1
|
Pierzchalski A, Zenclussen AC, Herberth G. A comprehensive battery of flow cytometric immunoassays for the in vitro testing of chemical effects in human blood cells. Front Immunol 2024; 14:1327960. [PMID: 38229911 PMCID: PMC10790304 DOI: 10.3389/fimmu.2023.1327960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024] Open
Abstract
Background There is a growing need for immunological assays to test toxic and modulatory effects of chemicals. The assays should be easy to use, reproducible and superior to cell line-based assays. We have therefore developed a comprehensive portfolio of assays based on primary human blood cells that are suitable for testing chemical effects. Methods The flow cytometry-based assays were designed to target a wide range of human peripheral blood mononuclear cells and whole blood, including T cells, NK cells, B cells, basophils and innate-like T cells such as γδT, MAIT and NKT cells. We have selected a set of activation markers for each immune cell, e.g: CD154 (T cells), CD137, CD107a (NK cells), CD63 (basophils), CD69, CD83 (B cells), CD69, IFN-γ (MAIT cells) and we selected cell specific stimuli: aCD3 antibodies (T cells); E. coli and cytokines IL-12/15/18 (MAIT cells); CpG ODN2006, R848 or aCD40 antibodies (B cells), fMLP or aFcϵR1 (basophils) or K562 cells (NK cells). Results By selecting immune cell-specific markers and cell-specific stimuli, we were able to induce particular immune responses from the targeted immune cells. For example, the response to stimulation with anti-CD3 antibodies was in 36.8% of CD107a+CD8+ cells. Cytokine stimulation induced the production of IFN-γ in 30% of MAIT cells. After stimulation with E. coli, around 50% of MAIT cells produced TNF. About 40% of basophils responded to aFcƐR1 stimulation. Similar activation ranges were achieved in K562-stimulated NK cells. Conclusion Our test portfolio covers the most relevant immune cells present in human blood, providing a solid basis for in vitro toxicity and immunomodulatory testing of chemicals. By using human blood, the natural composition of cells found in the blood can be determined and the effects of chemicals can be detected at the cellular level.
Collapse
Affiliation(s)
- Arkadiusz Pierzchalski
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Ana C. Zenclussen
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| |
Collapse
|
2
|
Maddalon A, Iulini M, Melzi G, Corsini E, Galbiati V. New Approach Methodologies in Immunotoxicology: Challenges and Opportunities. Endocr Metab Immune Disord Drug Targets 2023; 23:1681-1698. [PMID: 37069707 DOI: 10.2174/1871530323666230413081128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
To maintain the integrity of an organism, a well-functioning immune system is essential. Immunity is dynamic, with constant surveillance needed to determine whether to initiate an immune response or to not respond. Both inappropriate immunostimulation and decreased immune response can be harmful to the host. A reduced immune response can lead to high susceptibility to cancer or infections, whereas an increased immune response can be related to autoimmunity or hypersensitivity reactions. Animal testing has been the gold standard for hazard assessment in immunotoxicity but a lot of efforts are ongoing to develop non-animal-based test systems, and important successes have been achieved. The term "new approach methodologies" (NAMs) refer to the approaches which are not based on animal models. They are applied in hazard and risk assessment of chemicals and include approaches such as defined approaches for data interpretation and integrated approaches to testing and assessment. This review aims to summarize the available NAMs for immunotoxicity assessment, taking into consideration both inappropriate immunostimulation and immunosuppression, including implication for cancer development.
Collapse
Affiliation(s)
- Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Ptacek J, Hawtin RE, Sun D, Louie B, Evensen E, Mittleman BB, Cesano A, Cavet G, Bingham CO, Cofield SS, Curtis JR, Danila MI, Raman C, Furie RA, Genovese MC, Robinson WH, Levesque MC, Moreland LW, Nigrovic PA, Shadick NA, O’Dell JR, Thiele GM, Clair EWS, Striebich CC, Hale MB, Khalili H, Batliwalla F, Aranow C, Mackay M, Diamond B, Nolan GP, Gregersen PK, Bridges SL. Diminished cytokine-induced Jak/STAT signaling is associated with rheumatoid arthritis and disease activity. PLoS One 2021; 16:e0244187. [PMID: 33444321 PMCID: PMC7808603 DOI: 10.1371/journal.pone.0244187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and incurable autoimmune disease characterized by chronic inflammation in synovial lining of joints. To identify the signaling pathways involved in RA, its disease activity, and treatment response, we adapted a systems immunology approach to simultaneously quantify 42 signaling nodes in 21 immune cell subsets (e.g., IFNα→p-STAT5 in B cells) in peripheral blood mononuclear cells (PBMC) from 194 patients with longstanding RA (including 98 patients before and after treatment), and 41 healthy controls (HC). We found multiple differences between patients with RA compared to HC, predominantly in cytokine-induced Jak/STAT signaling in many immune cell subsets, suggesting pathways that may be associated with susceptibility to RA. We also found that high RA disease activity, compared to low disease activity, was associated with decreased (e.g., IFNα→p-STAT5, IL-10→p-STAT1) or increased (e.g., IL-6→STAT3) response to stimuli in multiple cell subsets. Finally, we compared signaling in patients with established, refractory RA before and six months after initiation of methotrexate (MTX) or TNF inhibitors (TNFi). We noted significant changes from pre-treatment to post-treatment in IFNα→p-STAT5 signaling and IL-10→p-STAT1 signaling in multiple cell subsets; these changes brought the aberrant RA signaling profiles toward those of HC. This large, comprehensive functional signaling pathway study provides novel insights into the pathogenesis of RA and shows the potential of quantification of cytokine-induced signaling as a biomarker of disease activity or treatment response.
Collapse
Affiliation(s)
- Jason Ptacek
- Nodality, Inc., South San Francisco, California, United States of America
| | - Rachael E. Hawtin
- Nodality, Inc., South San Francisco, California, United States of America
| | - Dongmei Sun
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Brent Louie
- Nodality, Inc., South San Francisco, California, United States of America
| | - Erik Evensen
- Nodality, Inc., South San Francisco, California, United States of America
| | | | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
| | - Guy Cavet
- Nodality, Inc., South San Francisco, California, United States of America
| | - Clifton O. Bingham
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stacey S. Cofield
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Jeffrey R. Curtis
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Maria I. Danila
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Chander Raman
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Richard A. Furie
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Mark C. Genovese
- Stanford University School of Medicine, Stanford, California, United States of America
| | - William H. Robinson
- Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Larry W. Moreland
- University of Colorado Anschutz Medical Campus, Boulder, Colorado, United States of America
| | - Peter A. Nigrovic
- Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts, United States of America
| | - Nancy A. Shadick
- Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts, United States of America
| | - James R. O’Dell
- University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
| | - Geoffrey M. Thiele
- University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
| | - E. William St Clair
- Duke University Medical Center, Durham, North Carolina, United States of America
| | | | - Matthew B. Hale
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Houman Khalili
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Franak Batliwalla
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Cynthia Aranow
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Meggan Mackay
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Betty Diamond
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Garry P. Nolan
- Nodality, Inc., South San Francisco, California, United States of America
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - S. Louis Bridges
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
5
|
Formenti SC, Hawtin RE, Dixit N, Evensen E, Lee P, Goldberg JD, Li X, Vanpouille-Box C, Schaue D, McBride WH, Demaria S. Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. J Immunother Cancer 2019; 7:177. [PMID: 31296256 PMCID: PMC6624899 DOI: 10.1186/s40425-019-0633-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Background We previously reported the results of a multicentric prospective randomized trial of chemo-refractory metastatic breast cancer patients testing the efficacy of two doses of TGFβ blockade during radiotherapy. Despite a lack of objective responses to the combination, patients who received a higher dose of TGFβ blocking antibody fresolimumab had a better overall survival when compared to those assigned to lower dose (hazard ratio of 2.73, p = 0.039). They also demonstrated an improved peripheral blood mononuclear cell (PBMC) counts and increase in the CD8 central memory pool. We performed additional analysis on residual PBMC using single cell network profiling (SCNP). Methods The original trial randomized metastatic breast cancer patients to either 1 or 10 mg/kg of fresolimumab, every 3 weeks for 5 cycles, combined with radiotherapy to a metastatic site at week 1 and 7 (22.5 Gy given in 3 doses of 7.5 Gy). Trial immune monitoring results were previously reported. In 15 patients with available residual blood samples, additional functional studies were performed, and compared with data obtained in parallel from seven healthy female donors (HD): SCNP was applied to analyze T cell receptor (TCR) modulated signaling via CD3 and CD28 crosslinking and measurement of evoked phosphorylation of AKT and ERK in CD4 and CD8 T cell subsets defined by PD-1 expression. Results At baseline, a significantly higher level of expression (p < 0.05) of PD-L1 was identified in patient monocytes compared to HD. TCR modulation revealed dysfunction of circulating T-cells in patient baseline samples as compared to HD, and this was more pronounced in PD-1+ cells. Treatment with radiotherapy and fresolimumab did not resolve this dyfunctional signaling. However, in vitro PD-1 blockade enhanced TCR signaling in patient PD-1+ T cells and not in PD-1- T cells or in PD-1+ T cells from HD. Conclusions Functional T cell analysis suggests that baseline T cell functionality is hampered in metastatic breast cancer patients, at least in part mediated by the PD-1 signaling pathway. These preliminary data support the rationale for investigating the possible beneficial effects of adding PD-1 blockade to improve responses to TGFβ blockade and radiotherapy. Trial registration NCT01401062.
Collapse
Affiliation(s)
- Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Rachael E Hawtin
- Nodality, 170 Harbor Way, South San Francisco, CA, 94080, USA.,Current address: Gilead Sciences, Inc, 303 Velocity Way, Foster City, CA, 94404, USA
| | - Neha Dixit
- Nodality, 170 Harbor Way, South San Francisco, CA, 94080, USA
| | - Erik Evensen
- Nodality, 170 Harbor Way, South San Francisco, CA, 94080, USA
| | - Percy Lee
- Department of Radiation oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Judith D Goldberg
- Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Xiaochun Li
- Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Dörthe Schaue
- Department of Radiation oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - William H McBride
- Department of Radiation oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Immunotoxicity testing using human primary leukocytes: An adjunct approach for the evaluation of human risk. CURRENT OPINION IN TOXICOLOGY 2018; 3:25-29. [PMID: 29619412 DOI: 10.1016/j.cotox.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Historically, immunotoxicity testing for chemicals, pesticides and pharmaceuticals has relied heavily on animal models to identify effects on the immune system followed by extrapolation to humans. Substantial progress has been made in the past decade on understanding human immune cell regulation, adaptive and innate immune responses and its modulation. The human immune system is complex and there exists diversity within composition, localization, and activation of different immune cell types between individuals. The inherent variation in human populations owing to genetics and environment can have a significant influence on the response of the immune system to infectious agents, drugs, chemicals and other environmental factors. Several recent reports have highlighted that mouse models of sepsis and inflammation are poorly predictive of human disease physiology and pathology. Rodent and human immune cells differ in the expression of cell surface proteins and phenotypes expressed in disease models, which may significantly influence the mechanism of action of xenobiotics and susceptibility yielding a different profile of activity across animal species. In the light of these differences and recent trends toward precision medicine, personalized therapies and the 3Rs (reduce, replace and refine animal use) approaches, the importance of using 'all human' model systems cannot be overstated. Hence, this opinion piece aims to discuss new models used to assess the effects of environmental contaminants and immune modulators on the immune response in human cells, the advantages and challenges of using human primary cells in immunotoxicology research and the implication for the future of immunotoxicity testing.
Collapse
|
7
|
Agrawal L, Engel KB, Greytak SR, Moore HM. Understanding preanalytical variables and their effects on clinical biomarkers of oncology and immunotherapy. Semin Cancer Biol 2017; 52:26-38. [PMID: 29258857 DOI: 10.1016/j.semcancer.2017.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Identifying a suitable course of immunotherapy treatment for a given patient as well as monitoring treatment response is heavily reliant on biomarkers detected and quantified in blood and tissue biospecimens. Suboptimal or variable biospecimen collection, processing, and storage practices have the potential to alter clinically relevant biomarkers, including those used in cancer immunotherapy. In the present review, we summarize effects reported for immunologically relevant biomarkers and highlight preanalytical factors associated with specific analytical platforms and assays used to predict and gauge immunotherapy response. Given that many of the effects introduced by preanalytical variability are gene-, transcript-, and protein-specific, biospecimen practices should be standardized and validated for each biomarker and assay to ensure accurate results and facilitate clinical implementation of newly identified immunotherapy approaches.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Biorepositories and Biospecimen Research Branch (BBRB), Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Drive, Bethesda, Maryland, USA
| | | | | | - Helen M Moore
- Biorepositories and Biospecimen Research Branch (BBRB), Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Drive, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Butterfield LH. The Society for Immunotherapy of Cancer Biomarkers Task Force recommendations review. Semin Cancer Biol 2017; 52:12-15. [PMID: 28943324 DOI: 10.1016/j.semcancer.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
Abstract
The clinical successes in cancer immunotherapy have led to a critical need for biomarkers in cancer immunotherapy. It is of the utmost importance to know who is most likely to benefit from these therapies (predictive biomarkers) but also who is starting to respond (prognostic biomarkers) and how the therapy functions in order to make rational combination choices (mechanism of action biomarkers). The Society for Immunotherapy of Cancer (SITC) Biomarkers Task Force addressed the state of the art and made a series of recommendations for the field, which is summarized here.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Departments of Medicine, Surgery, Immunology and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
9
|
Xie X, Li F, Li S, Tian J, Chen JW, Du JF, Mao N, Chen J. Application of omics in predicting anti-TNF efficacy in rheumatoid arthritis. Clin Rheumatol 2017; 37:13-23. [PMID: 28600618 DOI: 10.1007/s10067-017-3639-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by progressive joint erosion. Tumor necrosis factor (TNF) antagonists are the most widely used biological disease-modifying anti-rheumatic drug in RA. However, there continue to be one third of RA patients who have poor or no response to TNF antagonists. Following consideration of the uncertainty of therapeutic effects and the high price of TNF antagonists, it is worthy to predict the treatment responses before anti-TNF therapy. According to the comparisons between the responders and non-responders to TNF antagonists by omic technologies, such as genomics, transcriptomics, proteomics, and metabolomics, rheumatologists are eager to find significant biomarkers to predict the effect of TNF antagonists in order to optimize the personalized treatment in RA.
Collapse
Affiliation(s)
- Xi Xie
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fen Li
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Shu Li
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin-Wei Chen
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin-Feng Du
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ni Mao
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Chen
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Gulley JL, Berzofsky JA, Butler MO, Cesano A, Fox BA, Gnjatic S, Janetzki S, Kalavar S, Karanikas V, Khleif SN, Kirsch I, Lee PP, Maccalli C, Maecker H, Schlom J, Seliger B, Siebert J, Stroncek DF, Thurin M, Yuan J, Butterfield LH. Immunotherapy biomarkers 2016: overcoming the barriers. J Immunother Cancer 2017; 5:29. [PMID: 28653584 PMCID: PMC5359902 DOI: 10.1186/s40425-017-0225-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022] Open
Abstract
This report summarizes the symposium, 'Immunotherapy Biomarkers 2016: Overcoming the Barriers', which was held on April 1, 2016 at the National Institutes of Health in Bethesda, Maryland. The symposium, cosponsored by the Society for Immunotherapy of Cancer (SITC) and the National Cancer Institute (NCI), focused on emerging immunotherapy biomarkers, new technologies, current hurdles to further progress, and recommendations for advancing the field of biomarker development.
Collapse
Affiliation(s)
- James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, 10 Center Dr., 13 N240, Bethesda, MD, 20892, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, 41 Medlars Dr, Bldg 41 Rm D702D, Bethesda, MD, 20892, USA
| | - Marcus O Butler
- Princess Margaret Cancer Center/Ontario Cancer Institute, RM 9-622, 610 University Ave, Toronto, ON, Canada
| | - Alessandra Cesano
- NanoString, Inc., 500 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR, 97213, USA
| | - Sacha Gnjatic
- Department of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, S5-105, 1470 Madison Avenue, Box 1128, New York, NY, 10029, USA
| | - Sylvia Janetzki
- ZellNet Consulting, Inc., 555 North Avenue, Fort Lee, NJ, 07024, USA
| | - Shyam Kalavar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 1401 Rockville Pike, Rockville, MD, 20852, USA
| | - Vaios Karanikas
- Roche Innovation Center Zurich, Wagistrasse 18, Schlieren, Switzerland
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, 1120 15th Street, CN-2101A, Augusta, GA, 30912, USA
| | - Ilan Kirsch
- Adaptive Biotechnologies, Inc., 1551 Eastlake Ave. E., Seattle, WA, 98102, USA
| | - Peter P Lee
- Department of Immuno-oncology, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Cristina Maccalli
- Department of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Holden Maecker
- Stanford University Medical Center, 299 Campus Drive, Stanford, CA, 94303, USA
| | - Jeffrey Schlom
- National Cancer Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Room 8B09, Bethesda, MD, 20892, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, Halle, Germany
| | - Janet Siebert
- CytoAnalytics, 3500 South Albion Street, Cherry Hills Village, CO, 80113, USA
| | - David F Stroncek
- Department of Transfusion Medicine, National Institutes of Health, 10 Center Drive, Building 10, Room 3C720, Bethesda, MD, 20892, USA
| | - Magdalena Thurin
- National Cancer Institute, Cancer Diagnosis Program, DCTD, National Institutes of Health, 9609 Medical Center Drive, Bethesda, 20892, MD, USA
| | - Jianda Yuan
- Early Clinical Oncology Development, Merck Research Laboratories, Rahway, NJ, 07065, USA
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Masucci GV, Cesano A, Hawtin R, Janetzki S, Zhang J, Kirsch I, Dobbin KK, Alvarez J, Robbins PB, Selvan SR, Streicher HZ, Butterfield LH, Thurin M. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I - pre-analytical and analytical validation. J Immunother Cancer 2016; 4:76. [PMID: 27895917 PMCID: PMC5109744 DOI: 10.1186/s40425-016-0178-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently, there have been many clinical successes using checkpoint receptor blockade, including T cell inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death-1 (PD-1). Despite demonstrated successes in a variety of malignancies, responses only typically occur in a minority of patients in any given histology. Additionally, treatment is associated with inflammatory toxicity and high cost. Therefore, determining which patients would derive clinical benefit from immunotherapy is a compelling clinical question. Although numerous candidate biomarkers have been described, there are currently three FDA-approved assays based on PD-1 ligand expression (PD-L1) that have been clinically validated to identify patients who are more likely to benefit from a single-agent anti-PD-1/PD-L1 therapy. Because of the complexity of the immune response and tumor biology, it is unlikely that a single biomarker will be sufficient to predict clinical outcomes in response to immune-targeted therapy. Rather, the integration of multiple tumor and immune response parameters, such as protein expression, genomics, and transcriptomics, may be necessary for accurate prediction of clinical benefit. Before a candidate biomarker and/or new technology can be used in a clinical setting, several steps are necessary to demonstrate its clinical validity. Although regulatory guidelines provide general roadmaps for the validation process, their applicability to biomarkers in the cancer immunotherapy field is somewhat limited. Thus, Working Group 1 (WG1) of the Society for Immunotherapy of Cancer (SITC) Immune Biomarkers Task Force convened to address this need. In this two volume series, we discuss pre-analytical and analytical (Volume I) as well as clinical and regulatory (Volume II) aspects of the validation process as applied to predictive biomarkers for cancer immunotherapy. To illustrate the requirements for validation, we discuss examples of biomarker assays that have shown preliminary evidence of an association with clinical benefit from immunotherapeutic interventions. The scope includes only those assays and technologies that have established a certain level of validation for clinical use (fit-for-purpose). Recommendations to meet challenges and strategies to guide the choice of analytical and clinical validation design for specific assays are also provided.
Collapse
Affiliation(s)
- Giuseppe V Masucci
- Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | - Rachael Hawtin
- Nodality, Inc, 170 Harbor Way, South San Francisco, 94080 CA USA
| | - Sylvia Janetzki
- ZellNet Consulting, Inc, 555 North Avenue, Fort Lee, 07024 NJ USA
| | - Jenny Zhang
- Covaris Inc, 14 Gill St, Woburn, MA 01801 USA
| | - Ilan Kirsch
- Adaptive Biotechnologies, Inc, 1551 Eastlake Ave. E, Seattle, WA 98102 USA
| | - Kevin K Dobbin
- Department of Epidemiology and Biostatistics, College of Public Health, The University of Georgia, 101 Buck Road, Athens, 30602 GA USA
| | - John Alvarez
- Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | | | - Senthamil R Selvan
- Omni Array Biotechnology, 15601 Crabbs Branch Way, Rockville, 20855 MD USA
| | - Howard Z Streicher
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, 20892 MD USA
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Magdalena Thurin
- National Cancer Institute, Cancer Diagnosis Program, DCTD, National Institutes of Health, 9609 Medical Center Drive, Bethesda, 20892 MD USA ; Adaptive Biotechnologies, Inc, 1551 Eastlake Ave. E, Seattle, WA 98102 USA
| |
Collapse
|
12
|
Identification and characterization of distinct IL-17F expression patterns and signaling pathways in chronic lymphocytic leukemia and normal B lymphocytes. Immunol Res 2016; 63:216-27. [PMID: 26478573 PMCID: PMC4648985 DOI: 10.1007/s12026-015-8722-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a progressive accumulation of B lymphocytes. T cell abnormalities are a common feature of CLL and contribute to impaired immune function in these patients. T cells are ineffective in eliminating the leukemic clone and may actually promote tumor growth and survival. Previous work from our laboratory documented elevated circulating levels of IL-17A-producing Th17 cells in CLL patients as compared to healthy age-matched control subjects. These high circulating Th17 levels associated with better prognostic markers and significantly longer overall survival, even among patients whose clones used unmutated IGHVs (U-CLL). Recent studies suggest that Th17 cells are heterogeneous, expressing different profiles of cytokines, and that different subsets of Th17s mediate different biological functions. In the present study, we found significantly higher levels of IL-17F-expressing CD4+ T cells in CLL versus healthy peripheral blood mononuclear cells following in vitro stimulation in the presence of Th17-promoting cytokines. Furthermore, the differentiation of IL-17F-expressing Th17 cells was significantly enhanced when purified CD4+ T cells from CLL patients were cultured in the presence of autologous CLL B cells. Lastly, single-cell network profiling revealed that IL-17F triggers NFκB phosphorylation in T and B cells from patients with CLL, but not age-matched healthy controls. Taken together, our data suggest that the phenotype of Th17 cells in CLL patients is distinct from healthy individuals, expressing higher levels of IL-17F, and that B and T cells from CLL patients are particularly responsive to IL-17F, as compared to healthy age-matched control individuals.
Collapse
|
13
|
Snyderman R, Spellmeyer D. Precision medicine: beyond genomics to targeted therapies. Per Med 2016; 13:97-100. [PMID: 29749898 DOI: 10.2217/pme.15.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ralph Snyderman
- The Center for Research on Personalized Health Care, Duke University School of Medicine, DUMC Box 3059, Durham, NC 27710, USA
| | | |
Collapse
|