1
|
Lubachowski M, VanGenderen C, Valentine S, Belak Z, Davies GF, Arnason TG, Harkness TAA. Activation of the Anaphase Promoting Complex Restores Impaired Mitotic Progression and Chemosensitivity in Multiple Drug-Resistant Human Breast Cancer. Cancers (Basel) 2024; 16:1755. [PMID: 38730707 PMCID: PMC11083742 DOI: 10.3390/cancers16091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.
Collapse
Affiliation(s)
- Mathew Lubachowski
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Sarah Valentine
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Zach Belak
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Gerald Floyd Davies
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Terra Gayle Arnason
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
- Division of Endocrinology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- 320 Heritage Medical Research Centre, University of Alberta, 11207-87 Ave NW, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
2
|
Wang H, Wei X, Liu L, Zhang J, Li H. Suppression of A-to-I RNA-editing enzyme ADAR1 sensitizes hepatocellular carcinoma cells to oxidative stress through regulating Keap1/Nrf2 pathway. Exp Hematol Oncol 2024; 13:30. [PMID: 38468359 DOI: 10.1186/s40164-024-00494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND A-to-I RNA editing is an abundant post-transcriptional modification event in hepatocellular carcinoma (HCC). Evidence suggests that adenosine deaminases acting on RNA 1 (ADAR1) correlates to oxidative stress that is a crucial factor of HCC pathogenesis. The present study investigated the effect of ADAR1 on survival and oxidative stress of HCC, and underlying mechanisms. METHODS ADAR1 expression was measured in fifty HCC and normal tissues via real-time quantitative PCR, and immunohistochemistry. For stable knockdown or overexpression of ADAR1, adeno-associated virus vectors carrying sh-ADAR1 or ADAR1 overexpression were transfected into HepG2 and SMMC-7721 cells. Transfected cells were exposed to oxidative stress agonist tBHP or sorafenib Bay 43-9006. Cell proliferation, apoptosis, and oxidative stress were measured, and tumor xenograft experiment was implemented. RESULTS ADAR1 was up-regulated in HCC and correlated to unfavorable clinical outcomes. ADAR1 deficiency attenuated proliferation of HCC cells and tumor growth and enhanced apoptosis. Moreover, its loss facilitated intracellular ROS accumulation, and elevated Keap1 and lowered Nrf2 expression. Intracellular GSH content and SOD activity were decreased and MDA content was increased in the absence of ADAR1. The opposite results were observed when ADAR1 was overexpressed. The effects of tBHP and Bay 43-9006 on survival, apoptosis, intracellular ROS accumulation, and Keap1/Nrf2 pathway were further exacerbated by simultaneous inhibition of ADAR1. CONCLUSIONS The current study unveils that ADAR1 is required for survival and oxidative stress of HCC cells, and targeting ADAR1 may sensitize HCC cells to oxidative stress via modulating Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General Surgery, The First Hospital Affiliated to Fuyang Normal University, Fuyang, 236006, Anhui, China
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, Anhui, China
| | - Xiaoyu Wei
- Department of Infectious Diseases, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Lu Liu
- Department of Endocrinology, The Affiliated Nantong Hospital of Shanghai Jiao Tong University, Nantong, 226001, Jiangsu, China.
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, Sichuan, China.
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, 230031, Anhui, China.
| |
Collapse
|
3
|
Murray KO, Brant JO, Spradlin RA, Thome T, Laitano O, Ryan TE, Riva A, Kladde MP, Clanton TL. Exertional heat stroke causes long-term skeletal muscle epigenetic reprogramming, altered gene expression, and impaired satellite cell function in mice. Am J Physiol Regul Integr Comp Physiol 2024; 326:R160-R175. [PMID: 38047316 PMCID: PMC11283893 DOI: 10.1152/ajpregu.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The effect of exertional heat stroke (EHS) exposure on skeletal muscles is incompletely understood. Muscle weakness is an early symptom of EHS but is not considered a major target of multiorgan injury. Previously, in a preclinical mouse model of EHS, we observed the vulnerability of limb muscles to a second EHS exposure, suggesting hidden processes contributing to declines in muscle resilience. Here, we evaluated the possible molecular origins of EHS-induced declines in muscle resilience. Female C57BL/6 mice [total n = 56; 28/condition, i.e., EHS and exercise control (EXC)] underwent forced wheel running at 37.5°C/40% relative humidity until symptom limitation (unconsciousness). EXC mice exercised identically at room temperature (22-23°C). After 1 mo of recovery, the following were assessed: 1) specific force and caffeine-induced contracture in soleus (SOL) and extensor digitorum longus (EDL) muscles; 2) transcriptome and DNA methylome responses in gastrocnemius (GAST); and 3) primary satellite cell function (proliferation and differentiation). There were no differences in specific force in either SOL or EDL from EXC. Only EHS solei exhibited lower caffeine sensitivity. EHS GAST exhibited higher RNA expression of genes encoding structural proteins of slow fibers, heat shock proteins, and myogenesis. A total of ∼2,500 differentially methylated regions of DNA that could potentially affect many cell functions were identified. Primary satellite cells exhibited suppressed proliferation rates but normal differentiation responses. Results demonstrate long-term changes in skeletal muscles 1 mo after EHS that could contribute to declines in muscle resilience. Skeletal muscle may join other, more recognized tissues considered vulnerable to long-term effects of EHS.NEW & NOTEWORTHY Exertional heat stroke (EHS) in mice induces long-term molecular and functional changes in limb muscle that could reflect a loss of "resilience" to further stress. The phenotype was characterized by altered caffeine sensitivity and suppressed satellite cell proliferative potential. This was accompanied by changes in gene expression and DNA methylation consistent with ongoing muscle remodeling and stress adaptation. We propose that EHS may induce a prolonged vulnerability of skeletal muscle to further stress or injury.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Jason O Brant
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, United States
| | - Ray A Spradlin
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Alberto Riva
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, United States
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
4
|
Wei B, Wang A, Liu W, Yue Q, Fan Y, Xue B, Wang S. Identification of immunological characteristics and cuproptosis-related molecular clusters in primary Sjögren's syndrome. Int Immunopharmacol 2024; 126:111251. [PMID: 37984252 DOI: 10.1016/j.intimp.2023.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease characterized by lymphocyte infiltration of the exocrine glands. The typical clinical symptoms of pSS include dryness of the mouth (xerostomia) and eyes (xerophthalmia), fatigue, and joint pain. Cuproptosis is a recently identified mode of programmed cell death that leads to the progression of multiple diseases, and the precise etiology and pathophysiology of pSS remain unknown. Consequently, the aim of our study was to explore cuproptosis-related molecular clusters and identify key genes in pSS. METHOD Gene expression profiles of the peripheral blood in the GSE84844 dataset were downloaded to identify the expression characteristics of cuproptosis regulators and immune cell infiltration. Subsequently, further exploration was conducted on the clusters involving cuproptosis-related genes (CRGs) and the corresponding immune cell infiltration, and the WGCNA algorithm was applied to explore the cluster-specific differentially expressed genes. Finally, the best machine prediction model was selected for candidate hub cuproptosis-associated genes and the accuracy of predictive efficiency was verified by the salivary gland in an external dataset (GSE143153) and enzyme-linked immunosorbent assay. RESULT Through a comparison of patients with pSS and controls, 7 CRGs and 4 types of immune cells were identified. Immune cell infiltration revealed significant immune heterogeneity in three cuproptosis-related molecular clusters in pSS. The random forest machine model showed the best discriminatory performance (area under the receiver operating characteristic curve (AUC) = 1.000) and built a predictive model based on 5 genes, which demonstrated satisfactory performance (AUC = 0.70) in the GSE143153 dataset. Based on serum samples, EED (AUC = 0.557), CBL (AUC = 0.635), and NFU1 (AUC = 0.655) showed lower expression levels in patients with pSS (p = 0.037, p = 0.000, p = 0.000, respectively). CONCLUSION In this study, we systematically analyzed the association between pSS and cuproptosis, established a predictive model that screened for high-risk genes linked to the advancement of pSS, and explored the pathogenic mechanisms and novel therapeutic strategies for pSS, targeting EED, CBL and NFU1.
Collapse
Affiliation(s)
- Bowen Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Qingyun Yue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yihua Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Bin Xue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
5
|
Wu Z, Zhuo T, Li Z, Zhu Y, Wu J, Liang G, Dai L, Wang Y, Tan X, Chen M. High SGO2 predicted poor prognosis and high therapeutic value of lung adenocarcinoma and promoted cell proliferation, migration, invasion, and epithelial-to-mesenchymal transformation. J Cancer 2023; 14:2301-2314. [PMID: 37576392 PMCID: PMC10414046 DOI: 10.7150/jca.86285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Shugoshin 2 (SGO2), a component of the cell division cohesion complex, is involved in both mitotic and meiotic processes. Despite being overexpressed in various malignant tumors and is associated with poor prognosis, its exact role in lung adenocarcinoma (LUAD) and its biological effects on lung cancer cells are not well understood. Methods: The transcriptomics data and clinical information for LUAD were obtained from TCGA and GEO, and DEGs associated with prognostic risk factors were screened using Cox regression analysis and chi-square testing. Identify these gene functions using correlation heatmaps, protein interaction networks (PPIs), and KEGG enrichment assays. The expression of SGO2 in tissues was verified by PCR and IHC, and the prognostic value of SGO2 in LUAD was evaluated by survival analysis. In addition, the effects of SGO2 knockdown on lung cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were studied in vitro. After that, the TIMER database and single-sample GSEA (ssGSEA) analysis were used to investigate the correlation between SGO2 and immune infiltration. Finally, the tumor mutational burden (TMB) of different SGO2 clusters and the efficacy of the two clusters in multiple treatments were evaluated. Results: High-risk genes associated with poor prognosis in LUAD are involved in cell cycle regulation and proliferation. Among these genes, SGO2 exhibited high expression in LUAD and corresponded with the TNM stage. Furthermore, the knockdown of SGO2 led to a decrease in the proliferation, migration, invasion, and EMT processes of lung cancer cells. Notably, high SGO2 expression may have poorer anti-tumor immunity and may therefore be more suitable for immunotherapy to re-establish immune function, while its high expression with a higher TMB could enable LUAD to benefit from multiple therapies. Conclusion: Our findings suggest that SGO2 may be a promising prognostic biomarker for LUAD, particularly in regulating the cell cycle and benefiting from multiple therapies.
Collapse
Affiliation(s)
- Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjie Zhu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejing Wu
- Department of Ophthalmology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guanbiao Liang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongyong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Tan
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingwu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Funke K, Einsfelder U, Hansen A, Arévalo L, Schneider S, Nettersheim D, Stein V, Schorle H. Genome-scale CRISPR screen reveals neddylation to contribute to cisplatin resistance of testicular germ cell tumours. Br J Cancer 2023; 128:2270-2282. [PMID: 37024667 PMCID: PMC10241889 DOI: 10.1038/s41416-023-02247-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Type II testicular germ cell tumours (TGCT) are the most prevalent tumours in young men. Patients suffering from cisplatin-resistant TGCTs are facing very poor prognosis demanding novel therapeutic options. Neddylation is a known posttranslational modification mediating many important biological processes, including tumorigenesis. Overactivation of the neddylation pathway promotes carcinogenesis and tumour progression in various entities by inducing proteasomal degradation of tumour suppressors (e.g., p21, p27). METHODS We used a genome-scale CRISPR/Cas9 activation screen to identify cisplatin resistance factors. TGCT cell lines were treated with the neddylation inhibitor (MLN4924)/cisplatin/combination and investigated for changes in viability (XTT assay), apoptosis/cell cycle (flow cytometry) as well as in the transcriptome (3'mRNA sequencing). RESULTS NAE1 overexpression was detected in cisplatin-resistant colonies from the CRISPR screen. Inhibition of neddylation using MLN4924 increased cisplatin cytotoxicity in TGCT cell lines and sensitised cisplatin-resistant cells towards cisplatin. Apoptosis, G2/M-phase cell cycle arrest, γH2A.X/P27 accumulation and mesoderm/endoderm differentiation were observed in TGCT cells, while fibroblast cells were unaffected. CONCLUSIONS We identified overactivation of neddylation as a factor for cisplatin resistance in TGCTs and highlighted the additive effect of NAE1 inhibition by MLN4924 in combination with cisplatin as a novel treatment option for TGCTs.
Collapse
Affiliation(s)
- Kai Funke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Ulf Einsfelder
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Aylin Hansen
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|