1
|
Song H, Chen WJ, Chen SF, Liu M, Si G, Zhu X, Bhatt K, Mishra S, Ghorab MA, Chen S. Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136570. [PMID: 39603136 DOI: 10.1016/j.jhazmat.2024.136570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a strain of Pseudomonas nitroreducens W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50 % of chlorpyrifos (25 mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44 %) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence "HxHxDH", were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.
Collapse
Affiliation(s)
- Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guiling Si
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 2021; 105:8241-8253. [PMID: 34665276 DOI: 10.1007/s00253-021-11633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.Key points• Microbial OPH is a significant bioremediation tool against OPs.• Identification and molecular modification of OPH was discussed in detail.• The applications of OPH in food, environmental, and therapy fields are presented.
Collapse
|
3
|
Cross-linked enzyme-polymer conjugates with excellent stability and detergent-enhanced activity for efficient organophosphate degradation. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
4
|
Yu HL, Li T, Chen FF, Luo XJ, Li A, Yang C, Zheng GW, Xu JH. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metab Eng 2018; 47:184-189. [PMID: 29477859 DOI: 10.1016/j.ymben.2018.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Abstract
Biocatalytic C-H amination is one of the most challenging tasks. C-H amination reaction can hardly be driven efficiently by solely one enzyme so far. Thus, enzymatic synergy represents an alternative strategy. Herein, we report an "Artificially Bioamination Pathway" for C-H amination of cyclohexane as a model substrate. Three enzymes, a monooxygenase P450BM3 mutant, an alcohol dehydrogenase ScCR from Streptomyces coelicolor and an amine dehydrogenase EsLeuDH from Exiguobacterium sibiricum, constituted a clean cascade reaction system with easy product isolation. Two independent cofactor regeneration systems were optimized to avoid interference from the endogenous NADH oxidases in the host E. coli cells. Based on a stepwise pH adjustment and ammonium supplement strategy, and using an in vitro mixture of cell-free extracts of the three enzymes, cyclohexylamine was produced in a titer of 14.9 mM, with a product content of up to 92.5%. Furthermore, designer cells coexpressing the three required enzymes were constructed and their capability of alkane bio-amination was examined. This artificially designed bioamination paves an attractive approach for enzymatic synthesis of amines from accessible and cheap alkanes.
Collapse
Affiliation(s)
- Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
| | - Tuo Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiao-Jing Luo
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Friendship Avenue, Wuchang District, Wuhan, Hubei, 430062, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
| |
Collapse
|
5
|
Chen FF, Zheng GW, Liu L, Li H, Chen Q, Li FL, Li CX, Xu JH. Reshaping the Active Pocket of Amine Dehydrogenases for Asymmetric Synthesis of Bulky Aliphatic Amines. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04135] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lei Liu
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Hao Li
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
6
|
Bai YP, Luo XJ, Zhao YL, Li CX, Xu DS, Xu JH. Efficient Degradation of Malathion in the Presence of Detergents Using an Engineered Organophosphorus Hydrolase Highly Expressed by Pichia pastoris without Methanol Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9094-9100. [PMID: 28949531 DOI: 10.1021/acs.jafc.7b03405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biodegradation of pesticides by organophosphorus hydrolases (OPHs) requires an efficient enzyme production technology in industry. Herein, a Pichia pastoris strain was constructed for the extracellular expression of PoOPHM9, an engineered malathion-degrading enzyme. After optimization, the maximum titer and yield of fermentation reached 50.8 kU/L and 4.1 gprotein/L after 3 days, with the highest space-time yield (STY) reported so far, 640 U L-1 h-1. PoOPHM9 displayed its high activity and stability in the presence of 0.1% (w/w) plant-derived detergent. Only 0.04 mg/mL enzyme could completely remove 0.15 mM malathion in aqueous solution within 20 min. Furthermore, 12 μmol malathion on apples and cucumbers surfaces was completely removed by 0.05 mg/mL PoOPHM9 in tap water after 35 min washing. The efficient production of the highly active PoOPHM9 has cleared a major barrier to biodegradation of pesticide residues in food industry.
Collapse
Affiliation(s)
- Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Xiao-Jing Luo
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Yu-Lian Zhao
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Dian-Sheng Xu
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Improved efficiency of a novel methyl parathion hydrolase using consensus approach. Enzyme Microb Technol 2016; 93-94:11-17. [DOI: 10.1016/j.enzmictec.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023]
|
8
|
Luo XJ, Zhao J, Li CX, Bai YP, Reetz MT, Yu HL, Xu JH. Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnol Bioeng 2016; 113:2350-7. [DOI: 10.1002/bit.26012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Xiao-Jing Luo
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Mülheim an der Ruhr Germany
- Fachbereich Chemie; Philipps-Universität Marburg; Marburg Germany
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
9
|
Yin JG, Gong Y, Zhang XY, Zheng GW, Xu JH. Green access to chiral Vince lactam in a buffer-free aqueous system using a newly identified substrate-tolerant (−)-γ-lactamase. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00786d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel (−)-γ-lactamase with high catalytic efficiency, strong substrate tolerance and environmental friendliness was identified for green access to chiral Vince lactam.
Collapse
Affiliation(s)
- Jin-Gang Yin
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Yi Gong
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- PR China
| |
Collapse
|
10
|
Li CX, Jiang XC, Qiu YJ, Xu JH. Identification of a new thermostable and alkali-tolerant α-carbonic anhydrase from Lactobacillus delbrueckii as a biocatalyst for CO2 biomineralization. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0074-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|