1
|
Bhat MP, Kumar RS, Chakraborty B, Nagaraja SK, Gireesh Babu K, Nayaka S. Eicosane: An antifungal compound derived from Streptomyces sp. KF15 exhibits inhibitory potential against major phytopathogenic fungi of crops. ENVIRONMENTAL RESEARCH 2024; 251:118666. [PMID: 38462087 DOI: 10.1016/j.envres.2024.118666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
In the present scenario, food security is of major concern due to exponentially increasing population and depleted crop production. The fungal diseases have contributed majorly to the scarcity of staple food products and economic loss worldwide. This problem could be tackled by preventing the crop loss during both pre and post-harvest seasons. During the current investigation, the bioactive compound eicosane was extracted from Streptomyces sp. KF15, subjected to purification and identified based on mass spectrometry and NMR analysis. The evaluation of in-vitro antifungal activity was done by poisoned food method, SEM analysis and growth pattern analysis. The bioactive compound eicosane with molecular weight of 282.5475 g/mol was purified by column chromatography and the straight chain hydrocarbon structure of CH3CH2(18)CH3 was elucidated by NMR analysis. In poisoned food assay, eicosane effectively inhibited the radial growth of all tested fungal pathogens; F. oxysporum was found to be the most sensitive with 24.2%, 33.3%, 42.4%, and 63.6% inhibition at 25-100 μg/ml concentrations. The SEM micrograph established clear differences in the morphology of eicosane treated fungi with damaged hyphae, flaccid mycelium and collapsed spores as compared to the tubular, turgid and entire fungi in control sample. Finally, the growth curve assay depicted the right side shift in the pattern of eicosane treated fungi indicating the delay in adapting to the conditions of growth and multiplication. The findings of this study encourage further research and development towards the novel antifungal drugs that can act against major phytopathogens.
Collapse
Affiliation(s)
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | | | - K Gireesh Babu
- Department of Life Sciences, Parul University, Vadodara, 391760, Gujarat, India.
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| |
Collapse
|
2
|
Alemu B, Molla MD, Tezera H, Dekebo A, Asmamaw T. Phytochemical composition and in vitro antioxidant and antimicrobial activities of Bersama abyssinica F. seed extracts. Sci Rep 2024; 14:6345. [PMID: 38491116 PMCID: PMC10943032 DOI: 10.1038/s41598-024-56659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Medicinal plants can be potential sources of therapeutic agents. Traditional healers use a medicinal plant from Ethiopia, Bersama abyssinica Fresen, to treat various diseases. This study aimed to investigate the phytochemical components and antioxidant and antimicrobial activities of B. abyssinica seed extracts (BASE). Gas chromatography coupled to mass spectroscopy (GC-MS) analysis was used to determine the phytochemical compositions of BASE. The antioxidant activities were assessed by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, thiobarbituric acid-reactive species (TBARS) assay, ferric chloride reducing assay and hydroxyl scavenging capacity assay. Antimicrobial activity was investigated using the agar well diffusion method. Phytochemical screening showed the presence of saponins, glycosides, tannins, steroids, phenols, flavonoids, terpenoids, and alkaloids. GC-MS analysis revealed the presence of 30 volatile compounds; α-pinene (23.85%), eucalyptol (20.74%), β-pinene (5.75%), D-limonene (4.05%), and o-cymene (5.02%). DPPH-induced free radical scavenging (IC50 = 8.78), TBARS (IC50 = 0.55 µg/mL), and hydroxyl radicals' scavenging capacities assays (IC50 = 329.23) demonstrated high antioxidant effects of BASE. Reducing power was determined based on Fe3+-Fe2+ transformation in the presence of extract. BASE was found to show promising antibacterial activity against S. aureus, E. coli, and P. aeruginosa (zone of inhibition 15.7 ± 2.5 mm, 16.0 ± 0.0 mm, and 16.7 ± 1.5 mm, respectively), but excellent antifungal activities against C. albican and M. furfur (zone of inhibition 22.0 ± 2.0 mm and 22.0 ± 4.0 mm, respectively). The seeds of B. abyssinica grown in Ethiopia possess high antioxidant potential, promising antibacterial and superior antifungal activity. Therefore, seeds of B. abyssinica provide a potential source for drug discovery.
Collapse
Affiliation(s)
- Belayhun Alemu
- Department of Biochemistry, School of Medicine, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia.
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hiwot Tezera
- Department of Biochemistry, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Tadesse Asmamaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Bibi R, Adnan M, Tariq A, Mussarat S, Andaleeb R, Khan AUR. Traditional medicines of the Himalayan region: Anti-dermatophytic potential and mode of action of isolated compounds. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
5
|
Jampilek J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin Drug Discov 2022; 17:949-968. [PMID: 35787715 DOI: 10.1080/17460441.2022.2097659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Some of otherwise useful fungi are pathogenic to humans, and unfortunately, the number of these pathogens is increasing. In addition to common skin infections, these opportunistic pathogens are able to cause severe, often incurable, systemic mycoses. AREAS COVERED : The number of antifungal drugs is limited, especially drugs that can be used for systemic administration, and resistance to these drugs is very common. This review summarizes various approaches to the discovery and development of new antifungal drugs, provides an overview of the most important molecules in terms of basic (laboratory) research and compounds currently in clinical trials, and focuses on drug repurposing strategy, while providing an overview of drugs of other indications that have been tested in vitro for their antifungal activity for possible expansion of antifungal drugs and/or support of existing antimycotics. EXPERT OPINION : Despite the limitations of the research of new antifungal drugs by pharmaceutical manufacturers, in addition to innovated molecules based on clinically used drugs, several completely new small entities with unique mechanisms of actions have been identified. The identification of new molecular targets that offer alternatives for the development of new unique selective antifungal highly effective agents has been an important outcome of repurposing of non-antifungal drugs to antifungal drug. Also, given the advances in monoclonal antibodies and their application to immunosuppressed patients, it may seem possible to predict a more optimistic future for antifungal therapy than has been the case in recent decades.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|