1
|
Camicia F, Miguez RI, Lago NR, Damin CF, de Roodt AR. A simple method to determine proteolytic activity of snake venoms. Toxicon 2024; 251:108157. [PMID: 39477095 DOI: 10.1016/j.toxicon.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/09/2024]
Abstract
In this work, we describe an easy, simple, and cost-effective method to assess the proteolytic activity of snake venoms. The method is based on measuring the hydrolytic halo formed by gelatin radial hydrolysis following the incubation of venoms on a solid gelatin-agarose plate. Venoms from Bothrops (B.) alternatus, B. diporus, B. neuwiedi, B. jararaca, B. jararacussu, Crotalus atrox, and Trimeresurus albolabris were tested. A dose-response relationship was observed for each venom tested, with proteolytic capacity values, determined as GD (gelatinolytic dose, the dose causing a 15 mm hydrolytic halo) ranging from 21 to 222 μg. A correlation between hydrolysis and hemorrhagic activity in rat skin (minimal hemorrhagic dose) was found, with an r2 value of 0.8774 (p < 0.0001). The venoms' hydrolytic activity was significantly, though not completely, inhibited by EDTA. This methodology was also deployed to assess venom neutralization by antivenoms on the hydrolytic activity of the different venoms, demonstrating its usefulness in evaluating antivenom neutralizing capacity. The method presented is simple, cheap and useful for preliminary screening of venom proteolytic activity and its inhibition and may also predict gross differences in hemorrhagic activity, contributing to the reduction of the number of animals used for these determinations.
Collapse
Affiliation(s)
- Federico Camicia
- Laboratorio de Toxinopatología, Departamento de Patología, Facultad de Medicina, José E. Uriburu 950, 5(to) piso (1114), Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto Nacional de Producción de Biológicos I.N.P.B. - A.N.L.I.S. ''Dr. Carlos G. Malbrán'', Ministerio de Salud, Av. Vélez Sarsfield 563 (1282), Buenos Aires, Argentina
| | - Rocío I Miguez
- Laboratorio de Toxinopatología, Departamento de Patología, Facultad de Medicina, José E. Uriburu 950, 5(to) piso (1114), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Néstor R Lago
- Laboratorio de Toxinopatología, Departamento de Patología, Facultad de Medicina, José E. Uriburu 950, 5(to) piso (1114), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos F Damin
- Área Investigación y Desarrollo - Venenos, Aracnario-Serpentario. Instituto Nacional de Producción de Biológicos, A.N.L.I.S. "Dr. Carlos G. Malbrán", Av. Velez Sarsfield 563 (1282). Buenos Aires, Argentina
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Departamento de Patología, Facultad de Medicina, José E. Uriburu 950, 5(to) piso (1114), Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto Nacional de Producción de Biológicos I.N.P.B. - A.N.L.I.S. ''Dr. Carlos G. Malbrán'', Ministerio de Salud, Av. Vélez Sarsfield 563 (1282), Buenos Aires, Argentina; Área Investigación y Desarrollo - Venenos, Aracnario-Serpentario. Instituto Nacional de Producción de Biológicos, A.N.L.I.S. "Dr. Carlos G. Malbrán", Av. Velez Sarsfield 563 (1282). Buenos Aires, Argentina.
| |
Collapse
|
2
|
Dingwoke EJ, Adamude FA, Salihu A, Abubakar MS, Sallau AB. Toxicological analyses of the venoms of Nigerian vipers Echis ocellatus and Bitis arietans. Trop Med Health 2024; 52:15. [PMID: 38282015 PMCID: PMC10823708 DOI: 10.1186/s41182-024-00581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Among the medically important snakes in Nigeria, Echis ocellatus and Bitis arietans have the most lethal venom. These venoms were classified according to the presence of snake venom metalloproteinases (SVMPs), snake venom phospholipase A2 (PLA2s), and snake venom serine proteases (SVSPs). Toxicological analyzes were performed to understand the significance of different protein families in venoms. METHODS Proteins were separated from venom using column chromatography. The skin and footpad of mice were used to determine hemorrhagic and edematogenic activities. Caprine blood plasma was used to test fibrinolytic activity in vitro. RESULTS The results showed that, compared to the crude venom, the SVMP fraction induced hemorrhagic effects with a diameter of 26.00 ± 1.00 mm in E. ocellatus and 21.33 ± 1.52 mm in B. arietans. Both SVSP and SVMP had anticoagulant effects; however, the SVSP fraction had a stronger effect, with a longer anticoagulation time of 30.00 ± 3.00 min in E. ocellatus and 26.00 ± 2.00 min in B. arietans. These main venom toxins, SVMPs, SVSPs, and PLA2, were found to have edema-forming effects that were optimal at 2 h after envenomation. PLA2s had the highest edema-inducing activity, with onset 30 min after envenomation. CONCLUSIONS Given the importance of SVMPs in altering the integrity of the membrane structure and impairing the blood coagulation system, an antivenom that can specifically neutralize its activity could inhibit the hemorrhage effects of the venoms.
Collapse
Affiliation(s)
- Emeka John Dingwoke
- Department of Tropical Diseases, UNESCO-International Center for Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Fatima Adis Adamude
- Department of Biochemistry, Faculty of Sciences, Federal University, Lafia, Nasarawa State, Nigeria
- Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Aliyu Salihu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mujitaba Suleiman Abubakar
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Abdullahi Balarabe Sallau
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| |
Collapse
|
3
|
Sevilla-Sánchez MJ, Montoya-Gómez A, Osorno-Valencia D, Montealegre-Sánchez L, Mosquera-Escudero M, Jiménez-Charris E. Exploring the Safety of Pllans-II and Antitumoral Potential of Its Recombinant Isoform in Cervical Cancer Therapy. Cells 2023; 12:2812. [PMID: 38132131 PMCID: PMC10741390 DOI: 10.3390/cells12242812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The antitumor potential of proteins from snake venoms has been studied in recent decades, and evidence has emerged that phospholipases A2 can selectively attack cells of various types of tumors. Previous results have shown that phospholipase A2 "Pllans-II," isolated from Porthidium lansbergii lansbergii snake venom, displayed antitumoral activity on cervical cancer and did not alter the viability of non-tumorigenic cells. However, until now, there was no evidence of its safety at the local and systemic levels, nor had experiments been developed to demonstrate that its production using recombinant technology allows us to obtain a molecule with effects similar to those generated by native phospholipase. Thus, we evaluated the impact caused by Pllans-II on murine biomodels, determining whether it induced local hemorrhage or increased pro-inflammatory and liver damage markers and histological alterations in the liver and kidneys. Additionally, the protein was produced using recombinant technology using a pET28a expression vector and the BL21 (DE3) Escherichia coli strain. Equally, its enzymatic activity and anticancer effect were evaluated on cervical cancer lines such as HeLa and Ca Ski. The results demonstrated that Pllans-II did not generate hemorrhagic activity, nor did it increase the pro-inflammatory cytokines IL-6, IL-1B, or TNF-α at doses of 3.28, 1.64, and 0.82 mg/kg. There was also no evidence of organ damage, and only ALT and AST increased in mild levels at the two highest concentrations. Additionally, the recombinant version of Pllans-II showed conservation in its catalytic activity and the ability to generate death in HeLa and Ca Ski cells (42% and 23%, respectively). These results demonstrate the innocuity of Pllans-II at the lowest dose and constitute an advance in considering a molecule produced using recombinant technology a drug candidate for selective attacks against cervical cancer.
Collapse
Affiliation(s)
- María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Daniel Osorno-Valencia
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
- Grupo de investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| |
Collapse
|
4
|
Lopes-de-Souza L, Costal-Oliveira F, Rodrigues CR, Stransky S, de Assis TCS, Liberato C, Vivas-Ruiz D, Chocas AY, Guerra-Duarte C, Braga VMM, Chávez-Olortegui C. Bothrops atrox venom: Biochemical properties and cellular phenotypes of three highly toxic classes of toxins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140930. [PMID: 37442518 DOI: 10.1016/j.bbapap.2023.140930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023]
Abstract
Snake venoms have a complex mixture of compounds that are conserved across species and act synergistically, triggering severe local and systemic effects. Identification of the toxin classes that are most damaging to cell homeostasis would be a powerful approach to focus on the main activities that underpin envenomation. Here, we focus on the venom of Bothrops atrox, snake responsible for most of the accidents in Amazon region of South America. We identified the key cytotoxic toxin fractions from B. atrox venom and mapped their biochemical properties, protein composition and cell damage. Five fractions were obtained by mass exclusion chromatography and contained either a single class of enzymatic activity (i.e., L-amino acid oxidases or Hyaluronidases) or different activities co-distributed in two or more protein fractions (e.g., Metalloproteinases, Serine Proteases, or Phospholipases A2). Only three protein fractions reduced cell viability of primary human cells. Strikingly, such activity is accompanied by disruption of cell attachment to substratum and to neighbouring cells. Such strong perturbation of morphological cell features indicates likely defects in tissue integrity in vivo. Mass spectrometry identified the main classes of toxins that contribute to these phenotypes. We provide here a strategy for the selection of key cytotoxic proteins for targeted investigation of their mechanism of action and potential synergism during snakebite envenomation. Our data highlights putative toxins (or combinations of) that may be the focus of future therapeutic interference.
Collapse
Affiliation(s)
- Leticia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Rego Rodrigues
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thamyres C S de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dan Vivas-Ruiz
- Laboratorio de Biología Molecular - Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos (UNMSM), Peru
| | - Armando Yarleque Chocas
- Laboratorio de Biología Molecular - Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos (UNMSM), Peru
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | - Carlos Chávez-Olortegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Batroxin I: A Novel Bradykinin-Potentiating Peptide with Cytotoxic Activity Isolated from Bothrops atrox Snake Venom. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Alam MJ, Maruf M, Iqbal MA, Hasan M, Sohan MS, Shariar MR, Haidar IKA, Chowdhury MAW, Ghose A, Hoque KMF, Reza MA. Evaluation of the properties of Bungarus caeruleus venom and checking the efficacy of antivenom used in Bangladesh for its bite treatment. Toxicon X 2023; 17:100149. [PMID: 36654657 PMCID: PMC9841277 DOI: 10.1016/j.toxcx.2023.100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
As a disaster-prone country with unique geographical features, snake biting is a major public health concern in Bangladesh. The primary reasons of mortality from snakebite include late presentation to the hospital, low efficacy of antivenom, and a lack of adequate management facilities. Because snake venom characteristics vary depending on geographical location, antivenom should be manufactured from snakes native to the region in which it would be administered. Bungarus caeruleus is a highly venomous snake contributing to the major snakebite issue in Bangladesh. Therefore, the neutralization efficacy of the antivenom against B. caeruleus venom was evaluated in the current study along with the characterization of venom. For biological characterization of venom, RP-HPLC and SDS-PAGE profiling, hemolytic activity, hemorrhagic activity, phospholipases A2 (PLA2) activity, edema inducing activity and histopathological observations were carried out following standard protocol. LD50 of the venom was calculated along with neutralization potency of Incepta antivenom through probit analysis. Results showed that venom possesses phospholipase A2 activity, hemolytic activity and edema inducing activity while hemorrhagic activity was absent in the skin of envenomed mice. Histopathological alterations including necrosis, congestion and infiltrations were observed in envenomed mice organs after hematoxylin and eosin staining. Neutralization study showed that Incepta polyvalent antivenom could neutralize (potency 0.53 mg/ml) the lethal effect in in vitro study on mice. Further investigation on snakebite epidemiology and clinical observations of the envenomed patients will help in combating the snakebite problem more efficiently.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md.Mahmudul.Hasan Maruf
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Asif Iqbal
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mahedi Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Sohanur.Rahman Sohan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ragib Shariar
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ibrahim Khalil Al Haidar
- Venom Research Centre, Chittagong Medical College, Chattogram, 4203, Bangladesh,Department of Zoology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Mohammad Abdul Wahed Chowdhury
- Venom Research Centre, Chittagong Medical College, Chattogram, 4203, Bangladesh,Department of Zoology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Aniruddha Ghose
- Venom Research Centre, Chittagong Medical College, Chattogram, 4203, Bangladesh,Department of Medicine, Chittagong Medical College, Chattogram, 4203, Bangladesh
| | - Kazi Md Faisal Hoque
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh,Corresponding author.
| |
Collapse
|
7
|
Valdés-Arellanes M, Ortega-Hernández G, Cervantes-Santos DM, Rendón-Barrón MJ, Madrigal-Santillán EO, Morales-González JA, Paniagua-Pérez R, Madrigal-Bujaidar E, Álvarez-González I. In vivo genotoxic and cytotoxic evaluation of venom obtained from the species of the snake ophryacus, cope, viperidae. TOXIN REV 2022; 41:1115-1123. [DOI: 10.1080/15569543.2021.1975752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Mariel Valdés-Arellanes
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gerardo Ortega-Hernández
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Doralí M. Cervantes-Santos
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Michael Joshue Rendón-Barrón
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - José Antonio Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
8
|
Diversity of Phospholipases A2 from Bothrops atrox Snake Venom: Adaptive Advantages for Snakes Compromising Treatments for Snakebite Patients. Toxins (Basel) 2022; 14:toxins14080543. [PMID: 36006204 PMCID: PMC9414272 DOI: 10.3390/toxins14080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
The evolution of snake venoms resulted in multigene toxin families that code for structurally similar isoforms eventually harboring distinct functions. PLA2s are dominant toxins in viper venoms, and little is known about the impact of their diversity on human envenomings and neutralization by antivenoms. Here, we show the isolation of three distinct PLA2s from B. atrox venom. FA1 is a Lys-49 homologue, and FA3 and FA4 are catalytic Asp-49 PLA2s. FA1 and FA3 are basic myotoxic proteins, while FA4 is an acid non-myotoxic PLA2. FA3 was the most potent toxin, inducing higher levels of edema, inflammatory nociception, indirect hemolysis, and anticoagulant activity on human, rat, and chicken plasmas. FA4 presented lower anticoagulant activity, and FA1 had only a slight effect on human and rat plasmas. PLA2s presented differential reactivities with antivenoms, with an emphasis on FA3, which was not recognized or neutralized by the antivenoms used in this study. Our findings reveal the functional and antigenic diversity among PLA2s from B. atrox venom, highlighting the importance of assessing venom variability for understanding human envenomations and treatment with antivenoms, particularly evident here as the antivenom fails to recognize FA3, the most active multifunctional toxin described.
Collapse
|
9
|
Frihling BEF, Boleti APDA, de Oliveira CFR, Sanches SC, Cardoso PHDO, Verbisck N, Macedo MLR, Rita PHS, Carvalho CME, Migliolo L. Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake Bothrops moojeni. Pharmaceuticals (Basel) 2022; 15:ph15060724. [PMID: 35745643 PMCID: PMC9230114 DOI: 10.3390/ph15060724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nature presents a wide range of biomolecules with pharmacological potential, including venomous animal proteins. Among the protein components from snake venoms, phospholipases (PLA2) are of great importance for the development of new anticancer compounds. Thus, we aimed to evaluate the PLA2 anticancer properties from Bothrops moojeni venom. The crude venom was purified through three chromatographic steps, monitored by enzymatic activity and SDS-PAGE (12%). The purified PLA2 denominated BmPLA2 had its molecular mass and N-terminal sequence identified by mass spectrometry and Edman degradation, respectively. BmPLA2 was assayed against human epithelial colorectal adenocarcinoma cells (Caco-2), human rhabdomyosarcoma cells (RD) and mucoepidermoid carcinoma of the lung (NCI-H292), using human fibroblast cells (MRC-5) and microglia cells (BV-2) as a cytotoxicity control. BmPLA2 presented 13,836 Da and a 24 amino acid-residue homologue with snake PLA2, which showed a 90% similarity with other Bothrops moojeni PLA2. BmPLA2 displayed an IC50 of 0.6 µM against Caco-2, and demonstrated a selectivity index of 1.85 (compared to MRC-5) and 6.33 (compared to BV-2), supporting its selectivity for cancer cells. In conclusion, we describe a new acidic phospholipase, which showed antitumor activity and is a potential candidate in the development of new biotechnological tools.
Collapse
Affiliation(s)
- Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Caio Fernando Ramalho de Oliveira
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Simone Camargo Sanches
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | | | - Maria Lígia Rodrigues Macedo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Paula Helena Santa Rita
- Biotério e Serpentário, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence:
| |
Collapse
|
10
|
Proleón A, Torrejón D, Urra FA, Lazo F, López-Torres C, Fuentes-Retamal S, Quispe E, Bautista L, Agurto A, Gavilan RG, Sandoval GA, Rodríguez E, Sánchez EF, Yarlequé A, Vivas-Ruiz DE. Functional, immunological characterization, and anticancer activity of BaMtx: A new Lys49- PLA 2 homologue isolated from the venom of Peruvian Bothrops atrox snake (Serpentes: Viperidae). Int J Biol Macromol 2022; 206:990-1002. [PMID: 35321814 DOI: 10.1016/j.ijbiomac.2022.03.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a β-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 μg) and edema-forming (DEM = 26.00 ± 1.15 μg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.
Collapse
Affiliation(s)
- Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Felix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Edwin Quispe
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Lorgio Bautista
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Andrés Agurto
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud-Perú, Jesús María, Lima, Peru; Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Eladio F Sánchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú.
| |
Collapse
|
11
|
Gamma irradiated protease from Echis pyramidum venom: A promising immunogen to improve viper bites treatment. Toxicon 2020; 188:108-116. [PMID: 33065201 DOI: 10.1016/j.toxicon.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
Echis pyramidum (Epy) is a venomous snake belongs to Viperidae family; it causes fetal coagulopathy systemic effects and death. Searching for more effective and safe antivenom is mandatory for viper bites treatment. Proteases are the most lethal components in viper venom inducing hemorrhage, edema and coagulation problems. Thus, the study aims to evaluate the potency of the prepared antisera and their neutralizing properties against the biological activities induced by whole Epy venom individually. Echis pyramidum metalloprotease enzyme (60 kDa) was purified using size-exclusion followed by DEAE-ion exchange chromatography. The purified Epy metalloprotease enzyme (SVMP) was detoxified with 1.5 kGy gamma rays from cobalt60 gamma cell and used for immunization. 1.5 kGy irradiated Epy metalloprotease (SVMPi) showed less lethal activity (LD50) compared to the corresponding native immunogen. The prepared antisera boosted against whole Epy venom (WV), 1.5 kGy irradiated whole Epy venom (WVi), SVMP and SVMPi were tested for neutralization of lethality and biological activities induced by Epy venom. The antibodies elicited against WVi and SVMPi were 30,000 and 20,000 EU, respectively. The anti-SVMPi serum showed the highest neutralization of lethality (ED50) compared to the other prepared antisera. In addition, it prolonged the clotting time from 49.0 ± 2.5 to 176.2 ± 1.4 s. Furthermore, it demonstrated a highly neutralizing activity against edema induction and hemorrhage of Epy venom by 66.8% and 94.3%, respectively compared with the other prepared antisera. These findings would encourage further studies for using gamma irradiated purified fraction(s) from different snake venoms as safe antigen(s) to produce more effective antivenoms.
Collapse
|
12
|
Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom. Toxins (Basel) 2020; 12:toxins12090606. [PMID: 32962193 PMCID: PMC7551604 DOI: 10.3390/toxins12090606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: Bacterial resistance is a worldwide public health problem, requiring new therapeutic options. An alternative approach to this problem is the use of animal toxins isolated from snake venom, such as phospholipases A2 (PLA2), which have important antimicrobial activities. Bothropserythromelas is one of the snake species in the northeast of Brazil that attracts great medical-scientific interest. Here, we aimed to purify and characterize a PLA2 from B. erythromelas, searching for heterologous activities against bacterial biofilms. Methods: Venom extraction and quantification were followed by reverse-phase high-performance liquid chromatography (RP-HPLC) in C18 column, matrix-assisted ionization time-of-flight (MALDI-ToF) mass spectrometry, and sequencing by Edman degradation. All experiments were monitored by specific activity using a 4-nitro-3-(octanoyloxy) benzoic acid (4N3OBA) substrate. In addition, hemolytic tests and antibacterial tests including action against Escherichiacoli, Staphylococcusaureus, and Acinetobacterbaumannii were carried out. Moreover, tests of antibiofilm action against A. baumannii were also performed. Results: PLA2, after one purification step, presented 31 N-terminal amino acid residues and a molecular weight of 13.6564 Da, with enzymatic activity confirmed in 0.06 µM concentration. Antibacterial activity against S. aureus (IC50 = 30.2 µM) and antibiofilm activity against A. baumannii (IC50 = 1.1 µM) were observed. Conclusions: This is the first time that PLA2 purified from B. erythromelas venom has appeared as an alternative candidate in studies of new antibacterial medicines.
Collapse
|
13
|
Monteiro WM, Contreras-Bernal JC, Bisneto PF, Sachett J, Mendonça da Silva I, Lacerda M, Guimarães da Costa A, Val F, Brasileiro L, Sartim MA, Silva-de-Oliveira S, Bernarde PS, Kaefer IL, Grazziotin FG, Wen FH, Moura-da-Silva AM. Bothrops atrox, the most important snake involved in human envenomings in the amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020; 6:100037. [PMID: 32550592 PMCID: PMC7285970 DOI: 10.1016/j.toxcx.2020.100037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Bothrops atrox snakes are mostly endemic of the Amazon rainforest and is certainly the South American pit viper responsible for most of the snakebites in the region. The composition of B. atrox venom is significantly known and has been used to trace the relevance of the venom phenotype for snake biology and for the impacts in the clinics of human patients involved in accidents by B. atrox. However, in spite of the wide distribution and the great medical relevance of B. atrox snakes, B. atrox taxonomy is not fully resolved and the impacts of the lack of taxonomic resolution on the studies focused on venom or envenoming are currently unknown. B. atrox venom presents different degrees of compositional variability and is generally coagulotoxic, inducing systemic hematological disturbances and local tissue damage in snakebite patients. Antivenoms are the effective therapy for attenuating the clinical signs. This review brings a comprehensive discussion of the literature concerning B. atrox snakes encompassing from snake taxonomy, diet and venom composition, towards clinical aspects of snakebite patients and efficacy of the antivenoms. This discussion is highly supported by the contributions that venomics and antivenomics added for the advancement of knowledge of B. atrox snakes, their venoms and the treatment of accidents they evoke.
Collapse
Affiliation(s)
- Wuelton Marcelo Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Jorge Carlos Contreras-Bernal
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Pedro Ferreira Bisneto
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Brazil
| | - Iran Mendonça da Silva
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Lacerda
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Manaus, Brazil
| | - Allyson Guimarães da Costa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Fernando Val
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lisele Brasileiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Sâmella Silva-de-Oliveira
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | - Igor L. Kaefer
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | - Ana Maria Moura-da-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
14
|
Menaldo DL, Costa TR, Ribeiro DL, Zambuzi FA, Antunes LM, Castro FA, Frantz FG, Sampaio SV. Immunomodulatory actions and epigenetic alterations induced by proteases from Bothrops snake venoms in human immune cells. Toxicol In Vitro 2019; 61:104586. [DOI: 10.1016/j.tiv.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022]
|
15
|
Shahbazi B, Najafabadi ZS, Goudarzi H, Sajadi M, Tahoori F, Bagheri M. Cytotoxic effects of Pseudocerastes persicus venom and its HPLC fractions on lung cancer cells. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190009. [PMID: 31555336 PMCID: PMC6748451 DOI: 10.1590/1678-9199-jvatitd-2019-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Several studies have pointed out that certain snake venoms contain compounds presenting cytotoxic activities that selectively interfere with cancer cell metabolism. In this study, Pseudocerastes persicus venom and its fractions were investigated for their anticancer potential on lung cancer cells. METHODS Lung cancer cells (A549) and normal fibroblast cells (Hu02) were treated with the P. persicus venom and its HPLC fractions and the cell cytotoxic effects were analyzed using MTT and lactate dehydrogenase release assays. Apoptosis was determined in venom-treated cell cultures using caspase-3 and caspase-9 assay kits. RESULTS The treatment of cells with HPLC fraction 21 (25-35 kDa) of P. persicus venom resulted in high LDH release in normal fibroblast cells and high caspase-3 and caspase-9 activities in lung cancer cells. These results indicate that fraction 21 induces apoptosis in cancer cells, whereas necrosis is predominantly caused by cell death in the normal cells. Fraction 21 at the final concentration of 10 μg/mL killed approximately 60% of lung cancer cells, while in normal fibroblast cells very low cell cytotoxic effect was observed. CONCLUSION HPLC fraction 21 at low concentrations displayed promising anticancer properties with apoptosis induction in the lung cancer cells. This fraction may, therefore, be considered a promising candidate for further studies.
Collapse
Affiliation(s)
| | - Zahra Salehi Najafabadi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hamidreza Goudarzi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mahnaz Sajadi
- Tofigh Daru Research and Engineering Company, Tehran, Iran
| | - Fatemeh Tahoori
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
16
|
Cedro RCA, Menaldo DL, Costa TR, Zoccal KF, Sartim MA, Santos-Filho NA, Faccioli LH, Sampaio SV. Cytotoxic and inflammatory potential of a phospholipase A 2 from Bothrops jararaca snake venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:33. [PMID: 30498509 PMCID: PMC6251196 DOI: 10.1186/s40409-018-0170-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 μg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1β and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5–160 μg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.
Collapse
Affiliation(s)
- Rafhaella C A Cedro
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Danilo L Menaldo
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Tássia R Costa
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Karina F Zoccal
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Marco A Sartim
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Norival A Santos-Filho
- 2Campus Experimental de Registro, Universidade Estadual Paulista (UNESP), Registro, SP Brazil
| | - Lúcia H Faccioli
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Suely V Sampaio
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
17
|
Insights into the Mechanisms Involved in Strong Hemorrhage and Dermonecrosis Induced by Atroxlysin-Ia, a PI-Class Snake Venom Metalloproteinase. Toxins (Basel) 2017; 9:toxins9080239. [PMID: 28767072 PMCID: PMC5577573 DOI: 10.3390/toxins9080239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 11/17/2022] Open
Abstract
Hemorrhage is the most prominent effect of snake venom metalloproteinases (SVMPs) in human envenomation. The capillary injury is a multifactorial effect caused by hydrolysis of the components of the basement membrane (BM). The PI and PIII classes of SVMPs are abundant in viperid venoms and hydrolyze BM components. However, hemorrhage is associated mostly with PIII-class SVMPs that contain non-catalytic domains responsible for the binding of SVMPs to BM proteins, facilitating enzyme accumulation in the tissue and enhancing its catalytic efficiency. Here we report on Atroxlysin-Ia, a PI-class SVMP that induces hemorrhagic lesions in levels comparable to those induced by Batroxrhagin (PIII-class), and a unique SVMP effect characterized by the rapid onset of dermonecrotic lesions. Atroxlysin-Ia was purified from B. atrox venom, and sequence analyses indicated that it is devoid of non-catalytic domains and unable to bind to BM proteins as collagen IV and laminin in vitro or in vivo. The presence of Atroxlysin-Ia was diffuse in mice skin, and localized mainly in the epidermis with no co-localization with BM components. Nevertheless, the skin lesions induced by Atroxlysin-Ia were comparable to those induced by Batroxrhagin, with induction of leukocyte infiltrates and hemorrhagic areas soon after toxin injection. Detachment of the epidermis was more intense in skin injected with Atroxlysin-Ia. Comparing the catalytic activity of both toxins, Batroxrhagin was more active in the hydrolysis of a peptide substrate while Atroxlysin-Ia hydrolyzed more efficiently fibrin, laminin, collagen IV and nidogen. Thus, the results suggest that Atroxlysin-Ia bypasses the binding step to BM proteins, essential for hemorrhagic lesions induced by PII- and P-III class SVMPs, causing a significantly fast onset of hemorrhage and dermonecrosis, due to its higher proteolytic capacity on BM components.
Collapse
|
18
|
Menaldo DL, Bernardes CP, Zoccal KF, Jacob-Ferreira AL, Costa TR, Del Lama MPFM, Naal RMZG, Frantz FG, Faccioli LH, Sampaio SV. Immune cells and mediators involved in the inflammatory responses induced by a P-I metalloprotease and a phospholipase A 2 from Bothrops atrox venom. Mol Immunol 2017; 85:238-247. [PMID: 28327442 DOI: 10.1016/j.molimm.2017.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/16/2023]
Abstract
Bothrops envenomations can promote severe inflammatory responses by inducing edema, pain, leukocyte recruitment and release of chemical mediators by local cells. In the present study, two toxins from Bothrops atrox venom (the P-I metalloprotease Batroxase and the acidic phospholipase A2 BatroxPLA2) were evaluated in relation to their inflammatory effects induced in vivo and in vitro, mainly focusing on the participation of different immune cells and inflammatory mediators. Both toxins mainly promoted acute inflammatory responses with significant recruitment of neutrophils in the early hours (1-4h) after administration into the peritoneal cavity of C57BL/6 mice, and increased infiltration of mononuclear cells especially after 24h. Among the mediators induced by both toxins are IL-6, IL-10 and PGE2, with Batroxase also inducing the release of L-1β, and BatroxPLA2 of LTB4 and CysLTs. These responses pointed to possible involvement of immune cells such as macrophages and mast cells, which were then evaluated in vitro. Mice peritoneal macrophages stimulated with Batroxase produced significant levels of IL-6, IL-1β, PGE2 and LTB4, whereas stimulus with BatroxPLA2 induced increases of IL-6, PGE2 and LTB4. Furthermore, both toxins were able to stimulate degranulation of RBL-2H3 mast cells, but with distinct concentration-dependent effects. Altogether, these results indicated that Batroxase and BatroxPLA2 promoted local and acute inflammatory responses related to macrophages and mast cells and to the production of several mediators. Our findings should contribute for better understanding the different mechanisms of toxicity induced by P-I metalloproteases and phospholipases A2 after snakebite envenomations.
Collapse
Affiliation(s)
- Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Tássia R Costa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria P F M Del Lama
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Rose M Z G Naal
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fabiani G Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Resende L, Almeida J, Schezaro-Ramos R, Collaço R, Simioni L, Ramírez D, González W, Soares A, Calderon L, Marangoni S, da Silva S. Exploring and understanding the functional role, and biochemical and structural characteristics of an acidic phospholipase A2, AplTx-I, purified from Agkistrodon piscivorus leucostoma snake venom. Toxicon 2017; 127:22-36. [DOI: 10.1016/j.toxicon.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
|
20
|
Menaldo DL, Bernardes CP, Jacob-Ferreira AL, Nogueira-Santos CG, Casare-Ogasawara TM, Pereira-Crott LS, Sampaio SV. Effects of Bothrops atrox venom and two isolated toxins on the human complement system: Modulation of pathways and generation of anaphylatoxins. Mol Immunol 2016; 80:91-100. [DOI: 10.1016/j.molimm.2016.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
21
|
Cremonez CM, Leite FP, Bordon KDCF, Cerni FA, Cardoso IA, Gregório ZMDO, de Souza RCG, de Souza AM, Arantes EC. Experimental Lachesis muta rhombeata envenomation and effects of soursop (Annona muricata) as natural antivenom. J Venom Anim Toxins Incl Trop Dis 2016; 22:12. [PMID: 26957955 PMCID: PMC4782340 DOI: 10.1186/s40409-016-0067-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
Background In the Atlantic forest of the North and Northeast regions of Brazil, local population often uses the fruit juice and the aqueous extract of leaves of soursop (Annona muricata L.) to treat Lachesis muta rhombeata envenomation. Envenomation is a relevant health issue in these areas, especially due to its severity and because the production and distribution of antivenom is limited in these regions. The aim of the present study was to evaluate the relevance of the use of soursop leaf extract and its juice against envenomation by Lachesis muta rhombeata. Methods We evaluated the biochemical, hematological and hemostatic parameters, the blood pressure, the inflammation process and the lethality induced by Lachesis muta rhombeata snake venom. We also assessed the action of the aqueous extract of leaves (AmL) and juice (AmJ) from A. muricata on the animal organism injected with L. m. rhombeata venom (LmrV) in the laboratory environment. Results LmrV induced a decrease of total protein, albumin and glucose; and increase of creatine kinase, aspartate aminotransferase, and urea concentrations. It provoked hemoconcentration followed by reduction of hematocrit, an increase in prothrombin time and partial thromboplastin time and a decrease of the blood pressure. LmrV induced the release of interleukin-6, an increase in neutrophils and changes in the serum protein profile, characteristic of the acute inflammatory process. LD50 values were similar for the groups injected with LmrV and treated or untreated with AmJ and AmL. Both treatments play a role on the maintenance of blood glucose, urea and coagulation parameters and exert a protective action against the myotoxicity. However, they seem to worsen the hypotension caused by LmrV. Conclusion The treatments with AmJ and AmL present some beneficial actions, but they might intensify some effects of the venom. Therefore, additional studies on A. muricata are necessary to enable its use as natural antivenom for bushmaster snakebite.
Collapse
Affiliation(s)
- Caroline Marroni Cremonez
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Flávia Pine Leite
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Iara Aimê Cardoso
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Zita Maria de Oliveira Gregório
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | | | - Ana Maria de Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| |
Collapse
|
22
|
Evaluation of the in vivo thrombolytic activity of a metalloprotease from Bothrops atrox venom using a model of venous thrombosis. Toxicon 2015; 109:18-25. [PMID: 26556655 DOI: 10.1016/j.toxicon.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Due to the importance of blood coagulation and platelet aggregation in brain- and cardiovascular diseases, snake venom proteins that interfere in these processes have received significant attention in recent years considering their potential to be used as models for new drugs. OBJECTIVES This study aimed at the evaluation of the in vivo thrombolytic activity of Batroxase, a P-I metalloprotease from Bothrops atrox venom. METHODS In vivo thrombolytic activity of Batroxase was tested on a model of venous thrombosis in rats, with partial stenosis of the inferior vena cava, and vessel wall injury with ferric chloride at 10% for 5 min. After formation of the thrombus, increasing amounts of Batroxase were administered intravenously. The prescription medication Alteplase (tissue-type plasminogen activator) was used as positive control for thrombolytic activity, while saline was used as negative control. Bleeding time was assessed with a tail bleeding assay. RESULTS Batroxase presented thrombolytic activity in vivo in a concentration-dependent manner, with 12 mg/kg of the metalloprotease causing a thrombus reduction of 80%, a thrombolytic activity very similar to the one observed for the positive control Alteplase (85%). The tail bleeding time was not altered by the administration of Batroxase, while it increased 3.5 times with Alteplase. Batroxase presented fibrinolytic and fibrinogenolytic activities in vitro, which were inhibited by alpha 2-macroglobulin. CONCLUSION Batroxase presents thrombolytic activity in vivo, thus demonstrating a possible therapeutic potential. The inactivation of the metalloprotease by alpha 2-macroglobulin may reduce its activity, but also its potential side effects, as seen for bleeding time.
Collapse
|