1
|
Mohan DR, Paes T, Buelvas Mebarak J, Meredith DM, Soares B, Vaz V, Carroll RS, Kaiser UB, Smith TR, Bi WL, Lerario AM, Abreu AP. Non-recurrent mutations and copy number changes predominate pituitary adenoma genomes. Eur J Endocrinol 2025; 192:590-602. [PMID: 40300997 DOI: 10.1093/ejendo/lvaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025]
Abstract
OBJECTIVE Pituitary adenomas (PAs) are common neoplasms. Our current understanding of the molecular basis of PA formation is incomplete. Routine implementation of targeted genomics has enabled the discovery of rare, potentially clinically actionable events. METHODS We used a cancer-focused gene panel to sequence a cohort of 171 PAs from patients who underwent surgery at Brigham and Women's Hospital from 2012 to 2020. RESULTS We identified known genetic variants enriched in specific PA subtypes: GNAS (somatotroph) and USP8 (Cushing's disease). Total mutational burden did not vary across adenoma subtypes; most adenomas possessed a few non-recurrent mutations in various established oncogenes and tumor suppressors. In contrast, the burden of copy number alterations varied widely across adenoma subtypes and was associated with higher MIB1 labeling index. We identified frequent deletions spanning MEN1 in prolactinomas and silent corticotroph adenomas, and subtype-specific copy number changes including 16p, 16q alterations in somatotroph adenomas without GNAS mutations. Within the corticotroph lineage, adenomas leading to Cushing's disease had few copy number alterations while silent corticotroph adenomas had numerous. CONCLUSIONS This study highlights a role for individualized genetic events in PA formation and suggests that divergent patterns of genomic instability may facilitate tumorigenesis even within the same lineage. Taken together, we demonstrate how gene panels may illuminate novel biology in endocrine tumors.
Collapse
Affiliation(s)
- Dipika R Mohan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ticiana Paes
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Internal Medicine, Roger Williams Medical Center, Providence, United States
| | - Jacobo Buelvas Mebarak
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - David M Meredith
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Beatriz Soares
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor Vaz
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Rona S Carroll
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ursula B Kaiser
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Timothy R Smith
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wenya L Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Ana Paula Abreu
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Tataranu LG. Liquid Biopsy in Pituitary Neuroendocrine Tumors-Potential Biomarkers for Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2025; 26:4058. [PMID: 40362297 PMCID: PMC12071809 DOI: 10.3390/ijms26094058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are slow-growing neoplasms with various clinical presentations, often leading to diagnostic challenges. While neuroimaging assessment and histopathological evaluation remain the gold standard for diagnosis, emerging research highlights the potential of liquid biopsy, mainly through the analysis of circulating non-coding RNAs (ncRNAs), as a promising diagnostic and prognostic tool. Recent studies have demonstrated distinct expression profiles in different types and subtypes of tumors, with implications in assessing tumor aggressiveness and predicting treatment response. The current article summarizes data about potential biofluid markers implicated in PitNET development, mainly circulating tumor DNA (ctDNA), cell-free RNAs (cfRNA), circulating tumor cells (CTCs), and exosomes. Many studies on genetic and molecular markers in PitNET tissue samples provide exciting information about tumor biology, but to date, specific studies on liquid biopsy biomarkers are still few. Over the past years, a certain understanding of the mechanisms involved in pituitary tumorigenesis has been gained, including the landscape of genomic alterations, changes in epigenetic profile, crucial molecules involved in specific signaling pathways, and non-coding RNA molecules with critical roles in malignant transformation. Genetic and molecular characterization of the PitNETs could help distinguish between functional and non-functional PitNETs, different types and subtypes of pituitary tumors, and invasive and non-invasive forms. Further studies are required to identify and validate innovative biomarkers or therapeutic targets for treating PitNET. Integrating liquid biopsy into clinical workflows could revolutionize the management of pituitary adenomas, enabling more personalized and less invasive diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| |
Collapse
|
3
|
Paes T, Buelvas Mebarak J, Magnotto JC, Stamatiades GA, Kuang Y, Paweletz CP, Laws ER, Grosek N, Carroll RS, Jeselsohn R, Mohan DR, Marcondes Lerario A, Truong MT, Bi WL, Reardon DA, Meredith DM, Kaiser UB, Abreu AP. Somatic Activating ESR1 Mutation in an Aggressive Prolactinoma. J Clin Endocrinol Metab 2025; 110:1166-1176. [PMID: 39238355 DOI: 10.1210/clinem/dgae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
CONTEXT AND OBJECTIVE The genetic profile of prolactinomas remains poorly understood. Our objective is to identify somatic genetic alterations associated with prolactinomas and to report the identification of an activating ESR1 mutation (ESR1Y537S) in an aggressive prolactinoma. SETTING Brigham and Women's Hospital. DESIGN Massively parallel-sequencing panel (OncoPanel) was performed in a cohort of patients with prolactinomas to identify mutations and copy number variation. RESULTS Twenty subjects (mean age, 38.6 years; 12 women and 8 men) were included in this study. A somatic ESR1Y537S mutation was identified in an aggressive prolactinoma in a postmenopausal woman. No SF3B1 or other somatic mutations were identified. The median number of copy number variation events identified in our samples was 46; the prolactinoma with ESR1Y537S had the highest number with 233 events. In breast cancer, ESR1Y537S has been shown to activate estrogen receptor alpha independent of ligand binding. In patients with resistant breast cancer and ESR1Y537S, elacestrant, a second-line estrogen receptor degrader, improves progression-free survival. Therefore, given the lack of response to multimodality therapies, elacestrant was initiated in this patient after the third cycle of radiotherapy. Elacestrant, along with radiotherapy, controlled tumor growth and significantly reduced prolactin levels. CONCLUSION Molecular profiling allowed the identification of ESR1Y537S, in an aggressive prolactinoma. ESR1Y537S was not detected early in the course of the disease and is likely conferring tumor aggressiveness. This finding emphasizes the significance of estrogen receptor signaling in prolactinomas. It also allowed the use of targeted therapy with successful control of disease progression.
Collapse
Affiliation(s)
- Ticiana Paes
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jacobo Buelvas Mebarak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John C Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yanan Kuang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Edward R Laws
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Natalie Grosek
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Dipika R Mohan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minh T Truong
- Department of Radiation Oncology, Boston University Medical Center, Boston, MA 02118, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - David M Meredith
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Barrantes-Freer A, Braune M, Sandner B, Dottermusch M, Lindner D. Comparative epigenomics indicate a common origin of ectopic and intrasellar corticotroph pituitary neuroendocrine tumors/adenomas: a case report. Virchows Arch 2025; 486:393-398. [PMID: 38347267 PMCID: PMC11876213 DOI: 10.1007/s00428-024-03760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 03/04/2025]
Abstract
Ectopic pituitary neuroendocrine tumors (PitNET)/adenomas are rare and diagnostically challenging extra-sellar tumors. Previous studies have demonstrated the impact of epigenomic analyses in the diagnostics of sellar neoplasms and characterized the close relationship of epigenomic signatures and cellular origins of PitNET/adenomas. As of today, little is known about the pathogenesis of ectopic PitNET/adenomas, and epigenomic analyses have not been performed in these rare tumors. We report on the clinical course of an 81-year-old patient with sphenoid ectopic sparsely granulated corticotroph PitNET/adenoma and deploy genome-wide DNA methylation analysis to compare its methylation profile to a reference cohort of sellar neoplasms. Genome-wide methylation analysis revealed an epigenomic profile analogous to reference sellar corticotroph PitNET/adenomas, and the copy number variation profile showed loss of chromosomes 18 and 22. The methylation profile shows concordance with sellar corticotroph PitNET/adenomas suggesting a common cellular origin and confirming the reliability of methylation analyses as a diagnostic method in these rare tumors. This is the first data suggesting that epigenetic profiles of ectopic PitNET/adenoma do not differ from their sellar counterparts.
Collapse
Affiliation(s)
- Alonso Barrantes-Freer
- Paul-Flechsig-Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany.
| | - Max Braune
- Paul-Flechsig-Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Benjamin Sandner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Lindner
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Zhang Y, Tang H, Li S, Bie Z, Ma X, Wu H, Liu G, Wang X, Liu P, Yang Z. Co-expression of multiple transcription factors is associated with clinical features and endocrine prognosis in growth hormone-secreting pituitary adenomas. Endocrine 2025; 87:788-799. [PMID: 39455511 DOI: 10.1007/s12020-024-04082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND The types of growth hormone-secreting pituitary adenomas are diverse, we have found that there are significant differences in clinical features and prognosis between PIT-1 single-cell spectrum growth hormone adenomas and growth hormone phenotypic polyhormonal adenomas. METHODS This study examined a cohort of 193 patients with growth hormone-secreting pituitary adenoma (GHPA), stratifying them into two groups: PIT-1 single transcription factor positive growth hormone adenoma (STF-GHPA) and Multiple transcription factor-positive growth hormone-secreting adenomas (MTF-GHPA). The objective was to compare these two groups' clinical characteristics. Within the MTF-GHPA group, we further subtyped them based on transcription factors to evaluate potential variations in clinical manifestations. Logistic regression analyses were employed to develop a risk factor model for investigating factors influencing hormone remission. RESULTS There were no statistically significant differences in terms of age, gender, serum GH, and IGF-1 levels between patients diagnosed with MTF-GHPA and STF-GHPA. However, patients with MTF-GHPA exhibited a higher proportion of hypopituitarism compared to those with STF-GHPA. Furthermore, MTF-GHPA were characterized by smaller tumor size and less invasiveness, as indicated by lower Knosp classes. However, patients with MTF-GHPA have a lower rate of hormonal remission (30.8%) and more postoperative complications (31.0%), which means that STF-GHPA (hormonal remission:71.6%; postoperative complications:13.4%) has a better endocrine outcome than MTF-GHPA patients. Between the PIT-1 + SF-1+ and PIT-1 + TPIT+ subtypes within MTF-GHPA, significant differences were also observed in tumor size, endocrine outcomes, and postoperative complications. Risk factors influencing hormonal remission for GHPA included preoperative GH level, primary/recurrent, extent of resection, and transcription factor expression. CONCLUSION Co-expression of multiple transcription factors is an important factor associated with clinical behavior and endocrine outcomes in patients with GHPA.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Hanlu Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Hongyu Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Gemingtian Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xingchao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
6
|
Jotanovic J, Boldt HB, Burton M, Andersen MS, Bengtsson D, Bontell TO, Ekman B, Engström BE, Feldt-Rasmussen U, Heck A, Jakovcevic A, Jørgensen JOL, Kraljevic I, Kunicki J, Lindsay JR, Losa M, Loughrey PB, Maiter D, Maksymowicz M, Manojlovic-Gacic E, Pahnke J, Petersenn S, Petersson M, Popovic V, Ragnarsson O, Rasmussen ÅK, Reisz Z, Saeger W, Schalin-Jäntti C, Scheie D, Terreni MR, Tynninen O, Whitelaw B, Burman P, Casar-Borota O. Genome-wide methylation profiling differentiates benign from aggressive and metastatic pituitary neuroendocrine tumors. Acta Neuropathol 2024; 148:68. [PMID: 39580368 PMCID: PMC11585505 DOI: 10.1007/s00401-024-02836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Aggressive pituitary neuroendocrine tumors (PitNETs)/adenomas are characterized by progressive growth despite surgery and all standard medical therapies and radiotherapy. A subset will metastasize to the brain and/or distant locations and are termed metastatic PitNETs (pituitary carcinomas). Studies of potential prognostic markers have been limited due to the rarity of these tumors. A few recurrent somatic mutations have been identified, and epigenetic alterations and chromosomal rearrangements have not been explored in larger cohorts of aggressive and metastatic PitNETs. In this study, we performed genome-wide methylation analysis, including copy-number variation (CNV) calculations, on tumor tissue specimens from a large international cohort of 64 patients with aggressive (48) and metastatic (16) pituitary tumors. Twelve patients with non-invasive pituitary tumors (Knosp 0-2) exhibiting an indolent course over a 5 year follow-up served as controls. In an unsupervised hierarchical cluster analysis, aggressive/metastatic PitNETs clustered separately from benign pituitary tumors, and, when only specimens from the first surgery were analyzed, three separate clusters were identified: aggressive, metastatic, and benign PitNETs. Numerous CNV events affecting chromosomal arms and whole chromosomes were frequent in aggressive and metastatic, whereas benign tumors had normal chromosomal copy numbers with only few alterations. Genome-wide methylation analysis revealed different CNV profiles and a clear separation between aggressive/metastatic and benign pituitary tumors, potentially providing biomarkers for identification of these tumors with a worse prognosis at the time of first surgery. The data may refine follow-up routines and contribute to the timely introduction of adjuvant therapy in patients harboring, or at risk of developing, aggressive or metastatic pituitary tumors.
Collapse
Affiliation(s)
- Jelena Jotanovic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Henning Bünsow Boldt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Mark Burton
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, University of Southern Denmark, Odense, Denmark
| | - Marianne Skovsager Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Daniel Bengtsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Internal Medicine, Kalmar County Hospital, Kalmar, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bertil Ekman
- Department of Endocrinology in Linköping, Department of Internal Medicine in Norrköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Britt Edén Engström
- Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, Uppsala, Sweden
- Department of Endocrinology and Diabetes, Uppsala University Hospital, Uppsala, Sweden
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Research Sciences, Copenhagen University, Copenhagen, Denmark
| | - Ansgar Heck
- Section for Specialized Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Antonia Jakovcevic
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ivana Kraljevic
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Endocrinology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - John R Lindsay
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Marco Losa
- Department of Neurosurgery, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Paul Benjamin Loughrey
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, UCL, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
- Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Stephan Petersenn
- ENDOC Center for Endocrine Tumors, Hamburg, Germany
- University of Duisburg-Essen, Essen, Germany
| | - Maria Petersson
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Vera Popovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Oskar Ragnarsson
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Åse Krogh Rasmussen
- Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zita Reisz
- Department of Clinical Neuropathology, King's College Hospital, NHS Foundation Trust, London, UK
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, ENDO-ERN (European Reference Network On Rare Endocrine Conditions), Helsinki, Finland
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosa Terreni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Olli Tynninen
- University of Helsinki, ENDO-ERN (European Reference Network On Rare Endocrine Conditions), Helsinki, Finland
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ben Whitelaw
- Department of Endocrinology, King's College Hospital, NHS Foundation Trust, London, UK
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
7
|
Rymuza J, Kober P, Maksymowicz M, Nyc A, Mossakowska BJ, Woroniecka R, Maławska N, Grygalewicz B, Baluszek S, Zieliński G, Kunicki J, Bujko M. High level of aneuploidy and recurrent loss of chromosome 11 as relevant features of somatotroph pituitary tumors. J Transl Med 2024; 22:994. [PMID: 39497133 PMCID: PMC11536836 DOI: 10.1186/s12967-024-05736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/06/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Somatotroph neuroendocrine pituitary tumors (sPitNET) are a subtype of pituitary tumors that commonly cause acromegaly. Our study aimed to determine the spectrum of DNA copy number abnormalities (CNAs) in sPitNETs and their relevance. METHODS A landscape of CNAs in sPitNETs was determined using combined whole-genome approaches involving low-pass whole genome sequencing and SNP microarrays. Fluorescent in situ hybridization (FISH) was used for microscopic validation of CNAs. The tumors were also subjected to transcriptome and DNA methylation analyses with RNAseq and microarrays, respectively. RESULTS We observed a wide spectrum of cytogenetic changes ranging from multiple deletions, recurrent chromosome 11 loss, stable genomes, to duplication of the majority of the chromosomes. The identified CNAs were confirmed with FISH. sPitNETs with multiple duplications were characterized by intratumoral heterogeneity in chromosome number variation in individual tumor cells, as determined with FISH. These tumors were separate CNA-related sPitNET subtype in clustering analyses with CNA signature specific for whole genome doubling-related etiology. This subtype encompassed GNAS-wild type, mostly densely granulated tumors with favorable expression level of known prognosis-related genes, notably enriched with POUF1/NR5A1-double positive PitNETs. Chromosomal deletions in sPitNETs are functionally relevant. They occurred in gene-dense DNA regions and were related to genes downregulation and increased DNA methylation in the CpG island and promoter regions in the affected regions. Recurrent loss of chromosome 11 was reflected by lowered MEN1 and AIP. No such unequivocal relevance was found for chromosomal gains. Comparisons of transcriptomes of selected most cytogenetically stable sPitNETs with tumors with recurrent loss of chromosome 11 showed upregulation of processes related to gene dosage compensation mechanism in tumors with deletion. Comparison of stable tumors with those with multiple duplications showed upregulation of processes related to mitotic spindle, DNA repair, and chromatin organization. Both comparisons showed upregulation of the processes related to immune infiltration in cytogenetically stable tumors and deconvolution of DNA methylation data indicated a higher content of specified immune cells and lower tumor purity in these tumors. CONCLUSIONS sPitNETs fall into three relevant cytogenetic groups: highly aneuploid tumors characterized by known prognostically favorable features and low aneuploidy tumors including specific subtype with chromosome 11 loss.
Collapse
Affiliation(s)
- Julia Rymuza
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aleksandra Nyc
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata J Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Renata Woroniecka
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Maławska
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Grzegorz Zieliński
- Department of Neurosurgery, Military Institute of Medicine, National Institute of Medicine, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
8
|
Veleno M, Giampietro A, Raia S, Menotti S, Tartaglione T, Gaudino S, Doglietto F, DE Marinis L, Pontecorvi A, Chiloiro S, Bianchi A. Clinical implications of the 2022 WHO classification on the multidisciplinary management of PitNETS patients. Minerva Endocrinol (Torino) 2024; 49:269-282. [PMID: 38963295 DOI: 10.23736/s2724-6507.24.04126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The review explores the 2022 update to the World Health Organization (WHO) classification of pituitary adenomas, now referred to as pituitary neuroendocrine tumors (PitNETs), and his possible impact on the clinical management of PitNET patients. The review highlights the differences and the evolution from the 2017 to 2022 version, with the current classification considering the lineage of the tumor cells, cell type, hormones produced, and other auxiliary characteristics for a comprehensive histological classification. The revision in terminology reflects a broader perspective on neuroendocrine neoplasia. The new approach based on transcription factors, hormone expression and other biomarkers has allowed a major revision of the nomenclature and a more accurate classification of pituitary adenomas. Furthermore, in some cases this approach is also assuming a prognostic value, useful in clinical practice. However, despite this elaborate classification and stratification, the review points out the lack of a robust grading or staging system and suggests the need for further research and validation of diagnostic methods. Despite these limitations, the revised classification presents a significant step towards understanding and managing PitNETs patients.
Collapse
Affiliation(s)
- Miriam Veleno
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Antonella Giampietro
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Salvatore Raia
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Sara Menotti
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Tommaso Tartaglione
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
- Department of Radiodiagnostic, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Simona Gaudino
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
- Department of Radiodiagnostic, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Francesco Doglietto
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Laura DE Marinis
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Alfredo Pontecorvi
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Sabrina Chiloiro
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Bianchi
- Pituitary Unit, Department of Internal Medicine, Endocrinology and Diabetes, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| |
Collapse
|
9
|
Lin AL, Rudneva VA, Richards AL, Zhang Y, Woo HJ, Cohen M, Tisnado J, Majd N, Wardlaw SL, Page-Wilson G, Sengupta S, Chow F, Goichot B, Ozer BH, Dietrich J, Nachtigall L, Desai A, Alano T, Ogilive S, Solit DB, Bale TA, Rosenblum M, Donoghue MTA, Geer EB, Tabar V. Genome-wide loss of heterozygosity predicts aggressive, treatment-refractory behavior in pituitary neuroendocrine tumors. Acta Neuropathol 2024; 147:85. [PMID: 38758238 PMCID: PMC11101347 DOI: 10.1007/s00401-024-02736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vasilisa A Rudneva
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Cohen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie Tisnado
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nazanin Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabrielle Page-Wilson
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Soma Sengupta
- Department of Neurology and Neurosurgery, University of North Carolina, Chapel Hill, NC, USA
| | - Frances Chow
- Department of Neurology, Keck School of Medicine at University of Southern California Medical Center, Los Angeles, CA, USA
| | - Bernard Goichot
- Department of Endocrinology, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Byram H Ozer
- Department of Oncology, Sibley Memorial Hospital/Johns Hopkins, Washington, DC, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Nachtigall
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Arati Desai
- Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Tina Alano
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shahiba Ogilive
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eliza B Geer
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
11
|
Luan W, Cheng H, Xie H, Liu H, Wang Y, Wang S, Ye X, Zhu H, Tang F, Li Y, Chang X. PRKDC-Mediated NHEJ May Play a Crucial Role in Aneuploidy of Chromosome 8-Driven Progression of Ovarian Cancer. Int J Mol Sci 2024; 25:4825. [PMID: 38732044 PMCID: PMC11084440 DOI: 10.3390/ijms25094825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and hub-gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC.
Collapse
Affiliation(s)
- Wenqing Luan
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Haoling Xie
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Huiping Liu
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Yicheng Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Shang Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Fuchou Tang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yi Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100044, China; (W.L.); (H.C.); (H.X.); (H.L.); (Y.W.); (S.W.); (X.Y.); (H.Z.); (F.T.)
- Center of Gynecologic Oncology, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
12
|
Torres-Morán M, Franco-Álvarez AL, Rebollar-Vega RG, Hernández-Ramírez LC. Hotspots of Somatic Genetic Variation in Pituitary Neuroendocrine Tumors. Cancers (Basel) 2023; 15:5685. [PMID: 38067388 PMCID: PMC10705109 DOI: 10.3390/cancers15235685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/13/2025] Open
Abstract
The most common genetic drivers of pituitary neuroendocrine tumors (PitNETs) lie within mutational hotspots, which are genomic regions where variants tend to cluster. Some of these hotspot defects are unique to PitNETs, while others are associated with additional neoplasms. Hotspot variants in GNAS and USP8 are the most common genetic causes of acromegaly and Cushing's disease, respectively. Although it has been proposed that these genetic defects could define specific clinical phenotypes, results are highly variable among studies. In contrast, DICER1 hotspot variants are associated with a familial syndrome of cancer predisposition, and only exceptionally occur as somatic changes. A small number of non-USP8-driven corticotropinomas are due to somatic hotspot variants in USP48 or BRAF; the latter is a well-known mutational hotspot in cancer. Finally, somatic variants affecting a hotspot in SF3B1 have been associated with multiple cancers and, more recently, with prolactinomas. Since the associations of BRAF, USP48, and SF3B1 hotspot variants with PitNETs are very recent, their effects on clinical phenotypes are still unknown. Further research is required to fully define the role of these genetic defects as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Laura C. Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
13
|
Taheri M, Nicknam A, Bagan A, Eslami S, Rakhshan A, Ghafouri‐Fard S. Expression of cAMP and oxidative phosphorylation-related lncRNAs in non-functioning pituitary adenomas. J Cell Mol Med 2023; 27:4195-4201. [PMID: 37933082 PMCID: PMC10746940 DOI: 10.1111/jcmm.18011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are benign lesions in the pituitary gland with important morbidities. In this study, based on a bioinformatics analysis to identify the genes and pathways that display significant differences between tumour tissues of NFPA patients and normal pituitary tissues, we selected lncRNAs related to cAMP and oxidative phosphorylation pathways, namely DNAH17-AS1, LINC00706 and SLC25A5-AS1. Then, we aimed to investigate by means of RT-qPCR, the expression of these lncRNAs along with two other lncRNAs, namely CADM3-AS1 and MIR7-3HG in NFPA samples compared to that in healthy tissues adjacent to the tumours. Transcripts of DNAH17-AS1, LINC00706 and MIR7-3HG were lower in NFPA samples compared with controls (Expression ratios (95% CI) = 0.43 (0.23-0.78), 0.58 (0.35-0.96) and 0.58 (0.35-0.96); p-values = 0.009, 0.025 and 0.036, respectively). AUC values of ROC curves of DNAH17-AS1, LINC00706 and MIR7-3HG were 0.62, 0.61 and 0.62, respectively. Expression of CADM3-AS1 was associated with the gender of patients in a way that it was lower in female patients (p-value = 0.04). The level of SLC25A5-AS1 was lower in subjects with disease duration lower than 1 year (p-value = 0.048). We showed dysregulation of three lncRNAs in NFPA tissues and potentiates these lncRNAs as important regulators of pathogenic events in these tumours.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human GeneticsJena University HospitalJenaGermany
- Urology and Nephrology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Amir Nicknam
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Atena Bagan
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Solat Eslami
- Department of Medical Biotechnology, School of MedicineAlborz University of Medical SciencesKarajIran
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| | - Azadeh Rakhshan
- Department of Pathology, Shohada‐e Tajrish HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Soudeh Ghafouri‐Fard
- Men's Health and Reproductive Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Zheng S, Guerrero-Haughton E, Foijer F. Chromosomal Instability-Driven Cancer Progression: Interplay with the Tumour Microenvironment and Therapeutic Strategies. Cells 2023; 12:2712. [PMID: 38067140 PMCID: PMC10706135 DOI: 10.3390/cells12232712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal instability (CIN) is a prevalent characteristic of solid tumours and haematological malignancies. CIN results in an increased frequency of chromosome mis-segregation events, thus yielding numerical and structural copy number alterations, a state also known as aneuploidy. CIN is associated with increased chances of tumour recurrence, metastasis, and acquisition of resistance to therapeutic interventions, and this is a dismal prognosis. In this review, we delve into the interplay between CIN and cancer, with a focus on its impact on the tumour microenvironment-a driving force behind metastasis. We discuss the potential therapeutic avenues that have resulted from these insights and underscore their crucial role in shaping innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erika Guerrero-Haughton
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
- Sistema Nacional de Investigación, SENACYT, Panama City 0816-02593, Panama
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
15
|
Ying Y, Zhang Z, Xing N, Qian Z, Wang B, Zeng S, Xu C. Preoperative urine sediment chromosomal instability level predicts urothelial cancer prognosis. Urol Oncol 2023; 41:433.e1-433.e7. [PMID: 37652824 DOI: 10.1016/j.urolonc.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/24/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Urothelial carcinomas (UCs) are often characterized by frequent recurrences after surgery, making UC one of the costliest cancers. Chromosomal instability (CIN) has been proven to be a hallmark of UCs and is related to the prognosis of many cancer types. In this study, we evaluated CIN of urine sediments as a prognostic indicator for UCs. METHODS Patients with UC were prospectively recruited. Preoperative urine samples were collected for whole genome sequencing and urine cytology tests. Patients underwent standard-of-care treatment and were followed up until disease relapse or study ended. Concordance and accuracy of CIN alone or in combination with cytology in predicting disease relapse were assessed. The value of CIN combined with European Organization for Research and Treatment of Cancer (EORTC) model were also analyzed. RESULTS A total of 137 patients with UCs were included in this study. Median follow-up was 44.2 months and 41.61% patients suffered from cancer relapse. Patients with CIN-high indicated higher relapse rate, and this distinction was significant for patients underwent transurethral resection of bladder tumor (57.89% vs. 34.29%, P = 0.016). Combination of cytology and CIN result could further classified patients into subgroups with distinct relapse risks. Meanwhile, the combination of CIN and EORTC model significantly improved the prediction accuracy compared with EORTC alone (Harrel's C-index: 0.71 vs. 0.65). CONCLUSION CIN level of preoperative urine exfoliated cells had robust prognostic value for bladder cancer patients underwent TURBT. The prognostic model by combining CIN and EORTC may help in stratifying patients to optimize follow-up regimen.
Collapse
Affiliation(s)
- Yidie Ying
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Naidong Xing
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, P. R. China
| | - Ziliang Qian
- Suzhou Hongyuan Biotech Inc., Biobay, Suzhou, P. R. China
| | - Baiyun Wang
- Suzhou Hongyuan Biotech Inc., Biobay, Suzhou, P. R. China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P. R. China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P. R. China.
| |
Collapse
|
16
|
Burman P, Casar-Borota O, Perez-Rivas LG, Dekkers OM. Aggressive Pituitary Tumors and Pituitary Carcinomas: From Pathology to Treatment. J Clin Endocrinol Metab 2023; 108:1585-1601. [PMID: 36856733 PMCID: PMC10271233 DOI: 10.1210/clinem/dgad098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Aggressive pituitary tumors (APTs) and pituitary carcinomas (PCs) are heterogeneous with regard to clinical presentation, proliferative markers, clinical course, and response to therapy. Half of them show an aggressive course only many years after the first apparently benign presentation. APTs and PCs share several properties, but a Ki67 index greater than or equal to 10% and extensive p53 expression are more prevalent in PCs. Mutations in TP53 and ATRX are the most common genetic alterations; their detection might be of value for early identification of aggressiveness. Treatment requires a multimodal approach including surgery, radiotherapy, and drugs. Temozolomide is the recommended first-line chemotherapy, with response rates of about 40%. Immune checkpoint inhibitors have emerged as second-line treatment in PCs, with currently no evidence for a superior effect of dual therapy compared to monotherapy with PD-1 blockers. Bevacizumab has resulted in partial response (PR) in few patients; tyrosine kinase inhibitors and everolimus have generally not been useful. The effect of peptide receptor radionuclide therapy is limited as well. Management of APT/PC is challenging and should be discussed within an expert team with consideration of clinical and pathological findings, age, and general condition of the patient. Considering that APT/PCs are rare, new therapies should preferably be evaluated in shared standardized protocols. Prognostic and predictive markers to guide treatment decisions are needed and are the scope of ongoing research.
Collapse
Affiliation(s)
- Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund
University, 205 02 Malmö, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics, and Pathology; Uppsala
University, 751 85 Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University
Hospital, 751 85 Uppsala, Sweden
| | - Luis Gustavo Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München,
Ludwig-Maximilians-Universität München, 80804
Munich, Germany
| | - Olaf M Dekkers
- Department of Internal Medicine (Section of Endocrinology & Clinical
Epidemiology), Leiden University Medical Centre, 2333 ZA
Leiden, The Netherlands
| |
Collapse
|
17
|
Marrero-Rodríguez D, Taniguchi-Ponciano K, Kerbel J, Cano-Zaragoza A, Remba-Shapiro I, Silva-Román G, Vela-Patiño S, Andonegui-Elguera S, Valenzuela-Perez A, Mercado M. The hallmarks of cancer… in pituitary tumors? Rev Endocr Metab Disord 2023; 24:177-190. [PMID: 36586070 DOI: 10.1007/s11154-022-09777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/01/2023]
Abstract
Over 20 years ago, Hanahan and Weinberg published a seminal review that addressed the biological processes that underly malignant transformation. This classical review, along with two revisions published in 2011 and 2022, has remain a classic of the oncology literature. Since many of the addressed biological processes may apply to non-malignant tumorigenesis, we evaluated to what extent these hallmarks pertain to the development of pituitary adenomas.Some of the biological processes analyzed in this review include genome instability generated by somatic USP8 and GNAS mutations in Cushing's diseases and acromegaly respectively; non-mutational epigenetic reprograming through changes in methylation; induction of angiogenesis through alterations of VEGF gene expression; promotion of proliferative signals mediated by EGFR; evasion of growth suppression by disrupting cyclin dependent kinase inhibitors; avoidance of immune destruction; and the promotion of inflammation mediated by alteration of gene expression of immune check points. We also elaborate further on the existence of oncogene induced senescence in pituitary tumors. We conclude that a better understanding of these processes can help us dilucidated why pituitary tumors are so resistant to malignant transformation and can potentially contribute to the development of novel anticancer treatments.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico.
| | - Jacobo Kerbel
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Amayrani Cano-Zaragoza
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Ilan Remba-Shapiro
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Gloria Silva-Román
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Sergio Andonegui-Elguera
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Alejandra Valenzuela-Perez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Moisés Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico.
| |
Collapse
|
18
|
Proteogenomic landscape and clinical characterization of GH-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumors. Commun Biol 2022; 5:1304. [PMID: 36435867 PMCID: PMC9701206 DOI: 10.1038/s42003-022-04272-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The clinical characteristics of growth hormone (GH)-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumors (GHomas/somatotroph PitNETs) vary across patients. In this study, we aimed to integrate the genetic alterations, protein expression profiles, transcriptomes, and clinical characteristics of GHomas/somatotroph PitNETs to identify molecules associated with acromegaly characteristics. Targeted capture sequencing and copy number analysis of 36 genes and nontargeted proteomics analysis were performed on fresh-frozen samples from 121 sporadic GHomas/somatotroph PitNETs. Targeted capture sequencing revealed GNAS as the only driver gene, as previously reported. Classification by consensus clustering using both RNA sequencing and proteomics revealed many similarities between the proteome and the transcriptome. Gene ontology analysis was performed for differentially expressed proteins between wild-type and mutant GNAS samples identified by nontargeted proteomics and involved in G protein-coupled receptor (GPCR) pathways. The results suggested that GNAS mutations impact endocrinological features in acromegaly through GPCR pathway induction. ATP2A2 and ARID5B correlated with the GH change rate in the octreotide loading test, and WWC3, SERINC1, and ZFAND3 correlated with the tumor volume change rate after somatostatin analog treatment. These results identified a biological connection between GNAS mutations and the clinical and biochemical characteristics of acromegaly, revealing molecules associated with acromegaly that may affect medical treatment efficacy.
Collapse
|
19
|
Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY. Clinical Biology of the Pituitary Adenoma. Endocr Rev 2022; 43:1003-1037. [PMID: 35395078 PMCID: PMC9695123 DOI: 10.1210/endrev/bnac010] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 02/06/2023]
Abstract
All endocrine glands are susceptible to neoplastic growth, yet the health consequences of these neoplasms differ between endocrine tissues. Pituitary neoplasms are highly prevalent and overwhelmingly benign, exhibiting a spectrum of diverse behaviors and impact on health. To understand the clinical biology of these common yet often innocuous neoplasms, we review pituitary physiology and adenoma epidemiology, pathophysiology, behavior, and clinical consequences. The anterior pituitary develops in response to a range of complex brain signals integrating with intrinsic ectodermal cell transcriptional events that together determine gland growth, cell type differentiation, and hormonal production, in turn maintaining optimal endocrine health. Pituitary adenomas occur in 10% of the population; however, the overwhelming majority remain harmless during life. Triggered by somatic or germline mutations, disease-causing adenomas manifest pathogenic mechanisms that disrupt intrapituitary signaling to promote benign cell proliferation associated with chromosomal instability. Cellular senescence acts as a mechanistic buffer protecting against malignant transformation, an extremely rare event. It is estimated that fewer than one-thousandth of all pituitary adenomas cause clinically significant disease. Adenomas variably and adversely affect morbidity and mortality depending on cell type, hormone secretory activity, and growth behavior. For most clinically apparent adenomas, multimodal therapy controlling hormone secretion and adenoma growth lead to improved quality of life and normalized mortality. The clinical biology of pituitary adenomas, and particularly their benign nature, stands in marked contrast to other tumors of the endocrine system, such as thyroid and neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Ursula B Kaiser
- Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Beatriz Lopes
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome Bertherat
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Luis V Syro
- Hospital Pablo Tobon Uribe and Clinica Medellin - Grupo Quirónsalud, Medellin, Colombia
| | - Gerald Raverot
- Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Martin Reincke
- University Hospital of LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gudmundur Johannsson
- Sahlgrenska University Hospital & Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University and IRCCS Hospital, Milan, Italy
| | | | - Ken K Y Ho
- The Garvan Institute of Medical Research and St. Vincents Hospital, Sydney, Australia
| |
Collapse
|
20
|
Gamal-Eldeen AM, Agwa HS, Zahran MAH, Raafat BM, El-Daly SM, Banjer HJ, Almehmadi MM, Alharthi A, Hawsawi NM, Althobaiti F, Abo-Zeid MAM. Phthalimide Analogs Enhance Genotoxicity of Cyclophosphamide and Inhibit Its Associated Hypoxia. Front Chem 2022; 10:890675. [PMID: 35518717 PMCID: PMC9065290 DOI: 10.3389/fchem.2022.890675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophosphamide (CP) is a mutagen that is used in cancer chemotherapy, due to its genotoxicity and as an immunosuppressive agent. Thalidomide (TH) is another cancer chemotherapeutic drug. In this study, the cytogenotoxicity and hypoxia modulatory activities of two phthalimide analogs of TH have been evaluated with/without CP. Both analogs have increased CP-stimulated chromosomal aberrations than those induced by TH, including gaps, breaks/fragments, deletions, multiple aberrations, and tetraploidy. The analogs have elevated the cytotoxic effect of CP by inhibiting the mitotic activity, in which analog 2 showed higher mitosis inhibition. CP has induced binucleated and polynucleated bone marrow cells (BMCs), while micronuclei (MN) are absent. TH and analogs have elevated the CP-stimulated binucleated BMCs, while only analogs have increased the CP-induced polynucleated BMCs and inhibited the mononucleated BMCs. MN-BMCs were shown together with mononucleated, binucleated, and polynucleated cells in the CP group. Both analogs have elevated mononucleated and polynucleated MN-BMCs, whereas in presence of CP, TH and analogs have enhanced mononucleated and binucleated MN-BMCs. The analogs significantly induce DNA fragmentation in a comet assay, where analog 1 is the strongest inducer. The treatment of mice with CP has resulted in a high hypoxia status as indicated by high pimonidazole adducts and high HIF-1α and HIF-2α concentrations in lymphocytes. Analogs/CP-treated mice showed low pimonidazole adducts. Both analogs have inhibited HIF-1α concentration but not HIF-2α. Taken together, the study findings suggest that both analogs have a higher potential to induce CP-genotoxicity than TH and that both analogs inhibit CP-hypoxia via the HIF-1α-dependent mechanism, in which analog 1 is a more potent anti-hypoxic agent than analog 2. Analog 1 is suggested as an adjacent CP-complementary agent to induce CP-genotoxicity and to inhibit CP-associated hypoxia.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,High Altitude Research Center, Prince Sultan Medical Complex, Taif University, Taif, Saudi Arabia
| | - Hussein S Agwa
- Research & Development Department, Pharco B International Company for Pharmaceutical Industries, Borg El-Arab, Alexandria, Egypt
| | - Magdy A-H Zahran
- Chemistry Department, Faculty of Science, Menoufiya University, Menoufiya, Egypt
| | - Bassem M Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| | - Hamsa J Banjer
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mazen M Almehmadi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Afaf Alharthi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nahed M Hawsawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- High Altitude Research Center, Prince Sultan Medical Complex, Taif University, Taif, Saudi Arabia.,Biotechnology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Mona A M Abo-Zeid
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.,Department of Cytology and Genetics, National Research Center, Cairo, Egypt
| |
Collapse
|
21
|
Zhu J, Huang Q, Peng X, Luo C, Liu S, Liu Z, Wu X, Luo H. Identification of LncRNA Prognostic Signature Associated With Genomic Instability in Pancreatic Adenocarcinoma. Front Oncol 2022; 12:799475. [PMID: 35433487 PMCID: PMC9012103 DOI: 10.3389/fonc.2022.799475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Genomic instability (GI) is a critical feature of cancer which plays a key role in the occurrence and development of pancreatic adenocarcinoma (PAAD). Long non-coding RNA (LncRNA) is an emerging prognostic biomarker because it is involved in regulating GI. Recently, researchers used such GI-related LncRNAs (GILncRNAs) to establish a prognostic signature for patients with cancer and helped in predicting the overall prognosis of the patients. However, it is evident that patients with PAAD still lack such prognostic signature constructed with GILncRNA. Methods The present study screened GILncRNAs from 83 patients with PAAD. Prognosis-related GILncRNAs were identified by univariate Cox regression analysis. The correlation coefficients of these GILncRNAs were obtained by multivariate Cox regression analysis and used to construct a signature. The signature in the present study was then assessed through survival analysis, mutation correlation analysis, independent prognostic analysis, and clinical stratification analysis in the training set and validated in the testing as well as all TCGA set. The current study performed external clinical relevance validation of the signature and validated the effect of AC108134.2 in GILncSig on PAAD using in vitro experiments. Finally, the function of GILncRNA signature (GILncSig) dependent on Gene Ontology enrichment analysis was explored and chemotherapeutic drug sensitivity analysis was also performed. Results Results of the present study found that a total of 409 GILncRNAs were identified, 5 of which constituted the prognostic risk signature in this study, namely, AC095057.3, AC108134.2, AC124798.1, AL606834.1, and AC104695.4. It was found that the signature of the present study was better than others in predicting the overall survival and applied to patients with PAAD of all ages, genders, and tumor grades. Further, it was noted that the signature of the current study in the GSE102238, was correlated with tumor length, and tumor stage of patients with PAAD. In vitro, functional experiments were used in the present study to validate that AC108134.2 is associated with PAAD genomic instability and progression. Notably, results of the pRRophetic analysis in the current study showed that the high-risk group possessed reverse characteristics and was sensitive to chemotherapy. Conclusions In conclusion, it was evident that the GILncSig used in the present study has good prognostic performance. Therefore, the signature may become a potential sensitive biological indicator of PAAD chemotherapy, which may help in clinical decision-making and management of patients with cancer.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Qian Huang
- Department of General Practice, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xun Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Liu L, Liu J, Wang J, Yuan W. Machine learning revealed molecular classification of colorectal cancer with negative lymph node metastasis. Biomarkers 2021; 27:86-94. [PMID: 34894932 DOI: 10.1080/1354750x.2021.2016971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: Accurate preoperative staging directly affects the treatment decision of patients with rectal cancer. However, our understanding of the immune subclasses of CRC without lymph node metastasis is still incomplete.Materials and methods: Here, we first analyzed the subclasses of CRC without lymph node metastasis on the Cancer Genome Atlas (TCGA) and verified its stability in the GSE39582 dataset. Four immune subclasses (C1-C4) were identified and verified by non-negative matrix factorization (NMF) of gene expression profiles. Then, ICI scores of six genes were constructed to characterize subclasses.Results: There were significant differences in metabolic and progression-associated signatures, immune characteristics, and clinical characteristics among subclasses. C3 represented a good prognosis with high TMB. C4 showed unique immune characteristics. We believe that C3 is the initial stage of CRC. After the C1 and C2 stages, it progresses to the C4 stage, and finally, lymph node metastasis occurs.Conclusions: This work may help to provide a basis for immunotherapy decision-making in early CRC and may guide personalized methods of cancer immunotherapy.
Collapse
Affiliation(s)
- Li Liu
- College of Data Science, Jiaxing University, Jiaxing, Zhejiang, China
| | - June Liu
- School of Economics and Management, Huaibei Normal University, Huaibei, Anhui, China
| | - Jiayao Wang
- College of Information Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenliang Yuan
- College of Data Science, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
23
|
Raverot G, Ilie MD, Lasolle H, Amodru V, Trouillas J, Castinetti F, Brue T. Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol 2021; 17:671-684. [PMID: 34493834 DOI: 10.1038/s41574-021-00550-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Although usually benign, anterior pituitary tumours occasionally exhibit aggressive behaviour, with invasion of surrounding tissues, rapid growth, resistance to conventional treatments and multiple recurrences. In very rare cases, they metastasize and are termed pituitary carcinomas. The time between a 'classical' pituitary tumour and a pituitary carcinoma can be years, which means that monitoring should be performed regularly in patients with clinical (invasion and/or tumour growth) or pathological (Ki67 index, mitotic count and/or p53 detection) markers suggesting aggressiveness. However, although both invasion and proliferation have prognostic value, such parameters cannot predict outcome or malignancy without metastasis. Future research should focus on the biology of both tumour cells and their microenvironment, hopefully with improved therapeutic outcomes. Currently, the initial therapeutic approach for aggressive pituitary tumours is generally to repeat surgery or radiotherapy in expert centres. Standard medical treatments usually have no effect on tumour progression but they can be maintained on a long-term basis to, at least partly, control hypersecretion. In cases where standard treatments prove ineffective, temozolomide, the sole formally recommended treatment, is effective in only one-third of patients. Personalized use of emerging therapies, including peptide receptor radionuclide therapy, angiogenesis-targeted therapy and immunotherapy, will hopefully improve the outcomes of patients with this severe condition.
Collapse
Affiliation(s)
- Gérald Raverot
- Endocrinology Department, Reference Centre for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
- Lyon 1 University, Villeurbanne, France
- INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon (CRLC), Lyon, France
| | - Mirela Diana Ilie
- Lyon 1 University, Villeurbanne, France
- INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon (CRLC), Lyon, France
- Endocrinology Department, "C.I.Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Hélène Lasolle
- Endocrinology Department, Reference Centre for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
- Lyon 1 University, Villeurbanne, France
- INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon (CRLC), Lyon, France
| | - Vincent Amodru
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Endocrinology Department, Hôpital de la Conception, Reference Centre for Rare Pituitary Diseases HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | | | - Frédéric Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Endocrinology Department, Hôpital de la Conception, Reference Centre for Rare Pituitary Diseases HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Endocrinology Department, Hôpital de la Conception, Reference Centre for Rare Pituitary Diseases HYPO, Marseille, France.
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France.
| |
Collapse
|
24
|
Lasolle H, Raverot G. Letter to the Editor From Helene Lasolle and Gérald Raverot: "USP8 and TP53 Drivers Are Associated With CNV in a Corticotroph Adenoma Cohort Enriched for Aggressive Tumors". J Clin Endocrinol Metab 2021; 106:e3285-e3286. [PMID: 33822961 DOI: 10.1210/clinem/dgab217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Hélène Lasolle
- Fédération d'Endocrinologie, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
- Université Lyon 1, Lyon, France
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France
| | - Gérald Raverot
- Fédération d'Endocrinologie, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
- Université Lyon 1, Lyon, France
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
25
|
Uzilov AV, Geer EB. Response to Letter to the Editor from Lasolle and Raverot: "USP8 and TP53 Drivers Are Associated with CNV in a Corticotroph Adenoma Cohort Enriched for Aggressive Tumors". J Clin Endocrinol Metab 2021; 106:e3293-e3294. [PMID: 33822973 PMCID: PMC8277217 DOI: 10.1210/clinem/dgab218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 11/23/2022]
Affiliation(s)
- Andrew V Uzilov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
- Correspondence: Eliza B. Geer, MD, Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, David H. Koch Center for Cancer Care, 530 East 74th Street, Box 19, New York, NY 10021, USA.
| | - Eliza B Geer
- Multidisciplinary Pituitary and Skull Base Tumor Center, Departments of Medicine and Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
26
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|