1
|
Gutmann DH, Anastasaki C, Gupta A, Hou Y, Morris SM, Payne JM, Raber J, Tomchik SM, Van Aelst L, Walker JA, Yohay KH. Cognition and behavior in neurofibromatosis type 1: report and perspective from the Cognition and Behavior in NF1 (CABIN) Task Force. Genes Dev 2025; 39:541-554. [PMID: 40127956 PMCID: PMC12047663 DOI: 10.1101/gad.352629.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Individuals with neurofibromatosis type 1 (NF1) are prone to the evolution of neurodevelopmental symptomatology including motor delays, learning disabilities, autism, and attention deficits. Caused by heterozygous germline mutations in the NF1 gene, this monogenic condition offers unique opportunities to study the genetic etiologies for neurodevelopmental disorders and the mechanisms that underlie their formation. Although numerous small animal models have been generated to elucidate the causes of these alterations, there is little consensus on how to align preclinical observations with clinical outcomes, harmonize findings across species, and consolidate these insights to chart a cohesive path forward. Capitalizing on expertise from clinicians; human, animal, and cellular model research scientists; and bioinformatics researchers, the first Cognition and Behavior in NF1 (CABIN) meeting was convened at the Banbury Center of Cold Spring Harbor Laboratory in October 2024. This Perspective summarizes the state of our understanding and a proposed plan for future investigation and exploration to improve the quality of life of those with NF1.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Corina Anastasaki
- Department of Neurology, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aditi Gupta
- Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yang Hou
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Stephanie M Morris
- Center for Autism Services, Science, and Innovation (CASSI), Kennedy Krieger Institute, Baltimore, Maryland 21211, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Department of Paediatrics, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
- Department of Neurology, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
- Department of Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 12114, USA
| | - Kaleb H Yohay
- Department of Neurology, New York University Langone, New York, New York 10017, USA
| |
Collapse
|
2
|
Huang MF, Fisher ME, Phan TTT, Zhao R, Lee DF. Decoding cancer etiology with cellular reprogramming. Curr Opin Genet Dev 2025; 90:102301. [PMID: 39721322 PMCID: PMC11830421 DOI: 10.1016/j.gde.2024.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Cancer research remains clinically unmet in many areas due to limited access to patient samples and the lack of reliable model systems that truly reflect human cancer biology. The emergence of patient-derived induced pluripotent stem cells and engineered human pluripotent stem cells (hPSCs) has helped overcome these challenges, offering a versatile alternative platform for advancing cancer research. These hPSCs are already proving to be valuable models for studying specific cancer driver mutations, offering insights into cancer origins, pathogenesis, tumor heterogeneity, clonal evolution, and facilitating drug discovery and testing. This article reviews recent progress in utilizing hPSCs for clinically relevant cancer models and highlights efforts to deepen our understanding of fundamental cancer biology.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Megan E Fisher
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. https://twitter.com/@trinhttphan
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Shayestehfar M, Taherkhani T, Jahandideh P, Hamidieh AA, Faramarzpour M, Memari A. Brain tumors and induced pluripotent stem cell technology: a systematic review of the literature. Ann Med Surg (Lond) 2025; 87:250-264. [PMID: 40109603 PMCID: PMC11918708 DOI: 10.1097/ms9.0000000000002760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Background Induced pluripotent stem cells (iPSCs) provide a novel approach to studying the pathophysiology of brain tumors and assessing various therapeutic techniques with greater precision. This study aims to systematically review the existing literature to critically analyze and synthesize current research findings. The objective is to evaluate the role of iPSCs in understanding brain tumors and in the development of innovative treatment strategies. Methods We systematically reviewed existing articles that utilized iPSC technology to assess either the pathophysiology of brain tumors or therapeutic techniques, following the standards of Preferred Reporting Items for Systematic review and Meta-Analysis guidelines. Key terms were comprehensively searched in electronic databases, including PubMed, EMBASE, and Scopus. Articles were screened based on specific inclusion and exclusion criteria. Ultimately, 22 relevant articles were chosen, and their data were extracted. Results The summary of findings for each selected article was organized into two general categories: "Methods of Generating iPSCs" and "Applications of iPSCs." The methods of iPSC generation, including transfection and transduction, as well as the types of viral or non-viral vectors used, were extracted and reported for each study. Additionally, the main aims of the selected studies, whether modeling or therapeutic approaches, were gathered and reported in the results section. Conclusion iPSC technology is a novel vehicle that brings new solutions to overcome difficulties in brain tumor studies. In vivo and in vitro models generated from iPSCs provide suitable platforms to investigate the pathophysiology of brain tumors more precisely. Also, iPSCs have been utilized in various studies to examine how different antitumor agents may affect the target cells.
Collapse
Affiliation(s)
- Monir Shayestehfar
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Taherkhani
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Jahandideh
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir A Hamidieh
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Faramarzpour
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Memari
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lee Y, Flores CC, Lefton M, Bhoumik S, Owada Y, Gerstner JR. Integrated Transcriptome Profiling and Pan-Cancer Analyses Reveal Oncogenic Networks and Tumor-Immune Modulatory Roles for FABP7 in Brain Cancers. Int J Mol Sci 2024; 25:12231. [PMID: 39596296 PMCID: PMC11594725 DOI: 10.3390/ijms252212231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Fatty acid binding protein 7 (FABP7) is a multifunctional chaperone involved in lipid metabolism and signaling. It is primarily expressed in astrocytes and neural stem cells (NSCs), as well as their derived malignant glioma cells within the central nervous system. Despite growing evidence for FABP7's tumor-intrinsic onco-metabolic functions, its mechanistic role in regulating the brain tumor immune microenvironment (TIME) and its impact on prognosis at the molecular level remain incompletely understood. Utilizing combined transcriptome profiling and pan-cancer analysis approaches, we report that FABP7 mediates the expression of multiple onco-immune drivers, collectively impacting tumor immunity and clinical outcomes across brain cancer subtypes. An analysis of a single-cell expression atlas revealed that FABP7 is predominantly expressed in the glial lineage and malignant cell populations in gliomas, with nuclear localization in their parental NSCs. Pathway and gene enrichment analysis of RNA sequencing data from wild-type (WT) and Fabp7-knockout (KO) mouse brains, alongside control (CTL) and FABP7-overexpressing (FABP7 OV) human astrocytes, revealed a more pronounced effect of FABP7 levels on multiple cancer-associated pathways. Notably, genes linked to brain cancer progression and tumor immunity (ENO1, MUC1, COL5A1, and IL11) were significantly downregulated (>2-fold) in KO brain tissue but were upregulated in FABP7 OV astrocytes. Furthermore, an analysis of data from The Cancer Genome Atlas (TCGA) showed robust correlations between the expression of these factors, as well as FABP7, and established glioma oncogenes (EGFR, BRAF, NF1, PDGFRA, IDH1), with stronger associations seen in low-grade glioma (LGG) than in glioblastoma (GBM). TIME profiling also revealed that the expression of FABP7 and the genes that it modulates was significantly associated with prognosis and survival, particularly in LGG patients, by influencing the infiltration of immunosuppressive cell populations within tumors. Overall, our findings suggest that FABP7 acts as an intracellular regulator of pro-tumor immunomodulatory genes, exerting a synergistic effect on the TIME and clinical outcomes in brain cancer subtypes.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
- Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
| | - Sukanya Bhoumik
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan;
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
- Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
5
|
Sigaud R, Brummer T, Kocher D, Milde T, Selt F. MOST wanted: navigating the MAPK-OIS-SASP-tumor microenvironment axis in primary pediatric low-grade glioma and preclinical models. Childs Nerv Syst 2024; 40:3209-3221. [PMID: 38789691 PMCID: PMC11511703 DOI: 10.1007/s00381-024-06463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)-the most prevalent brain tumor in children-is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis' critical influence on tumor biology and response to treatment. In this review, we assess the axis' capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG's complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Tilman Brummer
- Institute, of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, University of Freiburg and German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Pan Y, Hysinger JD, Yalçın B, Lennon JJ, Byun YG, Raghavan P, Schindler NF, Anastasaki C, Chatterjee J, Ni L, Xu H, Malacon K, Jahan SM, Ivec AE, Aghoghovwia BE, Mount CW, Nagaraja S, Scheaffer S, Attardi LD, Gutmann DH, Monje M. Nf1 mutation disrupts activity-dependent oligodendroglial plasticity and motor learning in mice. Nat Neurosci 2024; 27:1555-1564. [PMID: 38816530 PMCID: PMC11303248 DOI: 10.1038/s41593-024-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jared D Hysinger
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - James J Lennon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Preethi Raghavan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole F Schindler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin M Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexis E Ivec
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Benjamin E Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher W Mount
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Surya Nagaraja
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suzanne Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Gupta A, Lechpammer M, Brossier NM. Germline BRCA2 pathogenic variants in pediatric ganglioglioma: Case report and review of the literature. Childs Nerv Syst 2024; 40:1609-1612. [PMID: 38168858 DOI: 10.1007/s00381-023-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND BRCA1 and BRCA2 are tumor suppressor genes associated with increased risk of breast and ovarian cancer in adulthood. Patients with germline pathogenic variants in these genes have also been reported to develop brain tumors, although it is unclear whether these syndromes are associated with significant increased risk of brain tumor formation. RESULTS Here, we report a case of a child with germline BRCA2 pathogenic variant presenting with a symptomatic ganglioglioma. To our knowledge, this is the first such patient to be reported. We discuss prior cases of brain tumors in BRCA1/2 patients and evidence for a potential role for BRCA1/2 pathogenic variants in brain tumor formation. CONCLUSION BRCA2 germline variants may increase the risk of developing some types of pediatric brain tumors, but further study is needed to determine its effect on low-grade glioma formation.
Collapse
Affiliation(s)
- Anya Gupta
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | | | - Nicole M Brossier
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Chatterjee J, Koleske JP, Chao A, Sauerbeck AD, Chen JK, Qi X, Ouyang M, Boggs LG, Idate R, Marco Y Marquez LI, Kummer TT, Gutmann DH. Brain injury drives optic glioma formation through neuron-glia signaling. Acta Neuropathol Commun 2024; 12:21. [PMID: 38308315 PMCID: PMC10837936 DOI: 10.1186/s40478-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Tissue injury and tumorigenesis share many cellular and molecular features, including immune cell (T cells, monocytes) infiltration and inflammatory factor (cytokines, chemokines) elaboration. Their common pathobiology raises the intriguing possibility that brain injury could create a tissue microenvironment permissive for tumor formation. Leveraging several murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome and two experimental methods of brain injury, we demonstrate that both optic nerve crush and diffuse traumatic brain injury induce optic glioma (OPG) formation in mice harboring Nf1-deficient preneoplastic progenitors. We further elucidate the underlying molecular and cellular mechanisms, whereby glutamate released from damaged neurons stimulates IL-1β release by oligodendrocytes to induce microglia expression of Ccl5, a growth factor critical for Nf1-OPG formation. Interruption of this cellular circuit using glutamate receptor, IL-1β or Ccl5 inhibitors abrogates injury-induced glioma progression, thus establishing a causative relationship between injury and tumorigenesis.
Collapse
Affiliation(s)
- Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Astoria Chao
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Megan Ouyang
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lucy G Boggs
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Rujuta Idate
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lara Isabel Marco Y Marquez
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Terrence T Kummer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Furnari FB, Anastasaki C, Bian S, Fine HA, Koga T, Le LQ, Rodriguez FJ, Gutmann DH. Stem cell modeling of nervous system tumors. Dis Model Mech 2024; 17:dmm050533. [PMID: 38353122 PMCID: PMC10886724 DOI: 10.1242/dmm.050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Nervous system tumors, particularly brain tumors, represent the most common tumors in children and one of the most lethal tumors in adults. Despite decades of research, there are few effective therapies for these cancers. Although human nervous system tumor cells and genetically engineered mouse models have served as excellent platforms for drug discovery and preclinical testing, they have limitations with respect to accurately recapitulating important aspects of the pathobiology of spontaneously arising human tumors. For this reason, attention has turned to the deployment of human stem cell engineering involving human embryonic or induced pluripotent stem cells, in which genetic alterations associated with nervous system cancers can be introduced. These stem cells can be used to create self-assembling three-dimensional cerebral organoids that preserve key features of the developing human brain. Moreover, stem cell-engineered lines are amenable to xenotransplantation into mice as a platform to investigate the tumor cell of origin, discover cancer evolutionary trajectories and identify therapeutic vulnerabilities. In this article, we review the current state of human stem cell models of nervous system tumors, discuss their advantages and disadvantages, and provide consensus recommendations for future research.
Collapse
Affiliation(s)
- Frank B Furnari
- Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Bian
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Tongji University, 200070 Shanghai, China
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Schloo C, Kutscher LM. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol 2023; 25:1225-1235. [PMID: 36757217 PMCID: PMC10326493 DOI: 10.1093/neuonc/noad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 02/10/2023] Open
Abstract
Pluripotent stem cells offer unique avenues to study human-specific aspects of disease and are a highly versatile tool in cancer research. Oncogenic processes and developmental programs often share overlapping transcriptomic and epigenetic signatures, which can be reactivated in induced pluripotent stem cells. With the emergence of brain organoids, the ability to recapitulate brain development and structure has vastly improved, making in vitro models more realistic and hence more suitable for biomedical modeling. This review highlights recent research and current challenges in human pluripotent stem cell modeling of brain and neural crest neoplasms, and concludes with a call for more rigorous quality control and for the development of models for rare tumor subtypes.
Collapse
Affiliation(s)
- Cedar Schloo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
15
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|