of interactions that is necessary to maintain a healthy balance of IMS proteins under physiological and cellular stress conditions. We conclude this review by highlighting new and exciting perspectives in this area with a view to develop a better understanding of yet unknown, likely unconventional import pathways, how presequence-less proteins can be targeted and the basis for dual localisation in the IMS and the cytosol. Such knowledge is critical to understanding the dynamic changes of the IMS proteome in response to stress, and particularly important for maintaining optimal mitochondrial fitness.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK
| | - Sarah Gerlich
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK.,Department for Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK
| |
Collapse
|
14
|
Thomas LW, Esposito C, Morgan RE, Price S, Young J, Williams SP, Maddalena LA, McDermott U, Ashcroft M. Genome-wide CRISPR/Cas9 deletion screen defines mitochondrial gene essentiality and identifies routes for tumour cell viability in hypoxia. Commun Biol 2021; 4:615. [PMID: 34021238 PMCID: PMC8140129 DOI: 10.1038/s42003-021-02098-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are typically essential for the viability of eukaryotic cells, and utilize oxygen and nutrients (e.g. glucose) to perform key metabolic functions that maintain energetic homeostasis and support proliferation. Here we provide a comprehensive functional annotation of mitochondrial genes that are essential for the viability of a large panel (625) of tumour cell lines. We perform genome-wide CRISPR/Cas9 deletion screening in normoxia-glucose, hypoxia-glucose and normoxia-galactose conditions, and identify both unique and overlapping genes whose loss influences tumour cell viability under these different metabolic conditions. We discover that loss of certain oxidative phosphorylation (OXPHOS) genes (e.g. SDHC) improves tumour cell growth in hypoxia-glucose, but reduces growth in normoxia, indicating a metabolic switch in OXPHOS gene function. Moreover, compared to normoxia-glucose, loss of genes involved in energy-consuming processes that are energetically demanding, such as translation and actin polymerization, improve cell viability under both hypoxia-glucose and normoxia-galactose. Collectively, our study defines mitochondrial gene essentiality in tumour cells, highlighting that essentiality is dependent on the metabolic environment, and identifies routes for regulating tumour cell viability in hypoxia.
Collapse
Affiliation(s)
- Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Rachel E Morgan
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Stacey Price
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jamie Young
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | - Lucas A Maddalena
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
15
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
16
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
17
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
18
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|