1
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Shanmukha S, Godfrey WH, Gharibani P, Lee JJ, Guo Y, Deng X, Wender PA, Kornberg MD, Kim PM. TPPB modulates PKC activity to attenuate neuroinflammation and ameliorate experimental multiple sclerosis. Front Cell Neurosci 2024; 18:1373557. [PMID: 38841204 PMCID: PMC11150779 DOI: 10.3389/fncel.2024.1373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Protein kinase C (PKC) plays a key role in modulating the activities of the innate immune cells of the central nervous system (CNS). A delicate balance between pro-inflammatory and regenerative activities by microglia and CNS-associated macrophages is necessary for the proper functioning of the CNS. Thus, a maladaptive activation of these CNS innate immune cells results in neurodegeneration and demyelination associated with various neurologic disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Prior studies have demonstrated that modulation of PKC activity by bryostatin-1 (bryo-1) and its analogs (bryologs) attenuates the pro-inflammatory processes by microglia/CNS macrophages and alleviates the neurologic symptoms in experimental autoimmune encephalomyelitis (EAE), an MS animal model. Here, we demonstrate that (2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB), a structurally distinct PKC modulator, has a similar effect to bryo-1 on CNS innate immune cells both in vitro and in vivo, attenuating neuroinflammation and resulting in CNS regeneration and repair. This study identifies a new structural class of PKC modulators, which can therapeutically target CNS innate immunity as a strategy to treat neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shruthi Shanmukha
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wesley H. Godfrey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Judy J. Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojing Deng
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul M. Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Shanmukha S, Godfrey WH, Gharibani P, Lee JJ, Guo Y, Deng X, Wender PA, Kornberg MD, Kim PM. TPPB modulates PKC activity to attenuate neuroinflammation and ameliorate experimental multiple sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578637. [PMID: 38370818 PMCID: PMC10871289 DOI: 10.1101/2024.02.02.578637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein kinase C (PKC) plays a key role in modulating the activities of the innate immune cells of the central nervous system (CNS). A delicate balance between pro-inflammatory and regenerative activities by microglia and CNS-associated macrophages is necessary for the proper functioning of the CNS. Thus, a maladaptive activation of these CNS innate immune cells results in neurodegeneration and demyelination associated with various neurologic disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Prior studies have demonstrated that modulation of PKC activity by bryostatin-1 (bryo-1) and its analogs (bryologs) attenuates the pro-inflammatory processes by microglia/CNS macrophages and alleviates the neurologic symptoms in experimental autoimmune encephalomyelitis (EAE), an MS animal model. Here, we demonstrate that (2S,5S)-(E,E)-8-(5-(4(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB), a structurally distinct PKC modulator, has a similar effect to bryo-1 on CNS innate immune cells both in vitro and in vivo, attenuating neuroinflammation and resulting in CNS regeneration and repair. This study identifies a new structural class of PKC modulators, which can therapeutically target CNS innate immunity as a strategy to treat neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shruthi Shanmukha
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Wesley H. Godfrey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Payam Gharibani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Judy J. Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, 21287, USA
| | - Xiaojing Deng
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Paul A. Wender
- Departments of Chemistry and of Chemical and Systems Biology, Stanford University, Stanford, California, 94305, USA
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Paul M. Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
4
|
Shears RK, Grencis RK. Whipworm secretions and their roles in host-parasite interactions. Parasit Vectors 2022; 15:348. [PMID: 36175934 PMCID: PMC9524059 DOI: 10.1186/s13071-022-05483-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Whipworm (Trichuris) is a genus of roundworms that causes gastrointestinal infections in humans and animals. Of particular interest are T. trichiura, the causative agent of human trichuriasis, a neglected tropical disease that affects 477 million people worldwide, and T. suis, the pig whipworm species, responsible for growth stunting and economic losses within the agricultural industry. The naturally occurring mouse whipworm, T. muris, has been used for decades as a model for trichuriasis, yielding knowledge on the biology of these parasites and the host response to infection. Ex vivo culture of T. muris (and to some extent, T. suis) has provided insight into the composition of the excretory/secretory (E/S) products released by worms, which include a myriad of proteins, RNAs, lipids, glycans, metabolites and extracellular vesicles. T. muris E/S has formed the basis of the search for whipworm vaccine candidates, while the immunomodulatory potential of T. suis and T. muris secretions has been investigated with the aim of improving our understanding of how these parasites modulate host immunity, as well as identifying immunomodulatory candidates with therapeutic potential in the context of inflammatory diseases. This article will review the various components found within Trichuris E/S, their potential as vaccine candidates and their immunomodulatory properties.
Collapse
Affiliation(s)
- Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5DG, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5DG, UK.
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
5
|
Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr Opin Pharmacol 2021; 62:103-108. [PMID: 34965482 DOI: 10.1016/j.coph.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023]
Abstract
Microglia and CNS-infiltrating macrophages play significant roles in the pathogenesis of neuroinflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Prolonged and dysregulated inflammatory responses by these innate immune cells can have deleterious effects on the surrounding CNS microenvironment, which can worsen neurodegeneration and demyelination. However, although chronic activation of pro-inflammatory microglia is maladaptive, other functional microglial subtypes play beneficial roles during CNS repair and regeneration. Therefore, there is a tremendous interest in understanding the underlying mechanism of the activation of these reparative/regenerative microglia. In this review, we focus on the potential role of PKC, a downstream signaling molecule of TREM2 and PLCγ2, and PKC modulators in promoting the activation of reparative/regenerative microglial subtypes as a novel therapy for neuroinflammatory and neurodegenerative diseases.
Collapse
|
6
|
Kırıcı P, Tanrıverdi ES. Effects of Different Progesterone Doses on the Concentrations of Proinflammatory and Anti-inflammatory Cytokines in Pregnant Women With Threatened Abortion. Cureus 2021; 13:e19333. [PMID: 34909296 PMCID: PMC8651064 DOI: 10.7759/cureus.19333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/06/2022] Open
Abstract
Background and objective This study aimed to investigate how different doses of progesterone influence the concentrations of interleukin-6 (IL-6) and tumor necrotizing factor-alpha (TNF-α), which are proinflammatory cytokines, as well as that of IL-10, which is an anti-inflammatory cytokine, in pregnant women with threatened abortion. Materials and methods This is a prospective, single-center, randomized controlled trial conducted with 221 patients with a threatened abortion diagnosis. Group 1 consisted of IL-6, IL-10, and TNF-α values in pre-treatment blood samples from 221 patients diagnosed with imminent abortion. Group 2 included 81 patients who received natural oral 100 mg micronized progesterone MP twice a day for two weeks. Group 3 included 83 patients who were administered oral 200 mg of natural micronized progesterone MP twice a day for two weeks. Group 4 included 57 patients who received oral 200 mg of natural micronized progesterone MP twice a day for two weeks, and one depot progesterone was added to the treatment by administering it at a dosage of 500 mg/day intramuscularly. Results IL-6 values between groups were lower in group 4 compared to group 3 (p=0.007). When IL-10 values were compared between the groups, the IL-10 ratio was highest in group 4 and lowest in group 2 (p<0.001, p=0.003, p<0.001). When the TNF-α values between the groups were compared, the value in group 4 was decreased compared to groups 1 and 2 (p=0.031, p<0.001). In the logistic regression analysis, the IL-6 value above 12.01 increased the abortion imminens rate 1.01 times, and a TNF-α value above 11.04 increased the abortion imminens rate 1.21 times. Conclusion Progesterone used to treat imminent abortion reduces the levels of proinflammatory cytokines, such as IL-6 and TNF-α, while increasing those of anti-inflammatory cytokine IL-10 in proportion to the dose administered. Progesterone can prevent imminent abortion by generating an anti-inflammatory environment.
Collapse
Affiliation(s)
- Pınar Kırıcı
- Obstetrics and Gynaecology, Adıyaman University, Adıyaman, TUR
| | | |
Collapse
|
7
|
Zakeri A, Whitehead BJ, Stensballe A, de Korne C, Williams AR, Everts B, Nejsum P. Parasite worm antigens instruct macrophages to release immunoregulatory extracellular vesicles. J Extracell Vesicles 2021; 10:e12131. [PMID: 34429858 PMCID: PMC8365858 DOI: 10.1002/jev2.12131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that immune cells not only communicate with each other through cytokines, chemokines, and cell surface receptors, but also by releasing small membranous structures known as extracellular vesicles (EVs). EVs carry a variety of different molecules that can be taken up by recipient cells. Parasitic worms are well known for their immunomodulatory properties, but whether they can affect immune responses by altering EV-driven communication between host immune cells remains unclear. Here we provide evidence that stimulation of bone marrow-derived macrophages (BMDMs) with soluble products of Trichuris suis (TSPs), leads to the release of EVs with anti-inflammatory properties. Specifically, we found that EVs from TSP-pulsed BMDMs, but not those from unstimulated BMDMs can suppress TNFα and IL-6 release in LPS-stimulated BMDMs and BMDCs. However, no polarization toward M1 or M2 was observed in macrophages exposed to EVs. Moreover, EVs enhanced reactive oxygen species (ROS) production in the exposed BMDMs, which was associated with a deregulated redox homeostasis as revealed by pathway analysis of transcriptomic data. Proteomic analysis identified cytochrome p450 (CYP450) as a potential source of ROS in EVs from TSP-pulsed BMDMs. Finally, pharmacological inhibition of CYP450 activity could suppress ROS production in those BMDMs. In summary, we find that TSPs can modulate immune responses not only via direct interactions but also indirectly by eliciting the release of EVs from BMDMs that exert anti-inflammatory effects on recipient cells.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Allan Stensballe
- Department of Medicine and Health TechnologyAalborg UniversityAalborgDenmark
| | - Clarize de Korne
- Department of ParasitologyLeiden University Medical CentreLeidenNetherlands
- Interventional Molecular Imaging laboratoryDepartment of RadiologyLeiden University Medical CentreLeidenNetherlands
| | - Andrew R. Williams
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Bart Everts
- Department of ParasitologyLeiden University Medical CentreLeidenNetherlands
| | - Peter Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
8
|
Lothstein KE, Gause WC. Mining Helminths for Novel Therapeutics. Trends Mol Med 2021; 27:345-364. [PMID: 33495068 PMCID: PMC9884063 DOI: 10.1016/j.molmed.2020.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023]
Abstract
Helminths are an emerging source of therapeutics for dysregulated inflammatory diseases. Excretory/secretory (ES) molecules, released during infection, are responsible for many of these immunomodulatory effects and are likely to have evolved as a means for parasite survival in the host. While the mechanisms of action of these molecules have not been fully defined, evidence demonstrates that they target various pathways in the immune response, ranging from initiation to effector cell modulation. These molecules are applied in controlling specific effector mechanisms of type 1 and type 2 immune responses. Recently, studies have further focused on their therapeutic potential in specific disease models. Here we review recent findings on ES molecule modulation of immune functions, specifically highlighting their clinical implications for future use in inflammatory disease therapeutics.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
9
|
Darlan DM, Rozi MF, Yulfi H. Overview of Immunological Responses and Immunomodulation Properties of Trichuris sp.: Prospects for Better Understanding Human Trichuriasis. Life (Basel) 2021; 11:188. [PMID: 33673676 PMCID: PMC7997218 DOI: 10.3390/life11030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Trichuris sp. infection has appeared as a pathological burden in the population, but the immunomodulation features could result in an opportunity to discover novel treatments for diseases with prominent inflammatory responses. Regarding the immunological aspects, the innate immune responses against Trichuris sp. are also responsible for determining subsequent immune responses, including the activation of innate lymphoid cell type 2 (ILC2s), and encouraging the immune cell polarization of the resistant host phenotype. Nevertheless, this parasite can establish a supportive niche for worm survival and finally avoid host immune interference. Trichuris sp. could skew antigen recognition and immune cell activation and proliferation through the generation of specific substances, called excretory/secretory (ESPs) and soluble products (SPs), which mainly mediate its immunomodulation properties. Through this review, we elaborate and discuss innate-adaptive immune responses and immunomodulation aspects, as well as the clinical implications for managing inflammatory-based diseases, such as inflammatory bowel diseases, allergic, sepsis, and other autoimmune diseases.
Collapse
Affiliation(s)
- Dewi Masyithah Darlan
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| | | | - Hemma Yulfi
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| |
Collapse
|
10
|
Wang S, Hu D, Wang C, Tang X, Du M, Gu X, Suo J, Hu M, Fang R, Zhu X, Zhang X, Du A, Suo X, Liu X. Transcriptional profiling of innate immune responses in sheep PBMCs induced by Haemonchus contortus soluble extracts. Parasit Vectors 2019; 12:182. [PMID: 31023355 PMCID: PMC6482558 DOI: 10.1186/s13071-019-3441-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns and activate downstream signalling pathways, resulting in modulation of host immunity against pathogens. Here, we investigated whether PRR-mediated recognition is involved in host immune responses to the blood-feeding nematode Haemonchus contortus. METHODS During blood-feeding, H. contortus secretes immune-modulating antigens into host blood. Therefore, we stimulated sheep peripheral blood mononuclear cells (PBMCs) with H. contortus soluble extract (HcAg) and performed transcriptional profiling. RESULTS HcAg upregulated two genetically linked CLRs (CLEC2L and KLRG2), two NLRs attenuating inflammation (NLRP12 and NLRC3) and one G protein-coupled receptor with potent anti-inflammatory effects (HCAR2). Furthermore, several Th2-related transcription factors (ATF3, IRF4, BCL3 and NFATC) were also upregulated, which may confer anti-inflammatory type 2 immune responses to HcAg. CONCLUSIONS Together, our preliminary studies provide new insights into how the host innate immune system controls type 2 immunity to H. contortus. Further work will be needed to identify H. contortus products recognized by the host innate immune system and determine the Th2 polarization ability of these putative PRR ligands.
Collapse
Affiliation(s)
- Si Wang
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Hu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chaoyue Wang
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengze Du
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaolong Gu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Mourglia-Ettlin G, Miles S, Velasco-De-Andrés M, Armiger-Borràs N, Cucher M, Dematteis S, Lozano F. The ectodomains of the lymphocyte scavenger receptors CD5 and CD6 interact with tegumental antigens from Echinococcus granulosus sensu lato and protect mice against secondary cystic echinococcosis. PLoS Negl Trop Dis 2018; 12:e0006891. [PMID: 30500820 PMCID: PMC6267981 DOI: 10.1371/journal.pntd.0006891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Scavenger Receptors (SRs) from the host’s innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. Methodology/Principal findings We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. Conclusions/Significance Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis. Scavenger Receptors (SRs) are constituents of host’s innate immune system able to sense and remove altered-self and/or pathogen components. Data on their interaction with helminth parasites is scarce. In this work, we describe that CD5 and CD6 -two lymphoid SRs previously reported to interact with conserved structures from bacteria, fungi and viruses- recognize tegumental components in the cestode parasite Echinococcus granulosus sensu lato (s.l.). Moreover, both receptors differentially modulate the cytokine release by host cells exposed to E. granulosus s.l. tegumental components. Importantly, the infusion of soluble forms of CD5 or CD6 improve infection outcomes in a murine model of secondary cystic echinococcosis. In summary, our results expand the pathogen binding properties of CD5 and CD6 and suggest their therapeutic potential against helminth infections.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- Echinococcosis/genetics
- Echinococcosis/metabolism
- Echinococcosis/parasitology
- Echinococcus granulosus/genetics
- Echinococcus granulosus/metabolism
- Female
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Binding
- Proteomics
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
- * E-mail: (GM-E); (FL)
| | - Sebastián Miles
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - María Velasco-De-Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (GM-E); (FL)
| |
Collapse
|
12
|
Leroux LP, Nasr M, Valanparambil R, Tam M, Rosa BA, Siciliani E, Hill DE, Zarlenga DS, Jaramillo M, Weinstock JV, Geary TG, Stevenson MM, Urban JF, Mitreva M, Jardim A. Analysis of the Trichuris suis excretory/secretory proteins as a function of life cycle stage and their immunomodulatory properties. Sci Rep 2018; 8:15921. [PMID: 30374177 PMCID: PMC6206011 DOI: 10.1038/s41598-018-34174-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Parasitic worms have a remarkable ability to modulate host immune responses through several mechanisms including excreted/secreted proteins (ESP), yet the exact nature of these proteins and their targets often remains elusive. Here, we performed mass spectrometry analyses of ESP (TsESP) from larval and adult stages of the pig whipworm Trichuris suis (Ts) and identified ~350 proteins. Transcriptomic analyses revealed large subsets of differentially expressed genes in the various life cycle stages of the parasite. Exposure of bone marrow-derived macrophages and dendritic cells to TsESP markedly diminished secretion of the pro-inflammatory cytokines TNFα and IL-12p70. Conversely, TsESP exposure strongly induced release of the anti-inflammatory cytokine IL-10, and also induced high levels of nitric oxide (NO) and upregulated arginase activity in macrophages. Interestingly, TsESP failed to directly induce CD4+ CD25+ FoxP3+ regulatory T cells (Treg cells), while OVA-pulsed TsESP-treated dendritic cells suppressed antigen-specific OT-II CD4+ T cell proliferation. Fractionation of TsESP identified a subset of proteins that promoted anti-inflammatory functions, an activity that was recapitulated using recombinant T. suis triosephosphate isomerase (TPI) and nucleoside diphosphate kinase (NDK). Our study helps illuminate the intricate balance that is characteristic of parasite-host interactions at the immunological interface, and further establishes the principle that specific parasite-derived proteins can modulate immune cell functions.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier (IAF), Laval, QC, Canada
| | - Mohamad Nasr
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
| | - Rajesh Valanparambil
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mifong Tam
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in, St. Louis, MO, USA
| | - Elizabeth Siciliani
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Dolores E Hill
- United States Department of Agriculture, Beltsville, MD, USA
| | | | - Maritza Jaramillo
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier (IAF), Laval, QC, Canada
| | - Joel V Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA, USA
| | - Timothy G Geary
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
| | - Mary M Stevenson
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Joseph F Urban
- United States Department of Agriculture, Beltsville, MD, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in, St. Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Armando Jardim
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada.
| |
Collapse
|
13
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
van Die I, Cummings RD. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front Immunol 2017; 8:1677. [PMID: 29238348 PMCID: PMC5712593 DOI: 10.3389/fimmu.2017.01677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Aarts SABM, Seijkens TTP, Kusters PJH, van der Pol SMA, Zarzycka B, Heijnen PDAM, Beckers L, den Toom M, Gijbels MJJ, Boon L, Weber C, de Vries HE, Nicolaes GAF, Dijkstra CD, Kooij G, Lutgens E. Inhibition of CD40-TRAF6 interactions by the small molecule inhibitor 6877002 reduces neuroinflammation. J Neuroinflammation 2017; 14:105. [PMID: 28494768 PMCID: PMC5427621 DOI: 10.1186/s12974-017-0875-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation. METHODS Human monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice). RESULTS We here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models. CONCLUSIONS Together, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS.
Collapse
Affiliation(s)
- Suzanne A. B. M. Aarts
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Tom T. P. Seijkens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Pascal J. H. Kusters
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Susanne M. A. van der Pol
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Barbara Zarzycka
- Department of Biochemistry, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | - Priscilla D. A. M. Heijnen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Marion J. J. Gijbels
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Department of Pathology and Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Louis Boon
- Bioceros, 3584 CM Utrecht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, 80336 Munich, Germany
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | - Christine D. Dijkstra
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, 80336 Munich, Germany
| |
Collapse
|
16
|
Laan LC, Williams AR, Stavenhagen K, Giera M, Kooij G, Vlasakov I, Kalay H, Kringel H, Nejsum P, Thamsborg SM, Wuhrer M, Dijkstra CD, Cummings RD, van Die I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB J 2016; 31:719-731. [PMID: 27806992 DOI: 10.1096/fj.201600841r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Clinical trials have shown that administration of the nematode Trichuris suis can be beneficial in treating various immune disorders. To provide insight into the mechanisms by which this worm suppresses inflammatory responses, an active component was purified from T. suis soluble products (TsSPs) that suppress---- TNF and IL-12 secretion from LPS-activated human dendritic cells (DCs). Analysis by liquid chromatography tandem mass spectrometry identified this compound as prostaglandin (PG)E2. The purified compound showed similar properties compared with TsSPs and commercial PGE2 in modulating LPS-induced expression of many cytokines and chemokines and in modulating Rab7B and P2RX7 expression in human DCs. Furthermore, the TsSP-induced reduction of TNF secretion from DCs is reversed by receptor antagonists for EP2 and EP4, indicating PGE2 action. T. suis secretes extremely high amounts of PGE2 (45-90 ng/mg protein) within their excretory/secretory products but few related lipid mediators as established by metabololipidomic analysis. Culture of T. suis with several cyclooxygenase (COX) inhibitors that inhibit mammalian prostaglandin synthesis affected the worm's motility but did not inhibit PGE2 secretion, suggesting that the worms can synthesize PGE2 via a COX-independent pathway. We conclude that T. suis secretes PGE2 to suppress proinflammatory responses in human DCs, thereby modulating the host's immune response.-Laan, L. C., Williams, A. R., Stavenhagen, K., Giera, M., Kooij, G., Vlasakov, I., Kalay, H., Kringel, H., Nejsum, P., Thamsborg, S. M., Wuhrer, M., Dijkstra, C. D., Cummings, R. D., van Die, I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells.
Collapse
Affiliation(s)
- Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrew R Williams
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Iliyan Vlasakov
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Helene Kringel
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Peter Nejsum
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Stig M Thamsborg
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine D Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycosciences, Boston, Massachusetts, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
17
|
Rana A, Sattar SS, Shahzad A, Ali GM, Waheed Y. Scavenger receptor class-A plays diverse role in innate immunity, cell signaling and different pathologies. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016; 6:567-572. [DOI: 10.1016/s2222-1808(16)61088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Rinchai D, Boughorbel S, Presnell S, Quinn C, Chaussabel D. A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research. F1000Res 2016; 5:291. [PMID: 27158452 PMCID: PMC4856112 DOI: 10.12688/f1000research.8182.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB). This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at
http://monocyte.gxbsidra.org/dm3/landing.gsp.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Sabri Boughorbel
- Biomedical Informatics Division, Sidra Medical and Research Center, Doha, Qatar
| | - Scott Presnell
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Charlie Quinn
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
19
|
Hoeksema MA, Laan LC, Postma JJ, Cummings RD, de Winther MPJ, Dijkstra CD, van Die I, Kooij G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling. FASEB J 2016; 30:2826-36. [PMID: 27095802 DOI: 10.1096/fj.201600343r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.
Collapse
Affiliation(s)
- Marten A Hoeksema
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Juliette J Postma
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Christine D Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
20
|
Natrajan MS, Komori M, Kosa P, Johnson KR, Wu T, Franklin RJM, Bielekova B. Pioglitazone regulates myelin phagocytosis and multiple sclerosis monocytes. Ann Clin Transl Neurol 2015; 2:1071-84. [PMID: 26734659 PMCID: PMC4693592 DOI: 10.1002/acn3.260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Myeloid phagocytes, including blood monocytes recruited to demyelinating lesions, may play a dual role in MS: on one hand, they might enhance CNS damage after differentiating toward a proinflammatory phenotype; on the other, they promote remyelination and repair through effective phagocytosis of myelin debris. We have previously determined that the retinoid X receptor (RXR) plays an important role in monocyte phagocytosis of myelin. Peroxisome proliferator-activated receptor γ is an RXR binding partner that plays a key role in myeloid cell biology and is targeted by the thiazolidinedione group of antidiabetics such as pioglitazone. Consequently, the purpose of this study was to determine if monocyte functions and differentiation profiles differ in MS patients compared to healthy volunteers (HV) and whether pioglitazone can reverse these differences to promote CNS recovery. METHODS Monocytes were isolated from MS patients and HV (n ≥ 36/group), and their ability to phagocytose myelin and modulate inflammation in the presence/absence of 1 μmol/L pioglitazone (the in vivo achievable concentration) was quantified by flow cytometry, transcriptional profiling, and proteomic assays. RESULTS MS monocytes display impaired phagocytosis of myelin debris and enhanced proinflammatory differentiation. Pioglitazone treatment causes partial normalization of identified monocyte abnormalities in MS and fully reverses the deficit in myelin phagocytosis. INTERPRETATION These findings suggest that by inhibiting proinflammatory differentiation of monocytes and enhancing their phagocytosis of myelin, pioglitazone may be a useful adjunct therapy to immunomodulatory agents that target dysregulated adaptive immunity in MS.
Collapse
Affiliation(s)
- Muktha S. Natrajan
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
- Wellcome Trust‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Mika Komori
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Peter Kosa
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Kory R. Johnson
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Tianxia Wu
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Robin J. M. Franklin
- Wellcome Trust‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Bibiana Bielekova
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| |
Collapse
|