1
|
McFadden JR, Salem I, Stevanovic M, Barney RE, Chaudhari AS, Chambers MA, O'Hern K, Cloutier JM, Yan S, Ramos-Rodriguez AJ, Kerr DA, Momtahen S, LeBlanc RE, Tsongalis GJ, Hughes EG, Sriharan A. A Droplet Digital Polymerase Chain Reaction-Based Tool to Aid in Melanoma Diagnosis: Development of a 4-Gene Panel Using 164 Melanocytic Neoplasms. Arch Pathol Lab Med 2025; 149:410-421. [PMID: 39084636 DOI: 10.5858/arpa.2024-0027-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
CONTEXT.— Detecting copy number variations (CNVs) at certain loci can aid in the diagnosis of histologically ambiguous melanocytic neoplasms. Droplet digital polymerase chain reaction (ddPCR) is a rapid, automated, and inexpensive method for CNV detection in other cancers, but not yet melanoma. OBJECTIVE.— To evaluate the performance of a 4-gene ddPCR panel that simultaneously tests for ras responsive binding element protein 1 (RREB1) gain; cyclin-dependent kinase inhibitor 2A (CDKN2A) loss; MYC proto-oncogene, bHLH transcription factor (MYC) gain; and MYB proto-oncogene, transcription factor (MYB) loss in melanocytic neoplasms. DESIGN.— One hundred sixty-four formalin-fixed, paraffin-embedded skin samples were used to develop the assay, of which 65 were used to evaluate its performance. Chromosomal microarray analysis (CMA) data were used as the gold standard. RESULTS.— ddPCR demonstrated high concordance with CMA in detecting RREB1 gain (sensitivity, 86.7%; specificity, 88.9%), CDKN2A loss (sensitivity, 80%; specificity, 100%), MYC gain (sensitivity, 70%; specificity, 100%), and MYB loss (sensitivity, 71.4%; specificity, 100%). When one CNV was required to designate the test as positive, the 4-gene ddPCR panel distinguished nevi from melanomas with a sensitivity of 78.4% and a specificity of 71.4%. For reference, CMA had a sensitivity of 86.2% and a specificity of 78.6%. Our data also revealed interesting relationships with histology, namely (1) a positive correlation between RREB1 ddPCR copy number and degree of tumor progression; (2) a statistically significant correlation between MYC gain and nodular growth; and (3) a statistically significant correlation between MYB loss and a sheetlike pattern of growth. CONCLUSIONS.— With further validation, ddPCR may aid both in our understanding of melanomagenesis and in the diagnosis of challenging melanocytic neoplasms.
Collapse
Affiliation(s)
- Jason R McFadden
- From the Department of Biological Sciences (McFadden, Chaudhari), and the Geisel School of Medicine (Stevanovic, Kerr, Tsongalis, Sriharan), Dartmouth College, Hanover, New Hampshire
| | - Iman Salem
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Mirjana Stevanovic
- From the Department of Biological Sciences (McFadden, Chaudhari), and the Geisel School of Medicine (Stevanovic, Kerr, Tsongalis, Sriharan), Dartmouth College, Hanover, New Hampshire
| | - Rachael E Barney
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Advaita S Chaudhari
- From the Department of Biological Sciences (McFadden, Chaudhari), and the Geisel School of Medicine (Stevanovic, Kerr, Tsongalis, Sriharan), Dartmouth College, Hanover, New Hampshire
| | - Meagan Ann Chambers
- the Department of Pathology and Laboratory Medicine, University of Washington, Seattle (Chambers)
| | - Keegan O'Hern
- the Department of Dermatology, Mayo Clinic, Rochester, Minnesota (O'Hern)
| | - Jeffrey M Cloutier
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Shaofeng Yan
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Alvaro J Ramos-Rodriguez
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Darcy Arendt Kerr
- From the Department of Biological Sciences (McFadden, Chaudhari), and the Geisel School of Medicine (Stevanovic, Kerr, Tsongalis, Sriharan), Dartmouth College, Hanover, New Hampshire
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Shabnam Momtahen
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Robert E LeBlanc
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Gregory J Tsongalis
- From the Department of Biological Sciences (McFadden, Chaudhari), and the Geisel School of Medicine (Stevanovic, Kerr, Tsongalis, Sriharan), Dartmouth College, Hanover, New Hampshire
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Edward G Hughes
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Aravindhan Sriharan
- From the Department of Biological Sciences (McFadden, Chaudhari), and the Geisel School of Medicine (Stevanovic, Kerr, Tsongalis, Sriharan), Dartmouth College, Hanover, New Hampshire
- the Departments of Dermatology (Salem) and Pathology & Laboratory Medicine (Barney, Cloutier, Yan, Ramos-Rodriguez, Kerr, Momtahen, LeBlanc, Tsongalis, Hughes, Sriharan), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
2
|
Tian M, Liu X, Wang D, Wang Y, Wang S, Wei J, Guan D, Yao J. Differences of tsRNA expression profiles efficiently discriminate monozygotic twins in peripheral blood. Forensic Sci Int Genet 2025; 77:103242. [PMID: 39999615 DOI: 10.1016/j.fsigen.2025.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Monozygotic twins (MZTs) share nearly identical genomic DNA sequences, making traditional forensic short tandem repeats (STR) genotyping methods ineffective for distinguishing between them. In recent years, the use of epigenetic factors in forensic applications has gained traction. The dynamic epigenetic factors can be influenced by inherited traits or acquired environmental factors. This study analyzed the expression profiles of transfer RNA-derived small RNAs (tsRNAs) in peripheral blood from four pairs of adult MZTs using Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing (PANDORA-seq). Differentially expressed tsRNAs (DEtsRNAs) were identified and validated using the reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and droplet digital PCR (ddPCR) in both adult and newborn MZTs. The study also evaluated the longitudinal temporal stability, resistance to degradation, and suitability of DEtsRNAs for aged bloodstains. A total of 8795 expressed tsRNAs were identified in the four pairs of adult MZTs by PANDORA-seq. After screening with a normalized | log2 (fold change) | > 1 and an adjusted p-value < 0.05, 10, 187, and 1520 DEtsRNAs were shared by 4, 3, and 2 pairs of MZTs. RT-qPCR and ddPCR confirmed the expression of the 10 DEtsRNAs identified by PANDORA-seq. Six candidate tsRNAs (tRNA-Gly-GCC, tRNA-Leu-TAA, tRNA-Lys-CTT, tRNA-Val-AAC_5_end, tRNA-iMet-CAT_5_end, and tsRNA-3023a/b-PheGAA) were identified as effective discrimination markers, even in neonatal MZTs which are largely unaffected by environment factors. Forensic applicability assessment revealed that tRNA-Gly-GCC and tRNA-Leu-TAA remained detectable in the 180-day-series bloodstains, while tRNA-Lys-CTT, tRNA-Val-AAC_5_end, and tRNA-iMet-CAT_5_end were relatively stable after 15 times of freeze-thaw cycles. Additionally, tRNA-Gly-GCC and tRNA-Lys-CTT exhibited long-term stability, with consistent expression over six months. In conclusion, this study demonstrates that differential tsRNAs expression can serve as a novel biomarker for MZT identification in forensic medicine.
Collapse
Affiliation(s)
- Meihui Tian
- Department of Forensic Genetic and Biology, China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Xiangnian Liu
- Department of Clinical Medicine, Second Clinical College of China Medical University, Shenyang 110122, PR China
| | - Danyang Wang
- Department of Clinical Medicine, Second Clinical College of China Medical University, Shenyang 110122, PR China
| | - Yuxi Wang
- Department of Clinical Medicine, Second Clinical College of China Medical University, Shenyang 110122, PR China
| | - Siwen Wang
- Department of Clinical Medicine, Second Clinical College of China Medical University, Shenyang 110122, PR China
| | - Jiayi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, PR China.
| | - Dawei Guan
- China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| | - Jun Yao
- Department of Forensic Genetic and Biology, China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| |
Collapse
|
3
|
Purkait S, Praeger S, Felsberg J, Pauck D, Kaulich K, Wolter M, Koppstein D, Reifenberger G. Strong nuclear expression of HOXB13 is a reliable surrogate marker for DNA methylome profiling to distinguish myxopapillary ependymoma from spinal ependymoma. Acta Neuropathol 2025; 149:29. [PMID: 40137996 PMCID: PMC11947044 DOI: 10.1007/s00401-025-02866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Spinal ependymoma and myxopapillary ependymoma are the two most common spinal ependymal tumor types that feature distinct histological characteristics, genetic alterations and DNA methylation profiles. Their histological distinction may be difficult in individual cases and molecular diagnostic assessment, in particular DNA methylome profiling, may then be required to assign the correct diagnosis. Expression of the homeobox gene HOXB13 at the mRNA and protein levels has been reported as a frequent finding in myxopapillary ependymoma that may serve as a diagnostic marker for these tumors. Here, we evaluated the diagnostic role of HOXB13 immunostaining in 143 spinal neoplasms, comprising 54 histologically classified myxopapillary ependymomas, 46 histologically classified spinal ependymomas, and various other tumor types. Immunohistochemical results for HOXB13 protein were compared to molecular findings obtained by bead array-based DNA methylation and DNA copy number profiling, as well as next generation gene panel sequencing-based mutational analysis. Our findings indicate strong nuclear HOXB13 expression as a reliable diagnostic marker for molecularly confirmed myxopapillary ependymoma. Moreover, we provide evidence that differential HOXB13 protein expression is related to differential HOXB13-associated CpG site methylation in myxopapillary vs. spinal ependymomas, which can be assessed by targeted DNA methylation analysis. Taken together, immunohistochemistry for HOXB13 protein expression and targeted DNA methylation analysis of HOXB13 represent useful surrogate approaches that may substitute for DNA methylome profiling in routine diagnostics and facilitate precise classification of spinal ependymal tumors. In particular, strong nuclear HOXB13 immunoreactivity may serve as a novel diagnostic criterion for the classification of myxopapillary ependymoma.
Collapse
Affiliation(s)
- Suvendu Purkait
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sophia Praeger
- Cancer Bioinformatics and Multiomics (ED08), German Cancer Research Center Heidelberg and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - David Pauck
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Kerstin Kaulich
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - David Koppstein
- Cancer Bioinformatics and Multiomics (ED08), German Cancer Research Center Heidelberg and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Sabit H, Attia MG, Mohamed N, Taha PS, Ahmed N, Osama S, Abdel-Ghany S. Beyond traditional biopsies: the emerging role of ctDNA and MRD on breast cancer diagnosis and treatment. Discov Oncol 2025; 16:271. [PMID: 40050490 PMCID: PMC11885725 DOI: 10.1007/s12672-025-01940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Breast cancer management has traditionally relied on tissue biopsies and imaging, which offer limited insights into the disease. However, the discovery of circulating tumor DNA (ctDNA) and minimal residual disease (MRD) detection has revolutionized our approach to breast cancer. ctDNA, which is fragmented tumor DNA found in the bloodstream, provides a minimally invasive way to understand the tumor's genomic landscape, revealing heterogeneity and critical mutations that biopsies may miss. MRD, which indicates cancer cells that remain after treatment, can now be detected using ctDNA and other advanced methods, improving our ability to predict disease recurrence. This allows for personalized adjuvant therapies based on individual MRD levels, avoiding unnecessary treatments for patients with low MRD. This review discusses how ctDNA and MRD represent a paradigm shift towards personalized, genomically guided cancer care, which has the potential to significantly improve patient outcomes in breast cancer.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
| | - Manar G Attia
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nouran Mohamed
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Pancé S Taha
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nehal Ahmed
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Salma Osama
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| |
Collapse
|
5
|
Jin L, Jin HY, Kim Y, Cho NY, Bae JM, Kim JH, Han SW, Kim TY, Kang GH. Clinicopathological and molecular features of genome-stable colorectal cancers. Histol Histopathol 2025; 40:381-388. [PMID: 38993017 DOI: 10.14670/hh-18-785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Colorectal cancers (CRCs) are traditionally divided into those with either chromosomal instability (CIN) or microsatellite instability (MSI). By utilizing TCGA data, the Laird team found a subset of CRCs, namely, genome-stable CRCs (GS CRCs), which lack both CIN and MSI. Although the molecular features of GS CRCs have been described in detail, the clinicopathological features are not well defined. A total of 437 CRCs were analyzed for copy number variation (CNV) statuses in eight genes (ARID1A, EGFR, FGFR1, KDM5B, MYBL2, MYC, SALL4, and SETDB1) using droplet-digital PCR. CRCs that showed CNV in ≤ one gene and no MSI were defined as GS-like CRCs. Clinicopathological and molecular features of GS-like CRCs were compared with those of CIN-like CRCs. GS-like CRCs comprised 4.6% of CRCs and showed a predilection toward the proximal colon, lower nuclear optical density, KRAS mutation, PIK3CA mutation, and aberrant expression of KRT7. Survival analysis showed no significant difference between the three subgroups. Through our study, the GS-like subtype was found to comprise a minor proportion of CRCs and have proclivity toward a proximal bowel location, hypochromatic tumor nuclei, aberrant KRT7 expression, and a high frequency of KRAS and PIK3CA mutations.
Collapse
Affiliation(s)
- Lingyan Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Yeong Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Younghoon Kim
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Murphy ZR, Bianchini EC, Smith A, Körner LI, Russell T, Reinecke D, Maarouf N, Wang Y, Golfinos JG, Miller AM, Snuderl M, Orringer DA, Evrony GD. Ultra-rapid droplet digital PCR enables intraoperative tumor quantification. MED 2025:100604. [PMID: 40010345 DOI: 10.1016/j.medj.2025.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/22/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The diagnosis and treatment of tumors often depend on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. METHODS Here, we introduce Ultra-Rapid droplet digital PCR (UR-ddPCR), a technology that achieves the fastest measurement, to date, of mutation burdens in tissue samples, from tissue to result in 15 min. Our workflow substantially reduces the time from tissue biopsy to molecular diagnosis and provides a highly accurate means of quantifying residual tumor infiltration at surgical margins. FINDINGS We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively, and whose intraoperative detection would shape surgical decision-making. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 22 brain tumor cases, and we further combine UR-ddPCR tumor cell percentage measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities ranging from >1,300 tumor cells/mm2 within a tumor core to <5 tumor cells/mm2 at tumor margins. UR-ddPCR measurements were virtually identical to standard ddPCR measurements performed on the same samples (R2 = 0.995). CONCLUSIONS The technology and workflow developed here enable intraoperative molecular-genetic assays with unprecedented speed and sensitivity. We anticipate that our method will facilitate novel point-of-care diagnostics and molecularly guided surgeries that improve clinical outcomes. FUNDING This study was funded by the National Institutes of Health and NYU Grossman School of Medicine institutional funds. Reagents and instruments were provided in kind by Bio-Rad.
Collapse
Affiliation(s)
- Zachary R Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA; Departments of Pediatrics and Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilia C Bianchini
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA; Departments of Pediatrics and Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrew Smith
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Lisa I Körner
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Teresa Russell
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - David Reinecke
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Nader Maarouf
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuxiu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - John G Golfinos
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alexandra M Miller
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Medicine and Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Matija Snuderl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Daniel A Orringer
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA; Departments of Pediatrics and Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Srisutham S, Saejeng A, Khantikul N, Sugaram R, Sangsri R, Dondorp AM, Day NPJ, Imwong M. Advancing artemisinin resistance monitoring using a high sensitivity ddPCR assay for Pfkelch13 mutation detection in Asia. Sci Rep 2025; 15:4869. [PMID: 39929914 PMCID: PMC11811204 DOI: 10.1038/s41598-025-86630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
The spread of Pfkelch13 mutations in Southeast Asia threatens the effectiveness of artemisinin-based combination therapies (ACTs) for malaria. Previous studies revealed a high prevalence of key mutations, including C580Y, P574L, and R561H, emphasizing the need for the surveillance to combat drug resistance. This study, we developed a droplet digital PCR (ddPCR) assay for the rapid screening of common mutations including P441L, Y493H, P527H, G538V, R539T, I543T, R561H, P574L, C580Y, and A675V. The assay was designed to detect minor populations of mutant strain within multiple infection, offering high sensitivity and specificity using artificial mixtures of mutant and wild-type alleles. Field samples collected in Thailand during 2015-2020 and in 2023 (N = 130) were also analyzed to validate the assay in a real-world setting. The ddPCR assay demonstrated exceptional performance, with 100% sensitivity and 90% specificity. The R539T, R561H, and C580Y mutations were detected in clinical samples collected from several study sites in Thailand. Notably, the R561H mutation was detected in 100% of the P. falciparum isolates from Mae Hong Son, Thailand in 2023, underscoring the assay's utility in identifying critical mutations associated with drug resistance. Moreover, ddPCR can detect multiple parasite populations in clinical samples and can be used to analyze the ratios of wild-type and mutant alleles. These results validate the assay's ability to serve as a powerful tool for the early detection of minor allele frequencies, facilitating the timely implementation of interventions to curb the spread of ACT resistance. The ddPCR assays developed in this study provide a sensitive and specific method for detecting Pfkelch13 mutations, allowing the identification of minor parasite populations with artemisinin resistance. These assays enhance our ability to monitor and respond to malaria drug resistance, offering a crucial tool for early detection and contributing to global malaria elimination efforts.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Aungkana Saejeng
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Nardlada Khantikul
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Rungniran Sugaram
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Raweewan Sangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Wu S, Ma C, Cai J, Yang C, Liu X, Luo C, Yang J, Xiong Z, Cao D, Chen H. A clinically feasible algorithm for the parallel detection of glioma-associated copy number variation markers based on shallow whole genome sequencing. J Pathol Clin Res 2024; 10:e70005. [PMID: 39375998 PMCID: PMC11458885 DOI: 10.1002/2056-4538.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Molecular features are incorporated into the integrated diagnostic system for adult diffuse gliomas. Of these, copy number variation (CNV) markers, including both arm-level (1p/19q codeletion, +7/-10 signature) and gene-level (EGFR gene amplification, CDKN2A/B homozygous deletion) changes, have revolutionized the diagnostic paradigm by updating the subtyping and grading schemes. Shallow whole genome sequencing (sWGS) has been widely used for CNV detection due to its cost-effectiveness and versatility. However, the parallel detection of glioma-associated CNV markers using sWGS has not been optimized in a clinical setting. Herein, we established a model-based approach to classify the CNV status of glioma-associated diagnostic markers with a single test. To enhance its clinical utility, we carried out hypothesis testing model-based analysis through the estimation of copy ratio fluctuation level, which was implemented individually and independently and, thus, avoided the necessity for normal controls. Besides, the customization of required minimal tumor fraction (TF) was evaluated and recommended for each glioma-associated marker to ensure robust classification. As a result, with 1× sequencing depth and 0.05 TF, arm-level CNVs could be reliably detected with at least 99.5% sensitivity and specificity. For EGFR gene amplification and CDKN2A/B homozygous deletion, the corresponding TF limits were 0.15 and 0.45 to ensure the evaluation metrics were both higher than 97%. Furthermore, we applied the algorithm to an independent glioma cohort and observed the expected sample distribution and prognostic stratification patterns. In conclusion, we provide a clinically applicable algorithm to classify the CNV status of glioma-associated markers in parallel.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Chenyu Ma
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Jiawei Cai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated HospitalFujian Medical UniversityFuzhouPR China
| | | | - Xiaojia Liu
- Department of Pathology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Jingyi Yang
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Zhang Xiong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Dandan Cao
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| |
Collapse
|
9
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
10
|
Chen J, Liu X, Zhang Z, Su R, Geng Y, Guo Y, Zhang Y, Su M. Early Diagnostic Markers for Esophageal Squamous Cell Carcinoma: Copy Number Alteration Gene Identification and cfDNA Detection. J Transl Med 2024; 104:102127. [PMID: 39182610 DOI: 10.1016/j.labinv.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The high mortality rate of esophageal squamous cell carcinoma (ESCC) is exacerbated by the absence of early diagnostic markers. The pronounced heterogeneity of mutations in ESCC renders copy number alterations (CNAs) more prevalent among patients. The identification of CNA genes within esophageal squamous dysplasia (ESD), a precancerous stage of ESCC, is crucial for advancing early detection efforts. Utilization of liquid biopsies via droplet-based digital PCR (ddPCR) offers a novel strategy for detecting incipient tumor traces. This study undertook a thorough investigation of CNA profiles across ESCC development stages, integrating data from existing databases and prior investigations to pinpoint and confirm CNA markers conducive to early detection of ESCC. Targeted sequencing was employed to select potential early detection genes, followed by the establishment of prediction models for ESCC early detection using ddPCR. Our analysis revealed widespread CNAs during the ESD stage, mirroring the CNA landscape observed in ESCC. A total of 40 CNA genes were identified as highly frequent in both ESCC and ESD lesions, through a comprehensive gene-level CNA analysis encompassing ESD and ESCC tissues, ESCC cell lines, and pan-cancer data sets. Subsequent validation of 5 candidate markers via ddPCR underscored the efficacy of combined predictive models encompassing PIK3CA, SOX2, EGFR, MYC, and CCND1 in early ESCC screening, as evidenced by the area-under-the-curve values exceeding 0.92 (P < .0001) across various detection contexts. The findings highlighted the significant utility of CNA genes in the early screening of ESCC, presenting robust models that could facilitate early detection, broad-scale population screening, and adjunctive diagnosis.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Xi Liu
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Zhihua Zhang
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Ruibing Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China; Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yiqun Geng
- Department of Molecular Pathology, Shantou University Medical College, Shantou, China
| | - Yi Guo
- Department of Endoscopy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yimin Zhang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Min Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
11
|
Deng L, Zhou J, Sun Y, Hu Y, Qiao J, Liu Z, Gu L, Lin D, Zhang L, Deng D. CDKN2A somatic copy number amplification in normal tissues surrounding gastric carcinoma reduces cancer metastasis risk in droplet digital PCR analysis. Gastric Cancer 2024; 27:986-997. [PMID: 38822931 DOI: 10.1007/s10120-024-01515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The CDKN2A gene is frequently affected by somatic copy number variations (SCNVs, including deletions and amplifications [SCNdel and SCNamp]) in the cancer genome. Using surgical gastric margin tissue samples (SMs) as the diploid reference in SCNV analysis via CDKN2A/P16-specific real-time PCR (P16-Light), we previously reported that the CDKN2A SCNdel was associated with a high risk of metastasis of gastric carcinoma (GC). However, the status of CDKN2A SCNVs in SMs and their clinical significance have not been reported. METHODS Peripheral white blood cell (WBC) and frozen GC and SM tissue samples were collected from patients (n = 80). Droplet digital PCR (ddPCR) was used to determine the copy number (CN) of the CDKN2A gene in tissue samples using paired WBCs as the diploid reference. RESULTS A novel P16-ddPCR system was initially established with a minimal proportion (or limit, 10%) of the detection of CDKN2A CN alterations. While CDKN2A SCNamp events were detected in both SMs and GCs, fewer CDKN2A SCNdel events were detected in SMs than in GCs (15.0% vs. 41.3%, P = 4.77E-04). Notably, significantly more SCNamp and fewer SCNdel of the CDKN2A gene were detected in SMs from GC patients without metastasis than in those from patients with lymph node metastasis by P16-ddPCR (P = 0.023). The status of CDKN2A SCNVs in SM samples was significantly associated with overall survival (P = 0.032). No cancer deaths were observed among the 11 patients with CDKN2A SCNamp. CONCLUSION CDKN2A SCNVs in SMs identified by P16-ddPCR are prevalent and significantly associated with GC metastasis and overall survival.
Collapse
Affiliation(s)
- Lewen Deng
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Hu
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Juanli Qiao
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongmei Lin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
12
|
Alsaab HO, Alzahrani MS, Bahauddin AA, Almutairy B. Circulating tumor DNA (ctDNA) application in investigation of cancer: Bench to bedside. Arch Biochem Biophys 2024; 758:110066. [PMID: 38906310 DOI: 10.1016/j.abb.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Now, genomics forms the core of the precision medicine concept. Comprehensive investigations of tumor genomes have made it possible to characterize tumors at the molecular level and, specifically, to identify the fundamental processes that cause condition. A variety of kinds of tumors have seen better outcomes for patients as a result of the development of novel medicines to tackle these genetic-driving processes. Since therapy may exert selective pressure on cancers, non-invasive methods such as liquid biopsies can provide the opportunity for rich reservoirs of crucial and real-time genetic data. Liquid biopsies depend on the identification of circulating cells from tumors, circulating tumor DNA (ctDNA), RNA, proteins, lipids, and metabolites found in patient biofluids, as well as cell-free DNA (cfDNA), which exists in those with cancer. Although it is theoretically possible to examine biological fluids other than plasma, such as pleural fluid, urine, saliva, stool, cerebrospinal fluid, and ascites, we will limit our discussion to blood and solely cfDNA here for the sake of conciseness. Yet, the pace of wider clinical acceptance has been gradual, partly due to the increased difficulty of choosing the best analysis for the given clinical issue, interpreting the findings, and delaying proof of value from clinical trials. Our goal in this review is to discuss the current clinical value of ctDNA in cancers and how clinical oncology systems might incorporate procedures for ctDNA testing.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Ammar A Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina Al-Munawarah, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
13
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
14
|
Lukacova E, Hanzlikova Z, Podlesnyi P, Sedlackova T, Szemes T, Grendar M, Samec M, Hurtova T, Malicherova B, Leskova K, Budis J, Burjanivova T. Novel liquid biopsy CNV biomarkers in malignant melanoma. Sci Rep 2024; 14:15786. [PMID: 38982214 PMCID: PMC11233564 DOI: 10.1038/s41598-024-65928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Malignant melanoma (MM) is known for its abundance of genetic alterations and a tendency for rapid metastasizing. Identification of novel plasma biomarkers may enhance non-invasive diagnostics and disease monitoring. Initially, we examined copy number variations (CNV) in CDK genes (CDKN2A, CDKN2B, CDK4) using MLPA (gDNA) and ddPCR (ctDNA) analysis. Subsequently, low-coverage whole genome sequencing (lcWGS) was used to identify the most common CNV in plasma samples, followed by ddPCR verification of chosen biomarkers. CNV alterations in CDK genes were identified in 33.3% of FFPE samples (Clark IV, V only). Detection of the same genes in MM plasma showed no significance, neither compared to healthy plasmas nor between pre- versus post-surgery plasma. Sequencing data showed the most common CNV occurring in 6q27, 4p16.1, 10p15.3, 10q22.3, 13q34, 18q23, 20q11.21-q13.12 and 22q13.33. CNV in four chosen genes (KIF25, E2F1, DIP2C and TFG) were verified by ddPCR using 2 models of interpretation. Model 1 was concordant with lcWGS results in 54% of samples, for model 2 it was 46%. Although CDK genes have not been proven to be suitable CNV liquid biopsy biomarkers, lcWGS defined the most frequently affected chromosomal regions by CNV. Among chosen genes, DIP2C demonstrated a potential for further analysis.
Collapse
Affiliation(s)
- E Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | | | - P Podlesnyi
- Instituto de Investigaciones Biomedicas de Barcelona (IIBB), CSIC /Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Barcelona, Spain
| | - T Sedlackova
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Szemes
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - M Samec
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - T Hurtova
- Department of Dermatovenereology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Malicherova
- Department of Clinical Biochemistry, University Hospital in Martin and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - K Leskova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Martin, Slovakia
| | - J Budis
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia.
| |
Collapse
|
15
|
Murphy ZR, Bianchini EC, Smith A, Körner LI, Russell T, Reinecke D, Wang Y, Snuderl M, Orringer DA, Evrony GD. Ultra-Rapid Droplet Digital PCR Enables Intraoperative Tumor Quantification. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308126. [PMID: 38854127 PMCID: PMC11160868 DOI: 10.1101/2024.05.29.24308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR. We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 13 glioma cases. We further combine UR-ddPCR measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities in addition to tumor cell percentages. We anticipate that UR-ddPCR, along with future refinements in assay instrumentation, will enable novel point-of-care diagnostics and the development of molecularly-guided surgeries that improve clinical outcomes.
Collapse
Affiliation(s)
- Zachary R. Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Emilia C. Bianchini
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Andrew Smith
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - Lisa I. Körner
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - Teresa Russell
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - David Reinecke
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - Yuxiu Wang
- Department of Pathology, New York University Grossman School of Medicine, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
| | - Matija Snuderl
- Department of Pathology, New York University Grossman School of Medicine, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
| | - Daniel A. Orringer
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
| | - Gilad D. Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| |
Collapse
|
16
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Lee WS, Lockhart PJ. Utility of droplet digital polymerase chain reaction for studying somatic mosaicism: brain malformations and beyond. Neural Regen Res 2023; 18:2389-2390. [PMID: 37282462 PMCID: PMC10360090 DOI: 10.4103/1673-5374.371356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Affiliation(s)
- Wei Shern Lee
- Bruce Lefroy Centre, Murdoch Children's Research Institute; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Grebstad Tune B, Sareen H, Powter B, Kahana-Edwin S, Cooper A, Koh ES, Lee CS, Po JW, McCowage G, Dexter M, Cain L, O'Neill G, Prior V, Karpelowsky J, Tsoli M, Baumbusch LO, Ziegler D, Roberts TL, DeSouza P, Becker TM, Ma Y. From Pediatric to Adult Brain Cancer: Exploring Histone H3 Mutations in Australian Brain Cancer Patients. Biomedicines 2023; 11:2907. [PMID: 38001908 PMCID: PMC10669073 DOI: 10.3390/biomedicines11112907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient.
Collapse
Affiliation(s)
- Benedicte Grebstad Tune
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
| | - Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Smadar Kahana-Edwin
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Adam Cooper
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Cheok S Lee
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Joseph W Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Geoff McCowage
- Cancer Centre for Children, The Children Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Mark Dexter
- Neurosurgery, The Children Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Lucy Cain
- Cancer Centre for Children, The Children Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Geraldine O'Neill
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- The University of Sydney Children's Hospital Westmead Clinical School, Faculty of Medicine & Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Victoria Prior
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- The University of Sydney Children's Hospital Westmead Clinical School, Faculty of Medicine & Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jonathan Karpelowsky
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- Paediatric Oncology and Thoracic Surgery, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- Division of Child and Adolescent Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Randwick, NSW 2031, Australia
| | - Lars O Baumbusch
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Faculty of Health, Welfare and Organization, Østfold University College, 1757 Halden, Norway
| | - David Ziegler
- Children's Cancer Institute, Randwick, NSW 2031, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2052, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Tara L Roberts
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Paul DeSouza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
19
|
Cao C, Zhang L, Sorensen MD, Reifenberger G, Kristensen BW, McIntyre TM, Lin F. D-2-hydroxyglutarate regulates human brain vascular endothelial cell proliferation and barrier function. J Neuropathol Exp Neurol 2023; 82:921-933. [PMID: 37740942 PMCID: PMC10588003 DOI: 10.1093/jnen/nlad072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.
Collapse
Affiliation(s)
- Chun Cao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mia D Sorensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
21
|
Sahm F, Brandner S, Bertero L, Capper D, French PJ, Figarella-Branger D, Giangaspero F, Haberler C, Hegi ME, Kristensen BW, Kurian KM, Preusser M, Tops BBJ, van den Bent M, Wick W, Reifenberger G, Wesseling P. Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline. Neuro Oncol 2023; 25:1731-1749. [PMID: 37279174 PMCID: PMC10547522 DOI: 10.1093/neuonc/noad100] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/08/2023] Open
Abstract
In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Concortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - David Capper
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pim J French
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Center, 3015 GD Rotterdam, The Netherlands
| | - Dominique Figarella-Branger
- Aix-Marseille University, APHM, CNRS, INP, Institute Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Monika E Hegi
- Neuroscience Research Center and Neurosurgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Bjarne W Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (P.W.)
| |
Collapse
|
22
|
Picard D, Felsberg J, Langini M, Stachura P, Qin N, Macas J, Reiss Y, Bartl J, Selt F, Sigaud R, Meyer FD, Stefanski A, Stühler K, Roque L, Roque R, Pandyra AA, Brozou T, Knobbe-Thomsen C, Plate KH, Roesch A, Milde T, Reifenberger G, Leprivier G, Faria CC, Remke M. Integrative multi-omics reveals two biologically distinct groups of pilocytic astrocytoma. Acta Neuropathol 2023; 146:551-564. [PMID: 37656187 PMCID: PMC10500011 DOI: 10.1007/s00401-023-02626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.
Collapse
Affiliation(s)
- Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Maike Langini
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine I, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Paweł Stachura
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute for Molecular Medicine II, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
| | - Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
| | - Jasmin Bartl
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Frauke-D Meyer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine I, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine I, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Lucia Roque
- Portuguese Cancer Institute, Unidade de Investigação em Patobiologia Molecular (UIPM), IPOLFG, Lisbon, Portugal
| | - Rafael Roque
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christiane Knobbe-Thomsen
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
| | - Alexander Roesch
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Guido Reifenberger
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Claudia C Faria
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, da Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
23
|
Wang R, Liu Y, Chen S, Bai L, Guo K, Pang Y, Qian F, Li Y, Ding L, Wang Y. utPCR: A Strategy for the Highly Specific and Absolutely Quantitative Detection of Single Molecules within Only Minutes. BIOSENSORS 2023; 13:910. [PMID: 37887103 PMCID: PMC10605045 DOI: 10.3390/bios13100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Bloodstream infection is a major health problem worldwide, with extremely high mortality. Detecting infection in the early stage is challenging due to the extremely low concentration of bacteria in the blood. Digital PCR provides unparalleled sensitivity and can achieve absolute quantification, but it is time-consuming. Moreover, the presence of unavoidable background signals in negative controls poses a significant challenge for single-molecule detection. Here, we propose a novel strategy called "Ultrafast flexible thin tube-based droplet digital PCR (utPCR)" that can shorten the digital PCR process from 2 h to only 5 min, with primer annealing/extension time reduced from minutes to only 5 s. Importantly, the ultrafast PCR eliminates nonspecific amplification and thus enables single-molecule detection. The utPCR enabled the sensitive detection and digital quantification of E. coli O157 in the high background of a 106-fold excess of E. coli K12 cells. Moreover, this method also displayed the potential to detect rare pathogens in blood samples, and the limit of detection (LOD) could be as low as 10 CFU per mL of blood without false positive results. Considered ultrafast (<5 min) and highly sensitive (single-molecule detection), the utPCR holds excellent prospects in the next generation of molecular diagnosis.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ying Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Shuaiwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Linlin Bai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Kaiming Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Yanan Pang
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Yongfang Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Li Ding
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
24
|
De Martino L, Picariello S, Russo C, Errico ME, Spennato P, Papa MR, Normanno N, Scimone G, Colafati GS, Cacchione A, Mastronuzzi A, Massimino M, Cinalli G, Quaglietta L. Extra-neural metastases in pediatric diffuse midline gliomas, H3 K27-altered: presentation of two cases and literature review. Front Mol Neurosci 2023; 16:1152430. [PMID: 37547920 PMCID: PMC10398382 DOI: 10.3389/fnmol.2023.1152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Pediatric diffuse midline gliomas (DMG), H3 K27- altered, are the most aggressive pediatric central nervous system (CNS) malignancies. Disease outcome is dismal with a median survival of less than one year. Extra-neural metastases are an unusual occurrence in DMG and have been rarely described. Methods and results Here, we report on two pediatric patients affected by DMG with extra-neural dissemination. Their clinical, imaging, and molecular characteristics are reported here. An 11-year-old male 5 months after the diagnosis of diffuse intrinsic pontine glioma (DIPG) developed metastatic osseous lesions confirmed with computed tomography (CT) guided biopsy of the left iliac bone. The patient died one month after the evidence of metastatic progression. Another 11-year-old female was diagnosed with a cerebellar H3K27- altered DMG. After six months, she developed diffuse sclerotic osseous lesions. A CT-guided biopsy of the right iliac bone was non-diagnostic. She further developed multifocal chest and abdominal lymphadenopathy and pleural effusions. Droplet digital polymerase chain reaction (ddPCR) on pleural effusion revealed the presence of H3.3A mutation (c.83A>T, p.K28M). The patient died 24 months after the diagnosis of DMG and 3 months after the evidence of metastatic pleural effusion. Discussion Extra-neural metastasis of DMG is a rare event and no standard therapy exists. An accurate and early diagnosis is necessary in order to develop a personalized plan of treatment. Further research is needed to gain further insights into the molecular pathology of DMG, H3K27- altered and improve the quality of life and the final outcome of patients with this deadly disease.
Collapse
Affiliation(s)
- Lucia De Martino
- Neurooncology Unit, Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Stefania Picariello
- Neurooncology Unit, Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Carmela Russo
- Neuroradiology Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Elena Errico
- Patology Unit, Department of Pathology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Pietro Spennato
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Rosaria Papa
- Department of Paediatric Haematology/Oncology, Cell Therapy, A.O.R.N. Santobono-Pausilipon, Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Giuseppe Scimone
- Radiotherapy Unit, AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Department of Imaging, Istituto di Ricovero e Cura a Carattere Scientifico, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Cacchione
- Neurooncology Unit, Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Neurooncology Unit, Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maura Massimino
- Pediatric Oncology, Fondazione IRCCS-Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Lucia Quaglietta
- Neurooncology Unit, Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| |
Collapse
|
25
|
McFadden JR, Syku M, Barney RE, Stevanovic M, Chaudhari AS, O’Hern KJ, Chambers M, Baker CM, LeBlanc RE, Doan L, Tsongalis GJ, Hughes EG, Sriharan A. A Novel Method to Detect Copy Number Variation in Melanoma: Droplet Digital PCR for Quantitation of the CDKN2A Gene, a Proof-of-Concept Study. Am J Dermatopathol 2023; 45:454-462. [PMID: 37130203 PMCID: PMC10993871 DOI: 10.1097/dad.0000000000002436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT A definitive diagnosis of nevus or melanoma is not always possible for histologically ambiguous melanocytic neoplasms. In such cases, ancillary molecular testing can support a diagnosis of melanoma if certain chromosomal aberrations are detected. Current technologies for copy number variation (CNV) detection include chromosomal microarray analysis (CMA) and fluorescence in situ hybridization. Although CMA and fluorescence in situ hybridization are effective, their utilization can be limited by cost, turnaround time, and inaccessibility outside of large reference laboratories. Droplet digital polymerase chain reaction (ddPCR) is a rapid, automated, and relatively inexpensive technology for CNV detection. We investigated the ability of ddPCR to quantify CNV in cyclin-dependent kinase inhibitor 2A ( CDKN2A ), the most commonly deleted tumor suppressor gene in melanoma. CMA data were used as the gold standard. We analyzed 57 skin samples from 52 patients diagnosed with benign nevi, borderline lesions, primary melanomas, and metastatic melanomas. In a training cohort comprising 29 randomly selected samples, receiver operator characteristic curve analysis revealed an optimal ddPCR cutoff value of 1.73 for calling CDKN2A loss. In a validation cohort comprising the remaining 28 samples, ddPCR detected CDKN2A loss with a sensitivity and specificity of 94% and 90%, respectively. Significantly, ddPCR could also identify whether CDKN2A losses were monoallelic or biallelic. These pilot data suggest that ddPCR can detect CDKN2A deletions in melanocytic tumors with accuracy comparable with CMA. With further validation, ddPCR could provide an additional CNV assay to aid in the diagnosis of challenging melanocytic neoplasms.
Collapse
Affiliation(s)
- Jason R. McFadden
- Department of Biological Sciences, Dartmouth College, Hanover, NH, NH
| | - Marie Syku
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Rachael E. Barney
- Clinical Genomics and Advanced Technologies (CGAT) Laboratory, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Mirjana Stevanovic
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | | | - Keegan J. O’Hern
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Meagan Chambers
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Catherine M. Baker
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Robert E. LeBlanc
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Linda Doan
- Department of Dermatology, University of California, Irvine Health (UCI Health), Irvine, CA
- Department of Pathology & Laboratory Services, University of California, Irvine Health (UCI Health), Irvine, CA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
- Clinical Genomics and Advanced Technologies (CGAT) Laboratory, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Edward G. Hughes
- Clinical Genomics and Advanced Technologies (CGAT) Laboratory, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Aravindhan Sriharan
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| |
Collapse
|
26
|
Korotkaja K, Zajakina A. Recombinant Virus Quantification Using Single-Cell Droplet Digital PCR: A Method for Infectious Titer Quantification. Viruses 2023; 15:v15051060. [PMID: 37243145 DOI: 10.3390/v15051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The quantification of viruses is necessary for both research and clinical applications. The methods available for RNA virus quantification possess several drawbacks, including sensitivity to inhibitors and the necessity of a standard curve generation. The main purpose of this study was to develop and validate a method for the quantification of recombinant, replication-deficient Semliki Forest virus (SFV) vectors using droplet digital PCR (ddPCR). This technique demonstrated stability and reproducibility using various sets of primers that targeted inserted transgenes, as well as the nsP1 and nsP4 genes of the SFV genome. Furthermore, the genome titers in the mixture of two types of replication-deficient recombinant virus particles were successfully measured after optimizing the annealing/extension temperature and virus:virus ratios. To measure the infectious units, we developed a single-cell ddPCR, adding the whole infected cells to the droplet PCR mixture. Cell distribution in the droplets was investigated, and β-actin primers were used to normalize the quantification. As a result, the number of infected cells and the virus infectious units were quantified. Potentially, the proposed single-cell ddPCR approach could be used to quantify infected cells for clinical applications.
Collapse
Affiliation(s)
- Ksenija Korotkaja
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| |
Collapse
|
27
|
Shin J, Jung C. Improving the Accuracy of Single-Nucleotide Variant Diagnosis Using On-Off Discriminating Primers. BIOSENSORS 2023; 13:380. [PMID: 36979592 PMCID: PMC10046569 DOI: 10.3390/bios13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Early detection of rare mutations through liquid biopsy can provide real-time information related to cancer diagnosis, prognosis, and treatment outcomes. Cell-free DNA samples used in liquid biopsies contain single-nucleotide variants (SNVs) with a variant allele frequency (VAF) of approximately ≤1%. Droplet digital polymerase chain reaction (ddPCR) is considered the gold standard of sequencing using liquid samples, generating amplicons from samples containing mutations with 0.001-0.005% VAF; however, it requires expensive equipment and time-consuming protocols. Therefore, various PCR methods for discriminating SNVs have been developed; nonetheless, non-specific amplification cannot be avoided even in the absence of mutations, which hampers the accurate diagnosis of SNVs. In this study, we introduce single-nucleotide variant on-off discrimination-PCR (Soo-PCR), a highly accurate and practical method that uses a 3'-end tailing primer for the on-off discrimination of low-abundance mutant-type targets, including SNVs. Soo-PCR minimizes the chance of incorrect judgments owing to its high discriminating power. Cancer markers, such as KRAS G12D, EGFR L858R, and EGFR T790M mutations, containing 0.1% VAF, were clearly detected in under 2 h with a high reliability comparable with that of ddPCR. This new method serves as a practical approach to accurately detect and evaluate low-abundance mutations in a user-friendly manner.
Collapse
|