1
|
Yang R, Wang R, Zhao D, Lian K, Shang B, Dong L, Yang X, Dang X, Sun D, Cheng Y. Integrative analysis of transcriptome-wide association study and mRNA expression profile identified risk genes for bipolar disorder. Neurosci Lett 2024; 839:137935. [PMID: 39151574 DOI: 10.1016/j.neulet.2024.137935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating neuropsychiatric disorder, which is associated with genetic variation through "vast but mixed" Genome-Wide Association Studies (GWAS). Transcriptome-Wide Association Study (TWAS) is more effective in explaining genetic factors that influence complex diseases and can help identifying risk genes more reliably. So, this study aims to identify potential BD risk genes in pedigrees with TWAS. METHODS We conducted a TWAS analysis with expression quantitative trait loci (eQTL) analysis on extended BD pedigrees, and the BD genome-wide association study (GWAS) summary data acquired from the Psychiatric Genomics Consortium (PGC). Furthermore, the BD-associated genes identified by TWAS were validated by mRNA expression profiles from the Gene Expression Omnibus (GEO) Datasets (GSE23848 and GSE46416). Functional enrichment and annotation analysis were implemented by RStudio (version 4.2.0). RESULTS TWAS identified 362 genes with P value < 0.05, and 18 genes remain significant after Bonferroni correction, such as SEMA3G (PTWAS=1.07 × 10-11), ALOX5AP (PTWAS=3.12 × 10-8), and PLEC (PTWAS=1.27 × 10-7). Further 6 overlapped genes were detected in integrative analysis, such as UQCRB (PTWAS=0.0020, PmRNA=0.0000), TMPRSS9 (PTWAS=0.0405, PmRNA=0.0032), and SNX10 (PTWAS=0.0104, PmRNA=0.0015). Using genes identified by TWAS, Gene Ontology (GO) enrichment analysis identified 40 significant GO terms, such as mitochondrial ATP synthesis coupled electron transport, mitochondrial respiratory, aerobic electron transport chain, oxidative phosphorylation, mitochondrial membrane proteins, and ubiquinone activity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis identified significant 15 pathways for BD, such as Oxidative phosphorylation, endocannabinoids signaling, neurodegeneration, and reactive oxide species. CONCLUSIONS We found a set of BD-associated genes and pathways, validating the important role of neurodevelopmental abnormalities, inflammatory responses, and mitochondrial dysfunction in the pathology of BD, offering novel information for comprehending the genetic basis of BD.
Collapse
Affiliation(s)
- Runxu Yang
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rui Wang
- Department of Prevention and Health Care, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongyan Zhao
- First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Kun Lian
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Binli Shang
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Dong
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuejuan Yang
- Lincang Psychiatric Hospital, Lincang, Yunnan, China
| | - Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Duo Sun
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka KF, Hiroi N, Makinodan M. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. Mol Psychiatry 2024; 29:1338-1349. [PMID: 38243072 PMCID: PMC11189755 DOI: 10.1038/s41380-024-02413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | | | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Mori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
3
|
Fernández-Regueras M, Carbonell C, Salete-Granado D, García JL, Gragera M, Pérez-Nieto MÁ, Morán-Plata FJ, Mayado A, Torres JL, Corchete LA, Usategui-Martín R, Bueno-Martínez E, Rojas-Pirela M, Sabio G, González-Sarmiento R, Orfao A, Laso FJ, Almeida J, Marcos M. Predominantly Pro-Inflammatory Phenotype with Mixed M1/M2 Polarization of Peripheral Blood Classical Monocytes and Monocyte-Derived Macrophages among Patients with Excessive Ethanol Intake. Antioxidants (Basel) 2023; 12:1708. [PMID: 37760011 PMCID: PMC10525853 DOI: 10.3390/antiox12091708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Excessive alcohol consumption impairs the immune system, induces oxidative stress, and triggers the activation of peripheral blood (PB) monocytes, thereby contributing to alcoholic liver disease (ALD). We analyzed the M1/M2 phenotypes of circulating classical monocytes and macrophage-derived monocytes (MDMs) in excessive alcohol drinkers (EADs). PB samples from 20 EADs and 22 healthy controls were collected for isolation of CD14+ monocytes and short-term culture with LPS/IFNγ, IL4/IL13, or without stimulation. These conditions were also used to polarize MDMs into M1, M2, or M0 phenotypes. Cytokine production was assessed in the blood and culture supernatants. M1/M2-related markers were analyzed using mRNA expression and surface marker detection. Additionally, the miRNA profile of CD14+ monocytes was analyzed. PB samples from EADs exhibited increased levels of pro-inflammatory cytokines. Following short-term culture, unstimulated blood samples from EADs showed higher levels of soluble TNF-α and IL-8, whereas monocytes expressed increased levels of surface TNF-α and elevated mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase. MDMs from EADs showed higher levels of TNF-α and CD206 surface markers and increased IL-10 production. LPS/IFNγ induced higher mRNA expression of Nrf2 only in the controls. miRNA analysis revealed a distinctive miRNA profile that is potentially associated with liver carcinogenesis and ALD through inflammation and oxidative stress. This study confirms the predominantly pro-inflammatory profile of PB monocytes among EADs and suggests immune exhaustion features in MDMs.
Collapse
Affiliation(s)
- María Fernández-Regueras
- Hospital Universitario de Burgos, 09006 Burgos, Spain
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Cristina Carbonell
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Juan-Luis García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
| | - Marcos Gragera
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - María-Ángeles Pérez-Nieto
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, 42002 Soria, Spain
| | - Francisco-Javier Morán-Plata
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
| | - Andrea Mayado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge-Luis Torres
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Complejo Asistencial de Zamora, 49022 Zamora, Spain
| | - Luis-Antonio Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
| | - Ricardo Usategui-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Elena Bueno-Martínez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco-Javier Laso
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Makinodan M, Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka K, Hiroi N. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. RESEARCH SQUARE 2023:rs.3.rs-3094335. [PMID: 37461488 PMCID: PMC10350236 DOI: 10.21203/rs.3.rs-3094335/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglia Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglia BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administration of doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological functions; this was not observed when BDNF was normalized from a later age (p45-p50). To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible substitute for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. Thus, microglia BDNF might regulate sociability and mPFC maturation in mice during the juvenile period. Furthermore, childhood experiences in humans may be related to BDNF secretion from macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - T Ito
- Keio University School of Medicine
| | | | | | | | | | - Noboru Hiroi
- University of Texas Health Science Center at San Antonio
| |
Collapse
|
5
|
Chen YJ, Li GN, Li XJ, Wei LX, Fu MJ, Cheng ZL, Yang Z, Zhu GQ, Wang XD, Zhang C, Zhang JY, Sun YP, Saiyin H, Zhang J, Liu WR, Zhu WW, Guan KL, Xiong Y, Yang Y, Ye D, Chen LL. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. SCIENCE ADVANCES 2023; 9:eadg0654. [PMID: 37115931 PMCID: PMC10146892 DOI: 10.1126/sciadv.adg0654] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immune-responsive gene 1 (IRG1) encodes aconitate decarboxylase (ACOD1) that catalyzes the production of itaconic acids (ITAs). The anti-inflammatory function of IRG1/ITA has been established in multiple pathogen models, but very little is known in cancer. Here, we show that IRG1 is expressed in tumor-associated macrophages (TAMs) in both human and mouse tumors. Mechanistically, tumor cells induce Irg1 expression in macrophages by activating NF-κB pathway, and ITA produced by ACOD1 inhibits TET DNA dioxygenases to dampen the expression of inflammatory genes and the infiltration of CD8+ T cells into tumor sites. Deletion of Irg1 in mice suppresses the growth of multiple tumor types and enhances the efficacy of anti-PD-(L)1 immunotherapy. Our study provides a proof of concept that ACOD1 is a potential target for immune-oncology drugs and IRG1-deficient macrophages represent a potent cell therapy strategy for cancer treatment even in pancreatic tumors that are resistant to T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu-Jia Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Guan-Nan Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xian-Jing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lin-Xing Wei
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min-Jie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhou-Li Cheng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhen Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gui-Qi Zhu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Shanghai, China
| | - Xu-Dong Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jin-Ye Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang Province, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Yue Xiong
- Cullgen Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Corresponding author. (Y.Y.); (D.Y.); (L.-L.C.)
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Corresponding author. (Y.Y.); (D.Y.); (L.-L.C.)
| | - Lei-Lei Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Corresponding author. (Y.Y.); (D.Y.); (L.-L.C.)
| |
Collapse
|
6
|
Grewal S, McKinlay S, Kapczinski F, Pfaffenseller B, Wollenhaupt-Aguiar B. Biomarkers of neuroprogression and late staging in bipolar disorder: A systematic review. Aust N Z J Psychiatry 2023; 57:328-343. [PMID: 35403455 PMCID: PMC9950598 DOI: 10.1177/00048674221091731] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bipolar disorder may undertake a progressive course in a subset of patients, and research efforts have been made to understand the biological basis underlying this process. This systematic review examined the literature available on biological markers associated with illness progression in bipolar disorder. METHODS Peer-reviewed articles were assessed using Embase, PsycINFO and PubMed, as well as from external sources. After initial screening, a total of 871 citations from databases and other sources were identified. Participants with a diagnosis of bipolar disorder were included in our systematic review; however, studies with participants younger than 15 or older than 65 were excluded. All studies were assessed using the Newcastle-Ottawa Scale assessment tool, and data pertaining to the results were extracted into tabular form using Google Sheets and Google Documents. The systematic review was registered on PROSPERO international prospective register of systematic reviews (ID Number: CRD42020154305). RESULTS A total of 35 studies were included in the systematic review. Increased ventricular size and reduction of grey matter volume were the most common brain changes associated with illness progression in bipolar disorder. Among the several biomarkers evaluated in this systematic review, findings also indicate a role of peripheral inflammatory markers in this process. DISCUSSION The studies evaluating the biological basis of the illness progression in bipolar disorder are still scarce and heterogeneous. However, current evidence supports the notion of neuroprogression, the pathophysiological process related to progressive brain changes associated with clinical progression in patients with bipolar disorder. The increase in peripheral inflammatory biomarkers and the neuroanatomical changes in bipolar disorder suggest progressive systemic and structural brain alterations, respectively.
Collapse
Affiliation(s)
- Sonya Grewal
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stuart McKinlay
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Flávio Kapczinski
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
- Instituto Nacional de Ciência e
Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade
Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bianca Pfaffenseller
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
| | - Bianca Wollenhaupt-Aguiar
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
7
|
Wang D, Min S, Lin X, Jiang G. Association Among MIF, IFIH1, and IL6 Gene Polymorphisms and Non-Segmental Vitiligo in a Chinese Han Population. Clin Cosmet Investig Dermatol 2022; 15:1597-1609. [PMID: 35983127 PMCID: PMC9380431 DOI: 10.2147/ccid.s369418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Objective The aim of the present study was to investigate the association of single-nucleotide polymorphisms (SNPs) in the macrophage migration inhibiting factor (MIF), interferon-induced Helicase C domain 1 (IFIH1), interleukin-6 (IL6) genes, circulating levels with non-segmental vitiligo (NSV) susceptibility in the Chinese population, and to analyze the relationships between gene polymorphisms and clinical characteristics of vitiligo. Methods In this study, genotyping was conducted in 155 patients with NSV and 117 unaffected controls using polymerase chain reaction and snapshot technique. Serum concentrations were determined by ELISA kit. Results There were strong associations between IFIH1 H843R and IL6-572G/C polymorphisms and NSV susceptibility (p = 0.013; p = 0.009). In contrast to previous studies, we found no significant difference in the MIF-173G/C polymorphism between the two groups. In addition, the frequency of allelic distribution for MIF-173G/C in patients with active NSV was significantly higher than stable NSV (p = 0.011), and IFIH1 H843R with early-onset (≤ 20), active or family history of NSV was significantly higher than late-onset (> 20), stable or no family history of NSV (p = 0.033; p = 0.045; p = 0.039). Serum concentrations of MIF were higher in patients with active NSV, serum IFIH1 and IL6 concentrations were related to the presence of polymorphisms in patients with NSV (p = 0.009; p = 0.011). Conclusion Our results suggested that IFIH1 H843R and IL6-572G/C gene polymorphisms and expression levels are obviously correlated with the onset of NSV. MIF-173G/C allele and serum concentrations may be associated with active NSV, and IFIH1 H843R allele may be associated with youth, active or family history of NSV.
Collapse
Affiliation(s)
- Danfeng Wang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,First Clinical Medical College, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Shuhui Min
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,First Clinical Medical College, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiao Lin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,First Clinical Medical College, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,First Clinical Medical College, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
8
|
Neutrophil-to-Lymphocyte, Monocyte-to-Lymphocyte, Platelet-to-Lymphocyte Ratio and Systemic Immune-Inflammatory Index in Different States of Bipolar Disorder. Brain Sci 2022; 12:brainsci12081034. [PMID: 36009097 PMCID: PMC9405738 DOI: 10.3390/brainsci12081034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammatory (SII) index, which provide a simple, rapid, inexpensive method to measure the level of inflammation, have been examined as potential inflammatory biomarkers of bipolar disorder (BD) in several studies. We conducted a case-control study recruiting 180 BD patients and 407 healthy controls. BD patients who met the inclusion criteria and were hospitalized due to BD at the psychiatry clinic of the University General Hospital of Larisa, Greece, until September 2021 were included in the study. Among them, 111 patients experienced a manic episode and 69 patients experienced a depressive episode. Data including a complete blood count were retrieved from their first admission to the hospital. Bipolar patients had a higher NLR, MLR and SII index compared to healthy controls when they were experiencing a manic episode (p < 0.001) and a depressive episode (p < 0.001). MLR was increased with large effect size only in patients expressing manic episodes. Neutrophils and NLR had the highest area under the curve with a cutoff of 4.38 and 2.15 in the ROC curve, respectively. Gender-related differences were mainly observed in the SII index, with males who were expressing manic episodes and females expressing depressive episodes having an increased index compared to healthy controls. The NLR, MLR and SII index were significantly higher in patients with BD than in healthy controls, which implies a higher grade of inflammation in BD patients.
Collapse
|
9
|
Ziani PR, Feiten JG, Goularte JF, Colombo R, Antqueviezc B, Géa LP, Rosa AR. Potential Candidates for Biomarkers in Bipolar Disorder: A Proteomic Approach through Systems Biology. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:211-227. [PMID: 35466093 PMCID: PMC9048014 DOI: 10.9758/cpn.2022.20.2.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics - Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| | - Jacson Gabriel Feiten
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rafael Colombo
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- University of Caxias do Sul, Caxias do Sul, Brasil
| | - Bárbara Antqueviezc
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
| | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Adriane Ribeiro Rosa
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics - Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
- Postgraduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
10
|
Géa LP, Wollenhaupt-Aguiar B, Watts D, Maich W, Kapczinski F, Sharma R, Mishra R, Rosa AR, Frey BN. Investigation of blood-brain barrier disruption in an animal model of mania induced by d-amphetamine. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Yamauchi T, Makinodan M, Toritsuka M, Okumura K, Kayashima Y, Ishida R, Kishimoto N, Takahashi M, Komori T, Yamaguchi Y, Takada R, Yamamuro K, Kimoto S, Yasuda Y, Hashimoto R, Kishimoto T. Tumor necrosis factor-α expression aberration of M1/M2 macrophages in adult high-functioning autism spectrum disorder. Autism Res 2021; 14:2330-2341. [PMID: 34374213 DOI: 10.1002/aur.2585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
The etiology of autism spectrum disorder (ASD) is complex, and its pathobiology is characterized by enhanced inflammatory activities; however, the precise pathobiology and underlying causes of ASD remain unclear. This study was performed to identify inflammatory indicators useful for diagnosing ASD. The mRNA expression of cytokines, including tumor necrosis factor-α (TNF-α), was measured in cultured M1 and M2 macrophages from patients with ASD (n = 29) and typically developed (TD) individuals (n = 30). Additionally, TNF-α expression in the monocytes of patients with ASD (n = 7), showing aberrations in TNF-α expression in M1/M2 macrophages and TD individuals (n = 6), was measured. TNF-α expression in M1 macrophages and the TNF-α expression ratio in M1/M2 macrophages were markedly higher in patients with ASD than in TD individuals; however, this increase was not observed in M2 macrophages (M1: sensitivity = 34.5%, specificity = 96.7%, area under the curve = 0.74, positive likelihood ratio = 10.34; ratio of M1/M2: sensitivity = 55.2%, specificity = 96.7%, area under the curve = 0.79, positive likelihood ratio = 16.55). Additionally, TNF-α expression in monocytes did not significantly differ between patients with ASD and TD individuals. In conclusion, further studies on TNF-α expression in cultured macrophages may improve the understanding of ASD pathobiology. LAY SUMMARY: TNF-α expression in differentiated M1 macrophages and TNF-α expression ratio in differentiated M1/M2 macrophages were markedly higher in patients with ASD than in TD individuals, while no difference in TNF-α expression was found in pre-differentiation cells such as monocytes. These measurements allow elucidation of the novel pathobiology of ASD and can contribute to biomarker implementation for the diagnosis of adult high-functioning ASD.
Collapse
Affiliation(s)
- Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yasunari Yamaguchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yuka Yasuda
- Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
12
|
Hughes HK, Mills-Ko E, Yang H, Lesh TA, Carter CS, Ashwood P. Differential Macrophage Responses in Affective Versus Non-Affective First-Episode Psychosis Patients. Front Cell Neurosci 2021; 15:583351. [PMID: 33716670 PMCID: PMC7943877 DOI: 10.3389/fncel.2021.583351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Increased innate immune activation and inflammation are common findings in psychotic and affective (mood) disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD), including increased numbers and activation of monocytes and macrophages. These findings often differ depending on the disorder, for example, we previously found increases in circulating inflammatory cytokines associated with monocytes and macrophages in SCZ, while BD had increases in anti-inflammatory cytokines. Despite these differences, few studies have specifically compared immune dysfunction in affective versus non-affective psychotic disorders and none have compared functional monocyte responses across these disorders. To address this, we recruited 25 first episode psychosis (FEP) patients and 23 healthy controls (HC). FEP patients were further grouped based on the presence (AFF) or absence (NON) of mood disorder. We isolated peripheral blood mononuclear cells and cultured them for 1 week with M-CSF to obtain monocyte-derived macrophages. These cells were then stimulated for 24 h to skew them to inflammatory and alternative phenotypes, in order to identify differences in these responses. Following stimulation with LPS and LPS plus IFNγ, we found that macrophages from the NON-group had diminished inflammatory responses compared to both HC and AFF groups. Interestingly, when skewing macrophages to an alternative phenotype using LPS plus IL-4, the AFF macrophages increased production of inflammatory cytokines. Receiver operating curve analysis showed predictive power of inflammatory cytokine concentrations after LPS stimulation in the AFF group versus NON-group. Our results suggest dysfunctional monocyte responses in both affective and non-affective psychotic disorder, with varying types of immune dysfunction depending on the presence or absence of a mood component.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| | - Emily Mills-Ko
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| | - Houa Yang
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| | - Tyler A. Lesh
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, United States
| | - Cameron S. Carter
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
13
|
Muneer A. The Discovery of Clinically Applicable Biomarkers for Bipolar Disorder: A Review of Candidate and Proteomic Approaches. Chonnam Med J 2020; 56:166-179. [PMID: 33014755 PMCID: PMC7520367 DOI: 10.4068/cmj.2020.56.3.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric condition which affects innumerable people across the globe. The etiopathogenesis of BD is multi-faceted with genetic, environmental and psychosocial factors playing a role. Hitherto, the diagnosis and management of BD are purely on empirical grounds as we lack confirmed biomarkers for this condition. In this regard, hypothesis-driven investigations have been unable to identify clinically applicable biomarkers, steering the field towards newer technologies. Innovative, state-of-the-art techniques like multiplex immunoassays and mass spectrometry can potentially investigate the entire proteome. By detecting up or down regulated proteins, novel biomarkers are identified and new postulates about the etiopathogenesis of BD are specified. Hence, biological pathways are uncovered which are involved in the initiation and advancement of the disease and new therapeutic targets are identified. In this manuscript, the extant literature is thoroughly reviewed and the latest findings on candidate BD biomarkers are provided, followed by an overview of the proteomic approaches. It was found that due to the heterogeneous nature of BD no single biomarker is feasible, instead a panel of tests is more likely to be useful. With the application of latest technologies, it is expected that validated biomarkers will be discovered which will be useful as diagnostic tools and help in the delivery of individually tailored therapies to the patients.
Collapse
Affiliation(s)
- Ather Muneer
- Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
14
|
Misiak B, Bartoli F, Carrà G, Małecka M, Samochowiec J, Jarosz K, Banik A, Stańczykiewicz B. Chemokine alterations in bipolar disorder: A systematic review and meta-analysis. Brain Behav Immun 2020; 88:870-877. [PMID: 32278851 DOI: 10.1016/j.bbi.2020.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
We aimed to perform a systematic review and meta-analysis of studies examining the levels of chemokines in peripheral blood of patients with bipolar disorder (BD) and healthy controls. Meta-analysis was based on random-effects models with Hedges' g as the effect size estimate. We included 13 eligible studies (1221 BD patients and 663 controls). The following chemokines were analysed: interleukin-8 (IL-8), monocyte-chemoattractant protein-1 (MCP-1), eotaxin-1, eotaxin-2 and interferon-γ-induced protein 10 (IP-10). The levels of IL-8 (N = 8, g = 0.26, 95%CI: 0.11-0.41, p < 0.001), MCP-1 (N = 8, g = 0.40, 95%CI: 0.18-0.63), eotaxin-1 (N = 3, g = 0.55, 95%CI: 0.21-0.89, p = 0.001) and IP-10 (N = 4, g = 0.95, 95%CI: 0.67-1.22, p < 0.001) were significantly higher in BD patients as compared with controls. Subgroup analyses revealed that elevated levels of IL-8 (N = 5, g = 0.75, 95%CI: 0.42-1.07, p < 0.001) and MCP-1 (N = 4, g = 0.57, 95%CI: 0.28-0.86, p < 0.001) appeared only in BD patients during their depressive phase. Illness duration was associated with significantly lower levels of IL-8 in meta-regression analysis. In turn, elevated levels of IP-10 were present during euthymia (N = 2, g = 0.76, 95%CI: 0.43-1.10, p < 0.001) but not depression (N = 2, g = 1.81, 95%CI: -0.16 to 3.77, p = 0.072). The analysis of eotaxin-1 levels was mainly based on studies of euthymic BD patients (N = 3). Our results suggest that chemokine alterations in BD might be related to mood state. Elevated levels of IL-8 and MCP-1 might be specific to depression. Available evidence indicates that increased levels of eotaxin-1 and IP-10 appear in euthymia; however, more studies are needed to address these alterations in other mood states.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Milano, Italy
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Milano, Italy; Division of Psychiatry, University College London, London, UK
| | - Monika Małecka
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Konrad Jarosz
- Department of Clinical Nursing, Pomeranian Medical University, Żołnierska 48 Street, 71-210 Szczecin, Poland
| | - Anna Banik
- Wroclaw Faculty of Psychology, SWPS University of Social Sciences and Humanities, Ostrowskiego 30b Street, 53-238 Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
15
|
Hughes H, Ashwood P. Overlapping evidence of innate immune dysfunction in psychotic and affective disorders. Brain Behav Immun Health 2020; 2:100038. [PMID: 34589829 PMCID: PMC8474635 DOI: 10.1016/j.bbih.2020.100038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Disturbances of the immune system and immune responses after activation are a common finding in neuropsychiatric disorders. Psychotic and affective disorders such as major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BD) also share high rates of comorbidity with inflammatory and metabolic disorders. Evidence of elevated circulating inflammatory cytokines, altered numbers and function of immune cells, and evidence of neuroinflammation including activation of microglia in the brain have been found in patients with SCZ, BD and MDD. Often these findings correlate to psychological state at the time of measurement. However, significant variation exists across these studies in many aspects, creating challenges in identifying a specific signature of immune dysfunction in these disorders. Innate immune dysfunction, and alterations in monocytes, the critical sentinel cells of the innate immune system, have been seen repeatedly in all three of these disorders, with frequent overlap in findings. In this review, dysfunction specific to the innate arm of the immune system is compared for overlapping evidence across three major psychotic and affective disorders.
Collapse
Affiliation(s)
- H.K. Hughes
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - P. Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|