1
|
Reyes SJ, Lemire L, Durocher Y, Voyer R, Henry O, Pham PL. Investigating the metabolic load of monoclonal antibody production conveyed to an inducible CHO cell line using a transfer-rate online monitoring system. J Biotechnol 2025; 399:47-62. [PMID: 39828082 DOI: 10.1016/j.jbiotec.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale. Recent advances in modern sensing technology have allowed OTR monitoring to be available at the shake flask level. It is now possible to multiplex time-of-action (e.g., Induction, temperature shift, pH shift, feeding initiation, point of harvest) characterization studies by relying on careful analysis of OTR profile kinetics. As a result, there is potential to save time and capital expenditures while exploring process intensification studies though accurate and physiologically relevant online data. In this article, we detail the application of OTR monitoring to characterize the impact that recombinant protein production has on an inducible CHO cell line expressing Palivizumab. We then test out time-of-action studies to intensify protein production outcomes. We observe that recombinant protein expression causes a metabolic load that diminishes potential biomass growth. As a result, when compared to a control standard process, delaying induction and temperature shift has the potential to improve viable cell densities (VCD) by 2-fold thus increasing recombinant protein yield by over 30 %. The study also demonstrates that OTR can serve as a useful tool to detect cessation of exponential growth. Consequently, time-of-action points that are characteristic of inducible systems can be formulated accurately and reliably to maximize production performance.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Lucas Lemire
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada.
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada.
| |
Collapse
|
2
|
Pang KT, Hong YF, Shozui F, Furomitsu S, Myint M, Ho YS, Silberberg YR, Walsh I, Lakshmanan M. Genome-Scale Modeling of CHO Cells Unravel the Critical Role of Asparagine in Cell Culture Feed Media. Biotechnol J 2024; 19:e202400072. [PMID: 39513375 DOI: 10.1002/biot.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yi Fan Hong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Fumi Shozui
- Biopharma Media Group, Material Development Section, Material & Technology Solution Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki-shi, Japan
| | - Shunpei Furomitsu
- Biopharma Media Group, Material Development Section, Material & Technology Solution Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki-shi, Japan
| | - Matthew Myint
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Yaron R Silberberg
- CELList Solution Center (CSC), Songdo AT Center, Incheon, Republic of Korea
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology Madras, Chennai, India
- Robert Bosch Centre for Data Science and AI (RBCDSAI), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Singh R, Fatima E, Thakur L, Singh S, Ratan C, Kumar N. Advancements in CHO metabolomics: techniques, current state and evolving methodologies. Front Bioeng Biotechnol 2024; 12:1347138. [PMID: 38600943 PMCID: PMC11004234 DOI: 10.3389/fbioe.2024.1347138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Investigating the metabolic behaviour of different cellular phenotypes, i.e., good/bad grower and/or producer, in production culture is important to identify the key metabolite(s)/pathway(s) that regulate cell growth and/or recombinant protein production to improve the overall yield. Currently, LC-MS, GC-MS and NMR are the most used and advanced technologies for investigating the metabolome. Although contributed significantly in the domain, each technique has its own biasness towards specific metabolites or class of metabolites due to various reasons including variability in the concept of working, sample preparation, metabolite-extraction methods, metabolite identification tools, and databases. As a result, the application of appropriate analytical technique(s) is very critical. Purpose and scope: This review provides a state-of-the-art technological insights and overview of metabolic mechanisms involved in regulation of cell growth and/or recombinant protein production for improving yield from CHO cultures. Summary and conclusion: In this review, the advancements in CHO metabolomics over the last 10 years are traced based on a bibliometric analysis of previous publications and discussed. With the technical advancement in the domain of LC-MS, GC-MS and NMR, metabolites of glycolytic and nucleotide biosynthesis pathway (glucose, fructose, pyruvate and phenylalanine, threonine, tryptophan, arginine, valine, asparagine, and serine, etc.) were observed to be upregulated in exponential-phase thereby potentially associated with cell growth regulation, whereas metabolites/intermediates of TCA, oxidative phosphorylation (aspartate, glutamate, succinate, malate, fumarate and citrate), intracellular NAD+/NADH ratio, and glutathione metabolic pathways were observed to be upregulated in stationary-phase and hence potentially associated with increased cell-specific productivity in CHO bioprocess. Moreover, each of technique has its own bias towards metabolite identification, indicating their complementarity, along with a number of critical gaps in the CHO metabolomics pipeline and hence first time discussed here to identify their potential remedies. This knowledge may help in future study designs to improve the metabolomic coverage facilitating identification of the metabolites/pathways which might get missed otherwise and explore the full potential of metabolomics for improving the CHO bioprocess performances.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Eram Fatima
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Chandra Ratan
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
4
|
Coulet M, Kepp O, Kroemer G, Basmaciogullari S. Metabolic Profiling of CHO Cells during the Production of Biotherapeutics. Cells 2022; 11:cells11121929. [PMID: 35741058 PMCID: PMC9221972 DOI: 10.3390/cells11121929] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
As indicated by an ever-increasing number of FDA approvals, biotherapeutics constitute powerful tools for the treatment of various diseases, with monoclonal antibodies (mAbs) accounting for more than 50% of newly approved drugs between 2014 and 2018 (Walsh, 2018). The pharmaceutical industry has made great progress in developing reliable and efficient bioproduction processes to meet the demand for recombinant mAbs. Mammalian cell lines are preferred for the production of functional, complex recombinant proteins including mAbs, with Chinese hamster ovary (CHO) cells being used in most instances. Despite significant advances in cell growth control for biologics manufacturing, cellular responses to environmental changes need to be understood in order to further improve productivity. Metabolomics offers a promising approach for developing suitable strategies to unlock the full potential of cellular production. This review summarizes key findings on catabolism and anabolism for each phase of cell growth (exponential growth, the stationary phase and decline) with a focus on the principal metabolic pathways (glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle) and the families of biomolecules that impact these circuities (nucleotides, amino acids, lipids and energy-rich metabolites).
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Correspondence: (G.K.); (S.B.)
| | | |
Collapse
|
5
|
Schellenberg J, Nagraik T, Wohlenberg OJ, Ruhl S, Bahnemann J, Scheper T, Solle D. Stress‐induced increase of monoclonal antibody production in CHO cells. Eng Life Sci 2022; 22:427-436. [PMID: 35573136 PMCID: PMC9077828 DOI: 10.1002/elsc.202100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry due to their widely used application as human therapeutic and diagnostic agents. As such, mAb require to exhibit human‐like glycolization patterns. Therefore, recombinant Chinese hamster ovary (CHO) cells are the favored production organisms; many relevant biopharmaceuticals are already produced by this cell type. To optimize the mAb yield in CHO DG44 cells a corelation between stress‐induced cell size expansion and increased specific productivity was investigated. CO2 and macronutrient supply of the cells during a 12‐day fed‐batch cultivation process were tested as stress factors. Shake flasks (500 mL) and a small‐scale bioreactor system (15 mL) were used for the cultivation experiments and compared in terms of their effect on cell diameter, integral viable cell concentration (IVCC), and cell‐specific productivity. The achieved stress‐induced increase in cell‐specific productivity of up to 94.94.9%–134.4% correlates to a cell diameter shift of up to 7.34 μm. The highest final product titer of 4 g/L was reached by glucose oversupply during the batch phase of the process.
Collapse
Affiliation(s)
- Jana Schellenberg
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | - Tamanna Nagraik
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | | | - Sebastian Ruhl
- Field Application Specialist – Cell Culture Technologies Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Janina Bahnemann
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | - Thomas Scheper
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | - Dörte Solle
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| |
Collapse
|
6
|
Bayer B, Duerkop M, Striedner G, Sissolak B. Model Transferability and Reduced Experimental Burden in Cell Culture Process Development Facilitated by Hybrid Modeling and Intensified Design of Experiments. Front Bioeng Biotechnol 2022; 9:740215. [PMID: 35004635 PMCID: PMC8733703 DOI: 10.3389/fbioe.2021.740215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Reliable process development is accompanied by intense experimental effort. The utilization of an intensified design of experiments (iDoE) (intra-experimental critical process parameter (CPP) shifts combined) with hybrid modeling potentially reduces process development burden. The iDoE can provide more process response information in less overall process time, whereas hybrid modeling serves as a commodity to describe this behavior the best way. Therefore, a combination of both approaches appears beneficial for faster design screening and is especially of interest at larger scales where the costs per experiment rise significantly. Ideally, profound process knowledge is gathered at a small scale and only complemented with few validation experiments on a larger scale, saving valuable resources. In this work, the transferability of hybrid modeling for Chinese hamster ovary cell bioprocess development along process scales was investigated. A two-dimensional DoE was fully characterized in shake flask duplicates (300 ml), containing three different levels for the cultivation temperature and the glucose concentration in the feed. Based on these data, a hybrid model was developed, and its performance was assessed by estimating the viable cell concentration and product titer in 15 L bioprocesses with the same DoE settings. To challenge the modeling approach, 15 L bioprocesses also comprised iDoE runs with intra-experimental CPP shifts, impacting specific cell rates such as growth, consumption, and formation. Subsequently, the applicability of the iDoE cultivations to estimate static cultivations was also investigated. The shaker-scale hybrid model proved suitable for application to a 15 L scale (1:50), estimating the viable cell concentration and the product titer with an NRMSE of 10.92% and 17.79%, respectively. Additionally, the iDoE hybrid model performed comparably, displaying NRMSE values of 13.75% and 21.13%. The low errors when transferring the models from shaker to reactor and between the DoE and the iDoE approach highlight the suitability of hybrid modeling for mammalian cell culture bioprocess development and the potential of iDoE to accelerate process characterization and to improve process understanding.
Collapse
Affiliation(s)
- Benjamin Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Mark Duerkop
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | | |
Collapse
|
7
|
Kirsch BJ, Bennun SV, Mendez A, Johnson AS, Wang H, Qiu H, Li N, Lawrence SM, Bak H, Betenbaugh MJ. Metabolic Analysis of the Asparagine and Glutamine Dynamics in an Industrial CHO Fed-Batch Process. Biotechnol Bioeng 2021; 119:807-819. [PMID: 34786689 PMCID: PMC9305493 DOI: 10.1002/bit.27993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Chinese hamster ovary (CHO) cell lines are grown in cultures with varying asparagine and glutamine concentrations, but further study is needed to characterize the interplay between these amino acids. By following 13C‐glucose, 13C‐glutamine, and 13C‐asparagine tracers using metabolic flux analysis (MFA), CHO cell metabolism was characterized in an industrially relevant fed‐batch process under glutamine supplemented and low glutamine conditions during early and late exponential growth. For both conditions MFA revealed glucose as the primary carbon source to the tricarboxylic acid (TCA) cycle followed by glutamine and asparagine as secondary sources. Early exponential phase CHO cells prefer glutamine over asparagine to support the TCA cycle under the glutamine supplemented condition, while asparagine was critical for TCA activity for the low glutamine condition. Overall TCA fluxes were similar for both conditions due to the trade‐offs associated with reliance on glutamine and/or asparagine. However, glutamine supplementation increased fluxes to alanine, lactate and enrichment of glutathione, N‐acetyl‐glucosamine and pyrimidine‐containing‐molecules. The late exponential phase exhibited reduced central carbon metabolism dominated by glucose, while lactate reincorporation and aspartate uptake were preferred over glutamine and asparagine. These 13C studies demonstrate that metabolic flux is process time dependent and can be modulated by varying feed composition.
Collapse
Affiliation(s)
- Brian James Kirsch
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sandra V Bennun
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Adam Mendez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Amy S Johnson
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Hongxia Wang
- Regeneron Pharmaceuticals, Inc, Analytical Chemistry Group, Tarrytown, NY, 10591, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc, Analytical Chemistry Group, Tarrytown, NY, 10591, USA
| | - Ning Li
- Regeneron Pharmaceuticals, Inc, Analytical Chemistry Group, Tarrytown, NY, 10591, USA
| | - Shawn M Lawrence
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Hanne Bak
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
8
|
Chandrawanshi V, Kulkarni R, Prabhu A, Mehra S. Enhancing titers and productivity of rCHO clones with a combination of an optimized fed-batch process and ER-stress adaptation. J Biotechnol 2020; 311:49-58. [PMID: 32070675 DOI: 10.1016/j.jbiotec.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/01/2023]
Abstract
To increase the productivity of rCHO cells, many cell engineering approaches have been demonstrated that over-express or knockout a specific gene to achieve increased titers. In this work, we present an alternate approach, based on the concept of evolutionary adaptation, to achieve cells with higher titers. rCHO cells, producing a monoclonal antibody, are adapted to ER-stress, by continuous culturing under increasing concentration of tunicamycin. A sustained higher productivity of at-least 2-fold was achieved in all the clones, in a concentration-dependent manner. Similarly, a 1.5-2 fold increase in final titers was also achieved in the batch culture. Based on metabolic analysis of the adapted cells, a fed-batch process was designed where significantly higher titersare achieved as compared to control. Metabolic flux analysis is employed in addition with gene expression analysis of key genes to understand the basis of increased performance of the adapted cells. Overall, this work illustrates how process modifications and cellular adaptation can be used in synergy to drive up product titers.
Collapse
Affiliation(s)
- Vikas Chandrawanshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohan Kulkarni
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuja Prabhu
- CSIR-National Chemical Laboratory, Pune, India; Academyof Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
9
|
Pappenreiter M, Sissolak B, Sommeregger W, Striedner G. Oxygen Uptake Rate Soft-Sensing via Dynamic k L a Computation: Cell Volume and Metabolic Transition Prediction in Mammalian Bioprocesses. Front Bioeng Biotechnol 2019; 7:195. [PMID: 31497597 PMCID: PMC6712683 DOI: 10.3389/fbioe.2019.00195] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
In aerobic cell cultivation processes, dissolved oxygen is a key process parameter, and an optimal oxygen supply has to be ensured for proper process performance. To achieve optimal growth and/or product formation, the rate of oxygen transfer has to be in right balance with the consumption by cells. In this study, a 15 L mammalian cell culture bioreactor was characterized with respect to kLa under varying process conditions. The resulting dynamic kLa description combined with functions for the calculation of oxygen concentrations under prevailing process conditions led to an easy-to-apply model, that allows real-time calculation of the oxygen uptake rate (OUR) throughout the bioprocess without off-gas analyzers. Subsequently, the established OUR soft-sensor was applied in a series of 13 CHO fed-batch cultivations. The OUR was found to be directly associated with the amount of viable biomass in the system, and deploying of cell volumes instead of cell counts led to higher correlations. A two-segment linear model predicted the viable biomass in the system sufficiently. The segmented model was necessary due to a metabolic transition in which the specific consumption of oxygen changed. The aspartate to glutamate ratio was identified as an indicator of this metabolic shift. The detection of such transitions is enabled by a combination of the presented dynamic OUR method with another state-of-the-art viable biomass soft-sensor. In conclusion, this hyphenated technique is a robust and powerful tool for advanced bioprocess monitoring and control based exclusively on bioreactor characteristics.
Collapse
Affiliation(s)
| | | | | | - Gerald Striedner
- Department of Biotechnology (DBT), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
10
|
Dhiman H, Gerstl MP, Ruckerbauer D, Hanscho M, Himmelbauer H, Clarke C, Barron N, Zanghellini J, Borth N. Genetic and Epigenetic Variation across Genes Involved in Energy Metabolism and Mitochondria of Chinese Hamster Ovary Cell Lines. Biotechnol J 2019; 14:e1800681. [DOI: 10.1002/biot.201800681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Heena Dhiman
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesVienna Austria
- Austrian Centre of Industrial BiotechnologyMuthgasse 11 1190 Vienna Austria
| | - Matthias P. Gerstl
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesVienna Austria
- Austrian Centre of Industrial BiotechnologyMuthgasse 11 1190 Vienna Austria
| | - David Ruckerbauer
- Austrian Centre of Industrial BiotechnologyMuthgasse 11 1190 Vienna Austria
| | - Michael Hanscho
- Austrian Centre of Industrial BiotechnologyMuthgasse 11 1190 Vienna Austria
| | - Heinz Himmelbauer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesVienna Austria
| | - Colin Clarke
- National Institute for Bioprocessing Research and TrainingBlackrock, Co Dublin Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and TrainingBlackrock, Co Dublin Ireland
- School of Chemical and Bioprocess EngineeringUniversity College DublinGlasnevin Whitehall Dublin Ireland
| | - Jürgen Zanghellini
- Austrian Centre of Industrial BiotechnologyMuthgasse 11 1190 Vienna Austria
- Austrian Biotech University of Applied SciencesKonrad Lorenz Strasse 10 3430 Tulln Austria
| | - Nicole Borth
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesVienna Austria
- Austrian Centre of Industrial BiotechnologyMuthgasse 11 1190 Vienna Austria
| |
Collapse
|
11
|
Ritacco FV, Wu Y, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies. Biotechnol Prog 2018; 34:1407-1426. [DOI: 10.1002/btpr.2706] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Frank V. Ritacco
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Yongqi Wu
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Anurag Khetan
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| |
Collapse
|
12
|
Song Y, Chai T, Yin Z, Zhang X, Zhang W, Qian Y, Qiu J. Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:730-739. [PMID: 29908497 DOI: 10.1016/j.envpol.2018.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Ibuprofen (IBU), as a commonly used non-steroidal anti-inflammatory drug (NSAID) and pharmaceutical and personal care product (PPCP), is frequently prescribed by doctors to relieve pain. It is widely released into environmental water and soil in the form of chiral enantiomers by the urination and defecation of humans or animals and by sewage discharge from wastewater treatment plants. This study focused on the alteration of metabolism in the adult zebrafish (Danio rerio) brain after exposure to R-(-)-/S-(+)-/rac-IBU at 5 μg L-1 for 28 days. A total of 45 potential biomarkers and related pathways, including amino acids and their derivatives, purine and its derivatives, nucleotides and other metabolites, were observed with untargeted metabolomics. To validate the metabolic disorders induced by IBU, 22 amino acids and 3 antioxidant enzymes were selected to be quantitated and determined using targeted metabolomics and enzyme assay. Stereoselective changes were observed in the 45 identified biomarkers from the untargeted metabolomics analysis. The 22 amino acids quantitated in targeted metabolomics and 3 antioxidant enzymes determined in enzyme assay also showed stereoselective changes after R-(-)-/S-(+)-/rac-IBU exposure. Results showed that even at a low concentration of R-(-)-/S-(+)-/rac-IBU, disorders in metabolism and antioxidant defense systems were still induced with stereoselectivity. Our study may enable a better understanding of the risks of chiral PPCPs in aquatic organisms in the environment.
Collapse
Affiliation(s)
- Yue Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Tingting Chai
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Agriculture and Food Science, Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Lin'an, Zhejiang 311300, China
| | - Zhiqiang Yin
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Xining Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
13
|
Rejc Ž, Magdevska L, Tršelič T, Osolin T, Vodopivec R, Mraz J, Pavliha E, Zimic N, Cvitanović T, Rozman D, Moškon M, Mraz M. Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Comput Biol Med 2017; 88:150-160. [PMID: 28732234 DOI: 10.1016/j.compbiomed.2017.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023]
Abstract
Genome-scale metabolic models (GEMs) have become increasingly important in recent years. Currently, GEMs are the most accurate in silico representation of the genotype-phenotype link. They allow us to study complex networks from the systems perspective. Their application may drastically reduce the amount of experimental and clinical work, improve diagnostic tools and increase our understanding of complex biological phenomena. GEMs have also demonstrated high potential for the optimisation of bio-based production of recombinant proteins. Herein, we review the basic concepts, methods, resources and software tools used for the reconstruction and application of GEMs. We overview the evolution of the modelling efforts devoted to the metabolism of Chinese Hamster Ovary (CHO) cells. We present a case study on CHO cell metabolism under different amino acid depletions. This leads us to the identification of the most influential as well as essential amino acids in selected CHO cell lines.
Collapse
Affiliation(s)
- Živa Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Lidija Magdevska
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Tilen Tršelič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Timotej Osolin
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Vodopivec
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Jakob Mraz
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Pavliha
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nikolaj Zimic
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Cvitanović
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|