1
|
Bulgart HR, Lopez Perez MA, Weisleder N. Enhancing Membrane Repair Using Recombinant MG53/TRIM72 (rhMG53) Reduces Neurotoxicity in Alzheimer's Disease Models. Biomolecules 2025; 15:418. [PMID: 40149954 PMCID: PMC11940288 DOI: 10.3390/biom15030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease that involves neuronal cell death initiated by the breakdown of the plasma membrane. Amyloid beta (Aβ), a hallmark protein that contributes to AD pathogenesis, is known to interact directly with the plasma membrane and induce increased intracellular calcium levels, reactive oxygen species (ROS), and cell death. Our recent studies revealed that elevated levels of Aβ42 induce a plasma membrane repair defect in neurons that compromises this conserved cellular response that would normally repair the disruption. Here, we tested if recombinant MG53/TRIM72 protein (rhMG53), a therapeutic protein known to increase plasma membrane repair capacity, could enhance membrane repair in AD neurons. rhMG53 increased plasma membrane repair in ex vivo and in vitro tissue treated with Aβ42 or cerebrospinal fluid from AD patients, normalizing intracellular calcium levels, ROS, and cell death in treated cells. This study demonstrates that increasing plasma membrane repair can rescue neural cells from the neurotoxic effects of Aβ, indicating that elevating plasma membrane repair could be a viable therapeutic approach to reduce neuronal death in AD.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
| | - Miguel A. Lopez Perez
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA;
| | - Noah Weisleder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
2
|
Kadamangudi S, Marcatti M, Zhang WR, Fracassi A, Kayed R, Limon A, Taglialatela G. Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathol 2024; 149:2. [PMID: 39688618 DOI: 10.1007/s00401-024-02839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.g. soluble oligomers). However, it is unclear whether Aβ oligomers modulate the binding and internalization of tau oligomers in human synapses. Our translationally focused paradigms utilize post-mortem brain specimens from Control, PART, and AD patients. Synaptosomes isolated from the temporal cortex of all three groups were incubated with preformed recombinant tauO (rtauO), ± preformed recombinant AβO (rAβO), and oligomer binding/internalization was quantified via flow cytometry following proteinase K (PK) digestion of surface-bound oligomers. TauO-synapse interactions were visualized using EM immunogold. Brain-derived tau oligomers (BDTO) from AD and PART PBS-soluble hippocampal fractions were co-immunoprecipitated and analyzed via mass spectrometry to compare synaptic tauO interactomes in primary and secondary tauopathies, thereby inferring the role of Aβ. AD synaptosomes, enriched in endogenous Aβ pathology, exhibited increased rtauO internalization compared to PART synaptosomes. This observation was mirrored in Control synaptosomes, where recombinant rAβO significantly increased rtauO binding and internalization. PK pre-treatment abolished this effect, implicating synaptic membrane proteins in AβO-mediated tauO internalization. While both PART and AD BDTO were broadly enriched in synaptic proteins, AD BDTO exhibited differential enrichment of endocytic proteins across pre- and post-synaptic compartments, whereas PART BDTO showed no significant synaptic enrichment. This study demonstrates that Aβ oligomers enhance tau oligomer binding and drive its internalization through synaptic membrane proteins. These findings offer novel mechanistic insights underlying pathological tau spreading directly within human synapses and emphasize the therapeutic potential of targeting Aβ-tau interactions.
Collapse
Affiliation(s)
- Shrinath Kadamangudi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Wen-Ru Zhang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Bulgart HR, Lopez Perez MA, Tucker A, Giarrano GN, Banford K, Miller O, Bonser SWG, Wold LE, Scharre D, Weisleder N. Plasma membrane repair defect in Alzheimer's disease neurons is driven by the reduced dysferlin expression. FASEB J 2024; 38:e70099. [PMID: 39400395 PMCID: PMC11486262 DOI: 10.1096/fj.202401731rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and a defect in neuronal plasma membrane repair could exacerbate neurotoxicity, neuronal death, and disease progression. In this study, application of AD patient cerebrospinal fluid (CSF) and recombinant human Aβ to otherwise healthy neurons induces defective neuronal plasma membrane repair in vitro and ex vivo. We identified Aβ as the biochemical component in patient CSF leading to compromised repair capacity and depleting Aβ rescued repair capacity. These elevated Aβ levels reduced expression of dysferlin, a protein that facilitates membrane repair, by altering autophagy and reducing dysferlin trafficking to sites of membrane injury. Overexpression of dysferlin and autophagy inhibition rescued membrane repair. Overall, these findings indicate an AD pathogenic mechanism where Aβ impairs neuronal membrane repair capacity and increases susceptibility to cell death. This suggests that membrane repair could be therapeutically targeted in AD to restore membrane integrity and reduce neurotoxicity and neuronal death.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Miguel A. Lopez Perez
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Alexis Tucker
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Gianni N. Giarrano
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kassidy Banford
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Olivia Miller
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sidney W. G. Bonser
- Department of Applied Statistics and Research MethodsUniversity of Northern ColoradoGreeleyColoradoUSA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Douglas Scharre
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Molecular and Cellular BiochemistryUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
4
|
Chiang W, Urban JM, Yanchik-Slade F, Stout A, Hammond JM, Nilsson BL, Gelbard HA, Krauss TD. Hybrid Amyloid Quantum Dot Nano-Bio Assemblies to Probe Neuroinflammatory Damage. ACS Chem Neurosci 2024; 15:3124-3135. [PMID: 39146244 PMCID: PMC11378299 DOI: 10.1021/acschemneuro.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. The dynamic interconversion between various amyloid oligomers and fibrillar assemblies makes it difficult to elucidate the role each potential aggregation state may play in driving neuroinflammatory and neurodegenerative pathology. The ability to identify the amyloid species that are key and essential drivers of these pathological hallmarks of Alzheimer's Disease is of fundamental importance for also understanding downstream events including tauopathies that mediate neuroinflammation with neurologic deficits. Here, we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic assembly of amyloid to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types. The design parameters and construction protocol developed here may be adapted for developing quantum dot nano-bio assemblies for other biological systems of interest, particularly neurodegenerative diseases involving other protein aggregates.
Collapse
Affiliation(s)
- Wesley Chiang
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
- Department
of Biochemistry and Biophysics, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jennifer M. Urban
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Francine Yanchik-Slade
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Angela Stout
- Center
for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jennetta M. Hammond
- Center
for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Bradley L. Nilsson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Harris A. Gelbard
- Center
for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
- Departments
of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
- The
Institute of Optics, University of Rochester
Medical Center, Rochester, New York 14627-0216, United States
| |
Collapse
|
5
|
Chiang W, Urban JM, Yanchik-Slade F, Stout A, Nilsson BL, Gelbard HA, Krauss TD. Hybrid Amyloid Quantum Dot Nanoassemblies to Probe Neuroinflammatory Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555592. [PMID: 37693630 PMCID: PMC10491264 DOI: 10.1101/2023.08.30.555592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. However, investigating the role of a homogenous single oligomeric species has been difficult due to highly dynamic oligomerization and fibril formation kinetics that convert between many species. Here we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic species to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types.
Collapse
Affiliation(s)
- Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642
| | - Jennifer M. Urban
- Department of Chemistry, Rochester, New York 14627-0216, United States
| | | | - Angela Stout
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642
| | | | - Harris A. Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642
- Departments of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Todd D. Krauss
- Department of Chemistry, Rochester, New York 14627-0216, United States
- The Institute of Optics, Rochester, New York 14627-0216, United States
| |
Collapse
|
6
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
7
|
Bulgart HR, Goncalves I, Weisleder N. Leveraging Plasma Membrane Repair Therapeutics for Treating Neurodegenerative Diseases. Cells 2023; 12:1660. [PMID: 37371130 DOI: 10.3390/cells12121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plasma membrane repair is an essential cellular mechanism that reseals membrane disruptions after a variety of insults, and compromised repair capacity can contribute to the progression of many diseases. Neurodegenerative diseases are marked by membrane damage from many sources, reduced membrane integrity, elevated intracellular calcium concentrations, enhanced reactive oxygen species production, mitochondrial dysfunction, and widespread neuronal death. While the toxic intracellular effects of these changes in cellular physiology have been defined, the specific mechanism of neuronal death in certain neurodegenerative diseases remains unclear. An abundance of recent evidence indicates that neuronal membrane damage and pore formation in the membrane are key contributors to neurodegenerative disease pathogenesis. In this review, we have outlined evidence supporting the hypothesis that membrane damage is a contributor to neurodegenerative diseases and that therapeutically enhancing membrane repair can potentially combat neuronal death.
Collapse
Affiliation(s)
- Hannah R Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Isabella Goncalves
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Cai H, Bao Y, Cheng H, Ge X, Zhang M, Feng X, Zheng Y, He J, Wei Y, Liu C, Li L, Huang L, Wang F, Chen X, Chen P, Yang X. Zinc homeostasis may reverse the synergistic neurotoxicity of heavy metal mixtures in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161699. [PMID: 36682567 DOI: 10.1016/j.scitotenv.2023.161699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal mixtures can cause nerve damage. However, the combined effects of metal mixtures are extremely complex and rarely studied. Zinc (Zn) homeostasis plays an integral role in neural function, but the role of Zn homeostasis in the toxicity of metal mixtures is not well understood. Here, we investigated the combined effects of manganese (Mn), lead (Pb) and arsenic (As) on nerves and the effect of Zn homeostasis on metal toxicity. Caenorhabditis elegans (Maupas, 1900) were exposed to single and multiple metals for 8 days, their movement, behavior, neurons and metal concentration were detected to evaluate the combined effect of metal mixtures. After nematodes were co-treated with metal mixtures and Zn, the nerve function, Zn concentration and redox balance were detected to evaluate the effect of Zn homeostasis on metal toxicity. The results showed that Mn + Pb and Pb + As mixtures induced synergistic toxicity for nematode nerves, which damaged movement, behavior and neurons, and decreased Zn concentration. While Zn supplementation recovered Zn homeostasis and promoted redox balance on nematodes, and then improved the nerve function. Our study demonstrated the combined effects of metal mixtures and the neuroprotective effect of Zn homeostasis. Therefore, assessment of metal mixtures toxicity should consider their interaction and the impacts of essential metals homeostasis.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Research on Medical Engineering Integration and Innovation, Liuzhou, Guangxi, China
| | - Mengdi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
9
|
Abstract
An understanding of how the amino acid sequence affects the interaction of peptides with lipid membranes remains mostly unknown. This type of knowledge is required to rationalize membrane-induced toxicity of amyloid peptides and to design peptides that can interact with lipid bilayers. Here, we perform a systematic study of how variations in the sequence of the amphipathic Ac-(FKFE)2-NH2 peptide affect its interaction with zwitterionic lipid bilayers using extensive all-atom molecular dynamics simulations in explicit solvent. Our results show that peptides with a net positive charge bind more frequently to the lipid bilayer than neutral or negatively charged sequences. Moreover, neutral amphipathic peptides made with the same numbers of phenylalanine (F), lysine (K), and glutamic (E) amino acids at different positions in the sequence differ significantly in their frequency of binding to the membrane. We find that peptides bind with a higher frequency to the membrane if their positive lysine side chains are more exposed to the solvent, which occurs if they are located at the extremity (as opposed to the middle) of the sequence. Non-polar residues play an important role in accounting for the adsorption of peptides onto the membrane. In particular, peptides made with less hydrophobic non-polar residues (e.g., valine and alanine) are significantly less adsorbed to the membrane compared to peptides made with phenylalanine. We also find that sequences where phenylalanine residues are located at the extremities of the peptide have a higher tendency to be adsorbed.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
10
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
11
|
Yang Y, Distaffen H, Jalali S, Nieuwkoop AJ, Nilsson BL, Dias CL. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chem Neurosci 2022; 13:2766-2777. [PMID: 36095304 DOI: 10.1021/acschemneuro.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amphipathic peptides can cause biological membranes to leak either by dissolving their lipid content via a detergent-like mechanism or by forming pores on the membrane surface. These modes of membrane damage have been related to the toxicity of amyloid peptides and to the activity of antimicrobial peptides. Here, we perform the first all-atom simulations in which membrane-bound amphipathic peptides self-assemble into β-sheets that subsequently either form stable pores inside the bilayer or drag lipids out of the membrane surface. An analysis of these simulations shows that the acyl tail of lipids interact strongly with non-polar side chains of peptides deposited on the membrane. These strong interactions enable lipids to be dragged out of the bilayer by oligomeric structures accounting for detergent-like damage. They also disturb the orientation of lipid tails in the vicinity of peptides. These distortions are minimized around pore structures. We also show that membrane-bound β-sheets become twisted with one of their extremities partially penetrating the lipid bilayer. This allows peptides on opposite leaflets to interact and form a long transmembrane β-sheet, which initiates poration. In simulations, where peptides are deposited on a single leaflet, the twist in β-sheets allows them to penetrate the membrane and form pores. In addition, our simulations show that fibril-like structures produce little damage to lipid membranes, as non-polar side chains in these structures are unavailable to interact with the acyl tail of lipids.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Hannah Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
12
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|
13
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
14
|
Tian Y, Liu J, Yang F, Lian C, Zhang H, Viles JH, Li Z. Therapeutic potential for amyloid surface inhibitor: only amyloid-β oligomers formed by secondary nucleation disrupt lipid membrane integrity. FEBS J 2022; 289:6767-6781. [PMID: 35670622 DOI: 10.1111/febs.16550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
Inhibition of amyloid-β peptide (Aβ) aggregation is a promising therapeutic strategy for Alzheimer's disease (AD), as Aβ aggregation is generally believed to trigger AD pathology. Pre-fibril Aβ-oligomers induce membrane disruption and are crucial to neurotoxicity. We have previously designed a short peptide called cyclic helical amyloid surface inhibitor (cHASI) that can selectively bind to the Aβ fibril surface. Here, we use cHASI to efficiently inhibit the surface-catalysed secondary nucleation process of Aβ in a lipid membrane environment. By incubating Aβ monomers with lipid vesicles, we show that during the assembly of Aβ into amyloid fibrils, oligomers are formed that markedly disrupt the lipid bilayer. Remarkably, when Aβ monomers are incubated with cHASI, although Aβ forms amyloid fibrils via primary nucleation and elongation, this pathway to fibrils does not damage the lipid bilayer. This indicates that only oligomers produced during secondary surface nucleation disrupt membrane integrity. The protective effect of cHASI is confirmed by cytotoxicity assays. Our study highlights the therapeutic potential for inhibiting the secondary nucleation process in Aβ aggregation, rather than inhibiting all pathways to fibril formation.
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China
| |
Collapse
|
15
|
Lin H, Gao Y, Zhang C, Ma B, Wu M, Cui X, Wang H. Autophagy Regulation Influences β-Amyloid Toxicity in Transgenic Caenorhabditis elegans. Front Aging Neurosci 2022; 14:885145. [PMID: 35645788 PMCID: PMC9133694 DOI: 10.3389/fnagi.2022.885145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease characterized by the accumulation of amyloid-beta (Aβ) proteins in the form of plaques that cause a proteostasis imbalance in the brain. Several studies have identified autophagy deficits in both AD patients and AD animal models. Here, we used transgenic Caenorhabditis elegans to study the relationship between autophagy flux and Aβ. We labeled autophagosomes with an advanced fluorescence reporter system, and used this to observe that human Aβ expression caused autophagosome accumulation in C. elegans muscle. The autophagy-related drugs chloroquine and 3-MA were employed to investigate the relationship between changes in autophagic flux and the toxicity of Aβ expression. We found that reducing autophagosome accumulation delayed Aβ-induced paralysis in the CL4176 strain of C. elegans, and alleviated Aβ-induced toxicity, thus having a neuroprotective effect. Finally, we used RNA-sequencing and proteomics to identify genes whose expression was affected by Aβ aggregation in C. elegans. We identified a series of enriched autophagy-related signal pathways, suggesting that autophagosome accumulation impairs Aβ protein homeostasis in nematodes. Thus, maintaining normal autophagy levels appears to be important in repairing the protein homeostasis imbalance caused by Aβ expression.
Collapse
|
16
|
Neuroprotective Effects of Palmatine via the Enhancement of Antioxidant Defense and Small Heat Shock Protein Expression in A β-Transgenic Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9966223. [PMID: 34567416 PMCID: PMC8460366 DOI: 10.1155/2021/9966223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023]
Abstract
Palmatine is a naturally occurring isoquinoline alkaloid that has been reported to display neuroprotective effects against amyloid-β- (Aβ-) induced neurotoxicity. However, the mechanisms underlying the neuroprotective activities of palmatine remain poorly characterized in vivo. We employed transgenic Caenorhabditis elegans models containing human Aβ1-42 to investigate the effects and possible mechanisms of palmatine-mediated neuroprotection. Treatment with palmatine significantly delayed the paralytic process and reduced the elevated reactive oxygen species levels in Aβ-transgenic C. elegans. In addition, it increased oxidative stress resistance without affecting the lifespan of wild-type C. elegans. Pathway analysis suggested that the differentially expressed genes were related mainly to aging, detoxification, and lipid metabolism. Real-time PCR indicated that resistance-related genes such as sod-3 and shsp were significantly upregulated, while the lipid metabolism-related gene fat-5 was downregulated. Further studies demonstrated that the inhibitory effects of palmatine on Aβ toxicity were attributable to the free radical-scavenging capacity and that the upregulated expression of resistance-related genes, especially shsp, whose expression was regulated by HSF-1, played crucial roles in protecting cells from Aβ-induced toxicity. The research showed that there were significantly fewer Aβ deposits in transgenic CL2006 nematodes treated with palmatine than in control nematodes. In addition, our study found that Aβ-induced toxicity was accompanied by dysregulation of lipid metabolism, leading to excessive fat accumulation in Aβ-transgenic CL4176 nematodes. The alleviation of lipid disorder by palmatine should be attributed not only to the reduction in fat synthesis but also to the inhibition of Aβ aggregation and toxicity, which jointly maintained metabolic homeostasis. This study provides new insights into the in vivo neuroprotective effects of palmatine against Aβ aggregation and toxicity and provides valuable targets for the prevention and treatment of AD.
Collapse
|
17
|
Dilna A, Deepak KV, Damodaran N, Kielkopf CS, Kagedal K, Ollinger K, Nath S. Amyloid-β induced membrane damage instigates tunneling nanotube-like conduits by p21-activated kinase dependent actin remodulation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166246. [PMID: 34403739 DOI: 10.1016/j.bbadis.2021.166246] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) pathology progresses gradually via anatomically connected brain regions. Direct transfer of amyloid-β1-42 oligomers (oAβ) between connected neurons has been shown, however, the mechanism is not fully revealed. We observed formation of oAβ induced tunneling nanotubes (TNTs)-like nanoscaled f-actin containing membrane conduits, in differentially differentiated SH-SY5Y neuronal models. Time-lapse images showed that oAβ propagate from one cell to another via TNT-like structures. Preceding the formation of TNT-like conduits, we detected oAβ-induced plasma membrane (PM) damage and calcium-dependent repair through lysosomal-exocytosis, followed by massive endocytosis to re-establish the PM. Massive endocytosis was monitored by an influx of the membrane-staining dye TMA-DPH and PM damage was quantified by propidium iodide influx in the absence of Ca2+. The massive endocytosis eventually caused accumulation of internalized oAβ in Lamp1 positive multivesicular bodies/lysosomes via the actin cytoskeleton remodulating p21-activated kinase1 (PAK1) dependent endocytic pathway. Three-dimensional quantitative confocal imaging, structured illumination superresolution microscopy, and flowcytometry quantifications revealed that oAβ induces activation of phospho-PAK1, which modulates the formation of long stretched f-actin extensions between cells. Moreover, the formation of TNT-like conduits was inhibited by preventing PAK1-dependent internalization of oAβ using the small-molecule inhibitor IPA-3, a highly selective cell-permeable auto-regulatory inhibitor of PAK1. The present study reveals that the TNT-like conduits are probably instigated as a consequence of oAβ induced PM damage and repair process, followed by PAK1 dependent endocytosis and actin remodeling, probably to maintain cell surface expansion and/or membrane tension in equilibrium.
Collapse
Affiliation(s)
- Aysha Dilna
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - K V Deepak
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - Nandini Damodaran
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - Claudia S Kielkopf
- Experimental Pathology, Department of Biomedical and Clinical Sciences Linköping University, 581 85 Linköping, Sweden
| | - Katarina Kagedal
- Experimental Pathology, Department of Biomedical and Clinical Sciences Linköping University, 581 85 Linköping, Sweden
| | - Karin Ollinger
- Experimental Pathology, Department of Biomedical and Clinical Sciences Linköping University, 581 85 Linköping, Sweden
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India.
| |
Collapse
|
18
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
19
|
Perni M, Mannini B, Xu CK, Kumita JR, Dobson CM, Chiti F, Vendruscolo M. Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Sci Rep 2021; 11:14391. [PMID: 34257326 PMCID: PMC8277765 DOI: 10.1038/s41598-021-93527-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance.
Collapse
Affiliation(s)
- Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
20
|
Sirangelo I, Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. Int J Mol Sci 2021; 22:ijms22126609. [PMID: 34205510 PMCID: PMC8235188 DOI: 10.3390/ijms22126609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Protein function and flexibility is directly related to the native distribution of its structural elements and any alteration in protein architecture leads to several abnormalities and accumulation of misfolded proteins. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space of tissues and as intracellular deposits. Post-translational modifications are known to have an active role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible modification of the protein structure, which strongly affects long-living proteins throughout the body. This study provided an overview of the molecular effects induced by glycation on the amyloid aggregation process of several protein models associated with misfolding diseases. In particular, we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo amyloid aggregation process.
Collapse
|
21
|
Kelly L, Seifi M, Ma R, Mitchell SJ, Rudolph U, Viola KL, Klein WL, Lambert JJ, Swinny JD. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol Appl Neurobiol 2021; 47:488-505. [PMID: 33119191 DOI: 10.1111/nan.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
AIMS Amyloid β-oligomers (AβO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AβO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AβO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aβ production (APP-PSEN1). METHODS AND RESULTS Immunohistochemistry and confocal microscopy, using AβO-specific antibodies, confirmed LC AβO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AβO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AβO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aβ-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS The data suggest a close association between AβO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohsen Seifi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ruolin Ma
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Scott J Mitchell
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
22
|
Nan S, Wang P, Zhang Y, Fan J. Epigallocatechin-3-Gallate Provides Protection Against Alzheimer's Disease-Induced Learning and Memory Impairments in Rats. Drug Des Devel Ther 2021; 15:2013-2024. [PMID: 34012254 PMCID: PMC8128347 DOI: 10.2147/dddt.s289473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Recent evidence has highlighted the anti-inflammatory properties of the constituent of Green Tea Polyphenols (GTP), epigallocatechin-3-gallate (EGCG) which has been suggested to exert a neuroprotective effect on Alzheimer’s disease (AD). The current study aimed to elucidate the effect of EGCG on memory function in rats with AD. Methods AD rat models were initially established through an injection with Aβ 25–35 solution, followed by gavage with EGCG at varying doses to determine the effect of EGCG on learning and cognitive deficits in AD. Morris water maze test was conducted to evaluate the spatial memory function of the rats. Immunohistochemistry and Western blot analysis were performed to identify Tau phosphorylation. The expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) mRNA and protein in rat hippocampus was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Acetylcholinesterase (AchE) activity, Aβ1-42 expression and Ach content were all detected using enzyme-linked immunosorbent assay (ELISA). Results EGCG intervention brought about a decrease in the escape latency period while increasing the time at the target quadrant among the AD rats. EGCG decreased the hyperphosphorylation of Tau in hippocampus. BACE1 expression and activity as well as the expression of Aβ1-42 were suppressed by EGCG. Moreover, EGCG promoted Ach content by diminishing the activity of AchE. Conclusion The current study demonstrates that EGCG may diminish the hyperphosphorylation of the Tau protein, downregulate BACE1 and Aβ1-42 expression to improve the antioxidant system and learning and memory function of rats with AD.
Collapse
Affiliation(s)
- Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| |
Collapse
|
23
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
24
|
Žerovnik E. Viroporins vs. Other Pore-Forming Proteins: What Lessons Can We Take? Front Chem 2021; 9:626059. [PMID: 33681145 PMCID: PMC7930612 DOI: 10.3389/fchem.2021.626059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Pore-forming proteins (PFPs) exist in virtually all domains of life, and by disrupting cellular membranes, depending on the pore size, they cause ion dis-balance, small substances, or even protein efflux/influx, influencing cell’s signaling routes and fate. Such pore-forming proteins exist from bacteria to viruses and also shape host defense systems, including innate immunity. There is strong evidence that amyloid toxicity is also caused by prefibrillar oligomers making “amyloid pores” into cellular membranes. For most of the PFPs, a 2-step mechanism of protein-membrane interaction takes place on the “lipid rafts,” membrane microdomains rich in gangliosides and cholesterol. In this mini-review paper, common traits of different PFPs are looked at. Possible ways for therapy of channelopathies and/or modulating immunity relevant to the new threat of SARS-CoV-2 infections could be learnt from such comparisons.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
25
|
Venko K, Novič M, Stoka V, Žerovnik E. Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Front Mol Neurosci 2021; 14:619496. [PMID: 33642992 PMCID: PMC7902868 DOI: 10.3389/fnmol.2021.619496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that amyloid-beta makes ion-conducting channels and that Alzheimer's disease may be due to the toxic effect of these channels, many studies have confirmed that APs are formed by prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity. The mechanism of pore formation is still not well-understood and the structure and imaging of APs in living cells remains an open issue. To get closer to understand AP formation we used predictive methods to assess the propensity of a set of 30 amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid sequence tools were applied to predict AP domains of AFPs, and provided context on future experiments that are needed in order to contribute toward a deeper understanding of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity, presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem to show just one of these regions. For comparative purposes, we also analyzed a few examples of amyloid proteins that behave as biologically non-relevant AFPs. Based on the known experimental data on the β-amyloid and α-synuclein pore formation, we suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM helix to β-TM strands transition on lipid rafts seem to be the common key events.
Collapse
Affiliation(s)
- Katja Venko
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novič
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
26
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Tittelmeier J, Nachman E, Nussbaum-Krammer C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:581374. [PMID: 33132902 PMCID: PMC7572858 DOI: 10.3389/fnagi.2020.581374] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in many age-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Pathological inclusions and the associated toxicity appear to spread through the nervous system in a characteristic pattern during the disease. This has been attributed to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the pathological conformation, intercellular transfer, and the subsequent seeding of native forms of the same protein in the neighboring cell. Molecular chaperones play a major role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to ensure their function or by promoting the degradation of terminally misfolded proteins to prevent damage. With increasing age, however, the capacity of this proteostasis network tends to decrease, which enables the manifestation of neurodegenerative diseases. Recently, there has been a plethora of studies investigating how and when chaperones interact with disease-related proteins, which have advanced our understanding of the role of chaperones in protein misfolding diseases. This review article focuses on the steps of prion-like propagation from initial misfolding and self-templated replication to intercellular spreading and discusses the influence that chaperones have on these various steps, highlighting both the positive and adverse consequences chaperone action can have. Understanding how chaperones alleviate and aggravate disease progression is vital for the development of therapeutic strategies to combat these debilitating diseases.
Collapse
Affiliation(s)
- Jessica Tittelmeier
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eliana Nachman
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
28
|
Gallrein C, Iburg M, Michelberger T, Koçak A, Puchkov D, Liu F, Ayala Mariscal SM, Nayak T, Kaminski Schierle GS, Kirstein J. Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Prog Neurobiol 2020; 198:101907. [PMID: 32926945 DOI: 10.1016/j.pneurobio.2020.101907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aβ1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aβ is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aβ1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aβ1-42. Expression of Aβ1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aβ to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aβ aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aβ in these IL2 neurons systemically delays Aβ aggregation and pathology.
Collapse
Affiliation(s)
- Christian Gallrein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tim Michelberger
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Alen Koçak
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Fan Liu
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Sara Maria Ayala Mariscal
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tanmoyita Nayak
- University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany
| | - Gabriele S Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany; University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
29
|
Kumari R, Kumar R, Kumar S, Singh AK, Hanpude P, Jangir D, Maiti TK. Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic, suggesting that they contribute to the development of Parkinson's disease. J Biol Chem 2020; 295:3466-3484. [PMID: 32005664 DOI: 10.1074/jbc.ra119.009546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial malady and the second most common neurodegenerative disorder, characterized by loss of dopaminergic neurons in the midbrain. A hallmark of PD pathology is the formation of intracellular protein inclusions, termed Lewy bodies (LBs). Recent MS studies have shown that OTU deubiquitinase ubiquitin aldehyde-binding 1 (OTUB1), a deubiquitinating enzyme of the OTU family, is enriched together with α-synuclein in LBs from individuals with PD and is also present in amyloid plaques associated with Alzheimer's disease. In the present study, using mammalian cell cultures and a PD mouse model, along with CD spectroscopy, atomic force microscopy, immunofluorescence-based imaging, and various biochemical assays, we demonstrate that after heat-induced protein aggregation, OTUB1 reacts strongly with both anti-A11 and anti-osteocalcin antibodies, detecting oligomeric, prefibrillar structures or fibrillar species of amyloidogenic proteins, respectively. Further, recombinant OTUB1 exhibited high thioflavin-T and Congo red binding and increased β-sheet formation upon heat induction. The oligomeric OTUB1 aggregates were highly cytotoxic, characteristic of many amyloid proteins. OTUB1 formed inclusions in neuronal cells and co-localized with thioflavin S and with α-synuclein during rotenone-induced stress. It also co-localized with the disease-associated variant pS129-α-synuclein in rotenone-exposed mouse brains. Interestingly, OTUB1 aggregates were also associated with severe cytoskeleton damage, rapid internalization inside the neuronal cells, and mitochondrial damage, all of which contribute to neurotoxicity. In conclusion, the results of our study indicate that OTUB1 may contribute to LB pathology through its amyloidogenic properties.
Collapse
Affiliation(s)
- Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abhishek Kumar Singh
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Deepak Jangir
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
30
|
Discovery of Selective Butyrylcholinesterase (BChE) Inhibitors through a Combination of Computational Studies and Biological Evaluations. Molecules 2019; 24:molecules24234217. [PMID: 31757047 PMCID: PMC6930573 DOI: 10.3390/molecules24234217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/17/2022] Open
Abstract
As there are increased levels and activity of butyrylcholiesterase (BChE) in the late stage of Alzheimer’s disease (AD), development of selective BChE inhibitors is of vital importance. In this study, a workflow combining computational technologies and biological assays were implemented to identify selective BChE inhibitors with new chemical scaffolds. In particular, a pharmacophore model served as a 3D search query to screen three compound collections containing 3.0 million compounds. Molecular docking and cluster analysis were performed to increase the efficiency and accuracy of virtual screening. Finally, 15 compounds were retained for biological investigation. Results revealed that compounds 8 and 18 could potently and highly selectively inhibit BChE activities (IC50 values < 10 μM on human BChE, selectivity index BChE > 30). These active compounds with novel scaffolds provided us with a good starting point to further design potent and selective BChE inhibitors, which may be beneficial for the treatment of AD.
Collapse
|
31
|
Chiu CH, Chen PC, Wang YC, Lin CL, Lee FY, Wu CC, Chang KH. Risk of Dementia in Patients with Leptospirosis: A Nationwide Cohort Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173168. [PMID: 31480270 PMCID: PMC6747145 DOI: 10.3390/ijerph16173168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Background: Studies have linked some bacterial infections with an increased likelihood for development of dementia. However, there is a paucity of data on the relationship between dementia and leptospirosis. In view of this, we conducted a retrospective cohort study to determine whether leptospirosis is a risk factor for dementia. Methods: Data were collected from the Taiwan National Health Insurance Research Databases (2000–2010) to investigate the incidence of and risk factors for dementia in patients with leptospirosis. Patients with leptospirosis who did not have a history of dementia were enrolled in the study. For each leptospirosis patient, four controls were randomly selected after frequency matching of age, sex, and index date. Cox proportional hazard regression models were used for the analyses of dementia risk. Results: A greater risk of dementia was observed in the leptospirosis cohort than in the non-leptospirosis cohort both in patients without any comorbidity (adjusted HR (aHR) = 1.23, 95% CI = 1.06–1.43) and with a comorbidity (aHR = 2.06, 95% CI = 1.7–2.5). Compared with the non-leptospirosis cohort without these comorbidities, the leptospirosis cohort with ≥2 comorbidities exhibited a significantly increased risk of dementia (aHR = 6.11, 95% CI = 3.15–11.9), followed by those with any one comorbidity (adjusted HR = 3.62, 95% CI = 1.76–7.46). Conclusions: Patients with leptospirosis were at a 1.89-fold greater risk of subsequent dementia, but potential genetic susceptibility bias in the study group is a major confound.
Collapse
Affiliation(s)
- Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center Taipei, Taipei 11490, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Po-Chung Chen
- Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32549, Taiwan
| | - Ying-Chuan Wang
- Department of Family Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 40402, Taiwan
- College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Feng-You Lee
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung 42743, Taiwan
| | - Chia-Chang Wu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung 43503, Taiwan.
- Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| |
Collapse
|
32
|
Kumar M, Kulshrestha R, Singh N, Jaggi AS. Expanding spectrum of anticancer drug, imatinib, in the disorders affecting brain and spinal cord. Pharmacol Res 2019; 143:86-96. [PMID: 30902661 DOI: 10.1016/j.phrs.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Imatinib is a tyrosine kinase inhibitor and is used as a first line drug in the treatment of Philadelphia-chromosome-positive chronic myeloid leukaemia and gastrointestinal stromal tumors. Being tyrosine kinase inhibitor, imatinib modulates the activities of Abelson gene (c-Abl), Abelson related gene (ARG), platelet-derived growth factor receptor (PDGFR), FMS-like tyrosine kinase 3 (FLT3), lymphocyte-specific protein (Lck), mitogen activated protein kinase (MAPK), amyloid precursor protein intracellular domain (AICD), α-synuclein and the stem-cell factor receptor (c-kit). Studies have shown the role of imatinib in modulating the pathophysiological state of a number of disorders affecting brain and spinal cord such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis and spinal cord injury. The present review discusses the role of imatinib in the above described disorders and the possible mechanisms involved in these diseases.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|