1
|
Radomirović M, Gligorijević N, Rajković A. Immuno-PCR in the Analysis of Food Contaminants. Int J Mol Sci 2025; 26:3091. [PMID: 40243808 PMCID: PMC11988550 DOI: 10.3390/ijms26073091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Food safety is a significant issue of global concern. Consumer safety and government regulations drive the need for the accurate analysis of food contaminants, residues and other chemical constituents of concern. Traditional methods for the detection of food contaminants often present challenges, including lengthy processing times and food matrix interference; they often require expensive equipment, skilled personnel or have limitations in sensitivity or specificity. Developing novel analytical methods that are sensitive, specific, accurate and rapid is therefore crucial for ensuring food safety and the protection of consumers. The immuno-polymerase chain reaction (IPCR) method offers a promising solution in the analysis of food contaminants by combining the specificity of conventional immunological methods with the exponential sensitivity of PCR amplification. This review evaluates the current state of IPCR methods, describes a variety of existing IPCR formats and explores their application in the analysis of food contaminants, including pathogenic bacteria and their toxins, viruses, mycotoxins, allergens, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalic acid esters, pesticides, antibiotics and other food contaminants. Depending on the type of analyte, either sandwich or competitive format IPCR methods are predominantly used. This review also examines limitations of current IPCR methods and explores potential advancements for future implementation in the field of food safety.
Collapse
Affiliation(s)
- Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade—Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Center for Chemistry, University of Belgrade—Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Andreja Rajković
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Campus Coupure, Coupure Links 653, 9000 Ghent, Belgium
- Ghent University Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Republic of Korea
- University of Belgrade—Faculty of Agriculture, Department of Food Safety and Quality Management, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Gao M, Chen Q, Li Z, Zhan Y, Wang L, He T, Yao Q, Jin F, Hu J. Solid phase extraction-surface enhanced Raman spectroscopy (SPE-SERS) test of antibiotic residues in Milk based on au@ MIL-101 NPs. Food Chem 2025; 465:141949. [PMID: 39531971 DOI: 10.1016/j.foodchem.2024.141949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
A SPE-SERS method was developed for the detection of several antibiotic residues in dairy products. Gold nanoparticles (Au NPs) encapsulated with an ultrathin Cr-MIL-101 shell (Au@Cr-MIL-101 NPs) have been synthesized, and the thickness of Cr-MIL-101 shell can be precisely controlled to 3 nm. As a superior solid phase extraction (SPE) adsorbent, Cr-MIL-101 acts as a shell layer to effectively enrich antibiotics within the localized surface plasmon resonance (LSPR) field of Au NPs, which enhances the SERS signal and eliminates background interference. The method can achieve highly sensitive and high-throughput detection for tetracycline hydrochloride, sulfapyridine and benzylpenicillin sodium in dairy products, and the detection limits (LOD) are as low as 2.237, 2.644 and 4.662 ppb respectively. The recoveries of antibiotic residues in spiked dairy products ranged from 72.31 % to 146.7 % with matrix effects (ME) of -15.13 % to 28.68 %. Thus, this method holds significant promise for rapid detection of antibiotics in milk.
Collapse
Affiliation(s)
- Mengyue Gao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China.
| | - Qiao Chen
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - ZhiHao Li
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - YiFang Zhan
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - LiHua Wang
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Ting He
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Qi Yao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Fengmei Jin
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jiming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Nakhonchai N, Prompila N, Ponhong K, Siriangkhawut W, Vichapong J, Supharoek SA. Green hairy basil seed mucilage biosorbent for dispersive solid phase extraction enrichment of tetracyclines in bovine milk samples followed by HPLC analysis. Talanta 2024; 271:125645. [PMID: 38219323 DOI: 10.1016/j.talanta.2024.125645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Unmodified hairy basil seed mucilage (Ocimum basilicum L.), with attractive features as structural functionality and adsorption capacity, was employed as a green biosorbent for dispersive solid phase extraction and enrichment of oxytetracycline, tetracycline, and doxycycline before quantitation by HPLC-UV for the first time. Hairy basil crushed seed increased the contacting surface area and was completely dispersed in the sample solution to extract tetracyclines under acidic condition with the assistance of ultrasonic waves. The analytes in the extraction phase were separated on a C18 column under isocratic condition with a mobile phase consisted of acetonitrile and trifluoroacetic acid. Influence of chemical and physical variables on the extraction efficiency of the developed method was investigated and optimized systematically. Under the optimal condition of all experimental parameters, good linear ranges were obtained at 15.0-500 μg L-1 for tetracyclines with determination coefficients more than 0.9994. Limits of detection (LODs) and limits of quantitation (LOQs) ranged 5.0-7.0 and 15.0 μg L-1, respectively. Relative standard deviations (RSDs) of the proposed method at 100 and 300 μg L-1 for TCs were less than 13 % and 10 %, respectively with percentage TC recoveries from spiked standard ranging 83.1-109.9 %. This simple, reliable, cost-effective, and environmentally friendly method was successfully applied for the analysis of tetracycline residues in milk. The greenness of the proposed method was assessed using the Analytical Eco-Scale and AGREE protocol.
Collapse
Affiliation(s)
- Nongnapas Nakhonchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Nattaya Prompila
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Kraingkrai Ponhong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand; Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Watsaka Siriangkhawut
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Jitlada Vichapong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand; Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Sam-Ang Supharoek
- Department of Medical Science, Amnatcharoen Campus, Mahidol University, Amnat Charoen, 3700, Thailand; Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Ben Ayed A, Ulusoy Hİ, Polat U, Ulusoy S, Locatelli M, Kabir A, Khemakhem H. A facile fabric phase sorptive extraction method for monitoring chloramphenicol residues in milk samples. J Pharm Biomed Anal 2024; 239:115913. [PMID: 38134703 DOI: 10.1016/j.jpba.2023.115913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Determination of pharmaceutical active molecules in the biological matrices is crucial in various fields of clinical and pharmaceutical chemistry, e.g., in pharmacokinetic studies, developing new drugs, or therapeutic drug monitoring. Chloramphenicol (CP) is used for treating bacterial infections, and it's one of the first antibiotics synthetically manufactured on a large scale. Fabric phase sorptive extraction (FPSE) was used to determine Chloramphenicol antibiotic residues in milk samples by means of validated HPLC-DAD instrumentation. Cellulose fabric phases modified with polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol triblock copolymer was synthesized using sol-gel synthesis approach (Sol-gel PEG-PPG-PEG) and used for batch-type fabric phase extractions. Experimental variables of the FPSE method for antibiotic molecules were investigated and optimized systematically. The HPLC analysis of chloramphenicol was performed using a C18 column, isocratic elution of trifluoroacetic acid (0.1%), methanol, and acetonitrile (17:53:30) with a flow rate of 1.0 mL/min. The linear range for the proposed method for chloramphenicol (r2 > 0.9982) was obtained in the range of 25.0-1000.0 ng/mL. The limit of detections (LOD) is 8.3 ng/mL, while RSDs% are below 4.1%. Finally, the developed method based on FPSE-HPLC-DAD was applied to milk samples to quantitatively determine antibiotic residues.
Collapse
Affiliation(s)
- Amina Ben Ayed
- Laboratory of Multifunctional Materials and Applications (LaMMA), Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia.
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkiye.
| | - Ummügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkiye
| | - Songül Ulusoy
- Department Of Pharmacy, Vocational School Of Health Service, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Hamadi Khemakhem
- Laboratory of Multifunctional Materials and Applications (LaMMA), Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
5
|
Quantitative Analysis of Acetone in Transformer Oil Based on ZnO NPs@Ag NWs SERS Substrates Combined with a Stoichiometric Model. Int J Mol Sci 2022; 23:ijms232113633. [DOI: 10.3390/ijms232113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Acetone is an essential indicator for determining the aging of transformer insulation. Rapid, sensitive, and accurate quantification of acetone in transformer oil is highly significant in assessing the aging of oil-paper insulation systems. In this study, silver nanowires modified with small zinc oxide nanoparticles (ZnO NPs@Ag NWs) were excellent surface-enhanced Raman scattering (SERS) substrates and efficiently and sensitively detected acetone in transformer oil. Stoichiometric models such as multiple linear regression (MLR) models and partial least square regressions (PLS) were investigated to quantify acetone in transformer oil and compared with commonly used univariate linear regressions (ULR). PLS combined with a preprocessing algorithm provided the best prediction model, with a correlation coefficient of 0.998251 for the calibration set, 0.997678 for the predictive set, a root mean square error in the calibration set (RMSECV = 0.12596 mg/g), and a prediction set (RMSEP = 0.11408 mg/g). For an acetone solution of 0.003 mg/g, the mean absolute percentage error (MAPE) was the lowest among the three quantitative models. For a concentration of 7.29 mg/g, the MAPE was 1.60%. This method achieved limits of quantification and detections of 0.003 mg/g and 1 μg/g, respectively. In general, these results suggested that ZnO NPs@Ag NWs as SERS substrates coupled with PLS simply and accurately quantified trace acetone concentrations in transformer oil.
Collapse
|
6
|
Vuran B, Ulusoy HI, Sarp G, Yilmaz E, Morgül U, Kabir A, Tartaglia A, Locatelli M, Soylak M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta 2021; 230:122307. [PMID: 33934773 DOI: 10.1016/j.talanta.2021.122307] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
A magnetic solid phase extraction (MSPE) coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) methodology was developed for the determination of chloramphenicol (CP) and tetracycline (TET) antibiotic residues in milk samples. As a solid phase sorbent, C-nanofiber coated magnetic nanoparticles were synthesized and extensively characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Raman Spectroscopy and X-ray Powder Diffraction (XRD) analysis. Experimental variables of MSPE method for both antibiotic analytes were investigated and optimized systematically. After MSPE, the linear range for both the analytes (r2 > 0.9954) were obtained in a range 10.0-600.0 ng mL-1. The limit of detections (LODs) for CP and TET were 3.02 and 3.52 ng mL-1, respectively while RSDs % were below than 4.0%. Finally, the developed method based on MPSE-HPLC-DAD was applied to real milk samples to quantify the antibiotic residues. Recovery values for each antibiotic compound were found in the range of 94.6-105.4% (n = 3) by using spiked model solution.
Collapse
Affiliation(s)
- Busra Vuran
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
| | - Ummügülsüm Morgül
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, 66100, Italy
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Kolb B, Riesterer L, Widenhorn AM, Bier L. Monitoring of Hydrogen Emission from Bacteria in Food, Animals and in the Blood of Humans Suffering from Lyme Disease by A Specific Hydrogen Sensor. Antibiotics (Basel) 2020; 9:antibiotics9070427. [PMID: 32708106 PMCID: PMC7400184 DOI: 10.3390/antibiotics9070427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
A novel straightforward analytical technique was developed to monitor the emission of hydrogen from anaerobic bacteria cultured in sealed headspace vials using a specific hydrogen sensor. The results were compared with headspace gas chromatography carried out in parallel. This technique was also applied to investigate the efficacy of chemical antibiotics and of natural compounds with antimicrobial properties. Antibiotics added to the sample cultures are apparently effective if the emission of hydrogen is suppressed, or if not, are either ineffective or the related bacteria are even resistant. The sensor approach was applied to prove bacterial contamination in food, animals, medical specimens and in ticks infected by Borrelia bacteria and their transfer to humans, thus causing Lyme disease. It is a unique advantage that the progress of an antibiotic therapy can be examined until the emission of hydrogen is finished. The described technique cannot identify the related bacteria but enables bacterial contamination by hydrogen emitting anaerobes to be recognized. The samples are incubated with the proper culture broth in closed septum vials which remain closed during the whole process. The personnel in the lab never come into contact with pathogens and thus safety regulations are guaranteed.
Collapse
|