1
|
Mora P, Rimdusit S, Karagiannidis P, Srisorrachatr U, Jubsilp C. Mechanical properties and curing kinetics of bio-based benzoxazine-epoxy copolymer for dental fiber post. BIORESOUR BIOPROCESS 2023; 10:62. [PMID: 38647586 PMCID: PMC10991436 DOI: 10.1186/s40643-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/03/2023] [Indexed: 04/25/2024] Open
Abstract
Biocopolymers based on vanillin/fufurylamine-biobenzoxazine (V-fa) and epoxide castor oil (ECO), a bioepoxy, were prepared for application as dental fiber-reinforced composite post. The mechanical and thermal properties of the V-fa/ECO biocopolymers were assessed with regard to the influence of ECO content. The addition of the ECO at an amount of 20% by weight into the poly(V-fa) preserved the stiffness, glass transition temperature and thermal stability nearly to the poly(V-fa). Differential scanning calorimetry (DSC) was used to examine the curing kinetics of the V-fa/ECO monomer system with different heating rates. To determine the activation energy (Ea), the experimental data were subjected to the isoconversional methods, namely Flynn-Wall-Ozawa (FWO) and Friedman (FR). The V-fa/ECO monomer mixture showed average Ea values of 105 kJ/mol and 94 kJ/mol. The results derived using the curing reaction model and the experimental data were in good agreement, demonstrating the efficacy of the FWO method for determining the curing kinetics parameters. The simulated mechanical response to external applied loads by finite-element analysis of the tooth model restored with glass fiber-reinforced V-fa/ECO biocopolymer post showed a similar stress field to the tooth model restored with a commercial glass fiber post. Therefore, based on the findings in this work, it is evident that the bio-based benzoxazine/epoxy copolymer possesses a great potential to be used for dental fiber post.
Collapse
Affiliation(s)
- Phattarin Mora
- Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Sarawut Rimdusit
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Ukrit Srisorrachatr
- Department of Medical Services, Institute of Dentistry, Nonthaburi, 11000, Thailand
| | - Chanchira Jubsilp
- Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand.
| |
Collapse
|
2
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
3
|
Ahmad I, Abdullah N, Koji I, Yuzir A, Mohamad SE, Show PL, Cheah WY, Khoo KS. The role of restaurant wastewater for producing bioenergy towards a circular bioeconomy: A review on composition, environmental impacts, and sustainable integrated management. ENVIRONMENTAL RESEARCH 2022; 214:113854. [PMID: 35841970 DOI: 10.1016/j.envres.2022.113854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Population inflation has led to the unprecedented increase in urbanization, thus causing negative impacts on environmental sustainability. Recently, there is an upsurge in the number of restaurants due to the changing lifestyles of the people round the globe. For instance, there were 167,490 food and beverage establishments in 2015, representing an annual growth rate of 5.1% since 2010 in Malaysia. The rapid growth of restaurants has implicated a negative impact due to the generation of highly polluted restaurant wastewater (RWW). RWW is mainly generated during the cooking, washing, and cleaning operations. RWW typically contain fat, oil, and grease (FOG) resulting from residues of meat, deep-fried food, baked items and butter, and has caused serious blockages of sewer due to clogging and eventually sewage backup. This has increased the required frequency of cleaning and sanitary sewer overflows (SSOs). Results from the previous studies have shown that FOG can be treated using physical, chemical, and biological processes. Different technologies have been applied for the treatment of FOG and other pollutants (COD, BOD, SS and NH4-N) present in RWW. Therefore, this review aims to provide an in-depth understanding of the characteristics of RWW, chemical and physical characteristics of FOG with the mechanism of its formation and utilization for biocomposites, biogas and biodiesel productions for circular bioeconomy. Besides, this review has discussed the potential treatment technologies comprehensively for RWW which is currently remain understudied. Integrated sustainable management of FOG with technoeconomic analysis of bioproducts, sustainable management with international initiatives and previous studies are also summarized. Hence, this review aims towards providing better alternatives in managing RWW at sources, including its treatment and potential of its biorefinery, therefore eventually contributing towards environmental sustainability.
Collapse
Affiliation(s)
- Imran Ahmad
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Norhayati Abdullah
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia.
| | - Iwamoto Koji
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Ali Yuzir
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Shaza Eva Mohamad
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Lhamo P, Mahanty B. Structural Variability, Implementational Irregularities in Mathematical Modelling of Polyhydroxyalkanoates (PHAs) Production– a State of the Art Review. Biotechnol Bioeng 2022; 119:3079-3095. [DOI: 10.1002/bit.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| |
Collapse
|
5
|
Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers (Basel) 2022; 14:polym14020315. [PMID: 35054720 PMCID: PMC8781631 DOI: 10.3390/polym14020315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, food packaging systems have shifted from a passive to an active role in which the incorporation of antimicrobial compounds into biopolymers can promote a sustainable way to reduce food spoilage and its environmental impact. Accordingly, composite materials based on oxidized-bacterial cellulose (BC) and poly(vinyl alcohol)-chitosan (PVA-CH) nanofibers were produced by needleless electrospinning and functionalized with the bacterial pigment prodigiosin (PG). Two strategies were explored, in the first approach PG was incorporated in the electrospun PVA-CH layer, and TEMPO-oxidized BC was the substrate for nanofibers deposition (BC/PVA-CH_PG composite). In the second approach, TEMPO-oxidized BC was functionalized with PG, and afterward, the PVA-CH layer was electrospun (BC_PG/PVA-CH composite). The double-layer composites obtained were characterized and the nanofibrous layers displayed smooth fibers with average diameters of 139.63 ± 65.52 nm and 140.17 ± 57.04 nm, with and without pigment incorporation, respectively. FTIR-ATR analysis confirmed BC oxidation and revealed increased intensity at specific wavelengths, after pigment incorporation. Moreover, the moderate hydrophilic behavior, as well as the high porosity exhibited by each layer, remained mostly unaffected after PG incorporation. The composites’ mechanical performance and the water vapor transmission rate (WVTR) evaluation indicated the suitability of the materials for certain food packaging solutions, especially for fresh products. Additionally, the red color provided by the bacterial pigment PG on the external surface of a food packaging material is also a desirable effect, to attract the consumers’ attention, creating a multifunctional material. Furthermore, the antimicrobial activity was evaluated and, PVA-CH_PG, and BC_PG layers exhibited the highest antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the fabricated composites can be considered for application in active food packaging, owing to PG antimicrobial potential, to prevent foodborne pathogens (with PG incorporated into the inner layer of the food packaging material, BC/PVA-CH_PG composite), but also to prevent external contamination, by tackling the exterior of food packaging materials (with PG added to the outer layer, BC_PG/PVA-CH composite).
Collapse
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
6
|
Rajesh Banu J, Ginni G, Kavitha S, Yukesh Kannah R, Kumar V, Adish Kumar S, Gunasekaran M, Tyagi VK, Kumar G. Polyhydroxyalkanoates synthesis using acidogenic fermentative effluents. Int J Biol Macromol 2021; 193:2079-2092. [PMID: 34774601 DOI: 10.1016/j.ijbiomac.2021.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHA) are natural polyesters synthesized by microbes which consume excess amount of carbon and less amount of nutrients. It is biodegradable in nature, and it synthesized from renewable resources. It is considered as a future polymer, which act as an attractive replacement to petrochemical based polymers. The main hindrance to the commercial application of PHA is the high manufacturing cost. This article provides an overview of different cost-effective substrates, their characteristics and composition, major strains involved in economical production of PHA and biosynthetic pathways leading to accumulation of PHA. This review also covers the operational parameters, various fermentative modes including batch, fed-batch, repeated fed-batch and continuous fed-batch systems, along with advanced feeding strategies such as single pulse carbon feeding, feed forward control, intermittent carbon feeding, feast famine conditions to observe their effects for improving PHA synthesis and associated challenges. In addition, it also presents the economic analysis and future perspectives for the commercialization of PHA production process thereby making the process sustainable and lucrative with the possibility of commercial biomanufacturing.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - G Ginni
- Department of Civil Engineering, Amrita College of Engineering and Technology, Amritagiri, Nagercoil, Tamil Nadu, 629901, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India; Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, 620015, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
7
|
Mtibe A, Motloung MP, Bandyopadhyay J, Ray SS. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Macromol Rapid Commun 2021; 42:e2100130. [PMID: 34216411 DOI: 10.1002/marc.202100130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Indexed: 12/17/2022]
Abstract
Recently, polymer science and engineering research has shifted toward the development of environmentally benign polymers to reduce the impact of plastic leakage on the ecosystems. Stringent regulations and concerns regarding conventional polymers are the main driving forces for the development of renewable, biodegradable, sustainable, and environmentally benign materials. Although biopolymers can alleviate plastic-related pollution, several factors dictate the utilization of biopolymers. Herein, an overview of the potential and limitations of synthetic biopolymers and their composites in the context of environmentally benign materials for a sustainable future are presented. The synthetic biopolymer market, technical advancements for different applications, lifecycle analysis, and biodegradability are covered. The current trends, challenges, and opportunities for bioplastic recycling are also discussed. In summary, this review is expected to provide guidelines for future development related to synthetic biopolymer-based sustainable polymeric materials suitable for various applications.
Collapse
Affiliation(s)
- Asanda Mtibe
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
| | - Jayita Bandyopadhyay
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| |
Collapse
|
8
|
Kachrimanidou V, Ioannidou SM, Ladakis D, Papapostolou H, Kopsahelis N, Koutinas AA, Kookos IK. Techno-economic evaluation and life-cycle assessment of poly(3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products. BIORESOURCE TECHNOLOGY 2021; 326:124711. [PMID: 33550212 DOI: 10.1016/j.biortech.2021.124711] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
This study presents techno-economic evaluation of a biorefinery concept using biodiesel industry by-products (sunflower meal and crude glycerol) to produce poly(3-hydroxybutyrate) (PHB), crude phenolic extracts (CPE) and protein isolate (PI). The PHB production cost at two annual production capacities ($12.5/kg for 2,500 t PHB/year and $7.8/kg for 25,000 t PHB/year) was not cost-competitive to current PHB production processes when the revenues derived from co-products were not considered. Sensitivity analysis projected the economic viability of a biorefinery concept that could achieve a minimum selling price of $1.1/kg PHB similar to polypropylene. The annual PHB production capacity and the identification of marketable end-uses with respective market prices for the co-products CPE and PI were crucial in attaining process profitability. Greenhouse gas emissions (ca. 0.64 kg CO2-eq/kg PHB) and abiotic depletion potential (61.7 MJ/kg PHB) were lower than polypropylene. Biorefining of sunflower meal and crude glycerol could lead to sustainable PHB production.
Collapse
Affiliation(s)
- Vasiliki Kachrimanidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio 26504, Patras, Greece
| |
Collapse
|
9
|
Talan A, Kaur R, Tyagi RD, Drogui P. Bioconversion of oily waste to polyhydroxyalkanoates: Sustainable technology with circular bioeconomy approach and multidimensional impacts. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Yadav B, Pandey A, Kumar LR, Tyagi RD. Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach. BIORESOURCE TECHNOLOGY 2020; 298:122584. [PMID: 31862396 DOI: 10.1016/j.biortech.2019.122584] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Research insight into the technical challenges of bioplastics production has revealed their confoundedness in their niche markets and struggles to enter the mainstream. There is an increasing problem of waste disposal and high cost of pure substrates in polyhydroxyalkanoates (PHA) production. This has led to the future need of upgrading the waste streams from different industries into the role of feedstocks for production of PHA. The review covers the latest developments in using wastes and surplus materials for PHA production. In addition to inexpensive carbon sources, efficient upstream and downstream processes and recycling of waste streams within the process are required to maintain the circularity in the entire process. A view on the link between circular bioeconomy and PHA production process covering the techno-economic, life cycle assessment and environmental aspects has also been provided. Furthermore, the future perspectives related to the topic have also been discussed.
Collapse
Affiliation(s)
- Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Aishwarya Pandey
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
11
|
Tang J, Qian Z, Wu H. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. BIORESOURCE TECHNOLOGY 2018; 268:60-67. [PMID: 30071414 DOI: 10.1016/j.biortech.2018.07.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated different vegetable oils as the second carbon source in liquid static culture of Cordyceps militaris in terms of mycelial growth and cordycepin production. The maximum mycelial concentration and cordycepin production were observed under cottonseed oil and peanut oil induction, respectively. In the condition of adding 20 g/L of peanut oil at Day 0, the final concentration of cordycepin reached to the highest, about 5.29 g/L, which was about 3.17 times higher than that of the control. The qRT-PCR and enzyme activity analysis confirmed that addition of peanut oil up-regulated the expression of the genes encoding glucose-6-phosphate dehydrogenase and isocitrate lyase, as well as the genes in the cordycepin biosynthesis pathway, cns1 and cns2, during the cultivation in C. militaris.
Collapse
Affiliation(s)
- Jiapeng Tang
- Department of Biochemistry and Pharmacy, Institute of Nautical Medicine, Nantong University, Nantong 226001, PR China
| | - Zhenqing Qian
- Department of Biochemistry and Pharmacy, Institute of Nautical Medicine, Nantong University, Nantong 226001, PR China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
12
|
Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JCW. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng 2018; 126:282-292. [DOI: 10.1016/j.jbiosc.2018.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
13
|
The production of poly(3-hydroxybutyrate) by thermophilic Caldimonas manganoxidans from glycerol. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1486-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 2018; 107:762-778. [DOI: 10.1016/j.ijbiomac.2017.09.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022]
|