1
|
Hu T, Wu J, Fu S, Li H, Gao Z. Impact of tyrosine amination on the aggregation and neurotoxicity of amyloid-β. Int J Biol Macromol 2025; 306:141700. [PMID: 40043970 DOI: 10.1016/j.ijbiomac.2025.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
The tyrosine residue in amyloid-β (Aβ) is susceptible to attack by various reactive nitrogen intermediates, leading to the formation of 3-nitrotyrosine (3-NT), a post-translational modification associated with the pathophysiology of Alzheimer's disease (AD). Although considered a "dead-end" product, emerging evidence suggests that 3-NT can be reduced to 3-aminotyrosine (3-AT) in vivo. This study aims to validate the amination of Aβ tyrosine under physiological conditions and systematically investigate its impact on the aggregation and neurotoxicity of Aβ42. Our investigations reveal that tyrosine amination mitigates the highly ordered β-structure content of Aβ42, thereby modulating its aggregation pathway, which is primarily dominated by the multi-step secondary nucleation. Aminotyrosine fibrils exhibit enhanced fragmentation, increasing fibril elongation rate, and insoluble aggregate production. Concurrently, tyrosine amination attenuates the neurotoxicity of Aβ42 by reducing intracellular reactive oxygen species (ROS) production and mitigating cell membrane disruption. Tyrosine amination substantially alters the aggregation and physiological properties of Aβ42. Nitration of Aβ42 and subsequent conversion to tyrosine-aminated Aβ42 may represent an intrinsic defensive response against AD under nitrative stress.
Collapse
Affiliation(s)
- Ting Hu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jinming Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Faculty of Medicine, Lund University, Sweden
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Wang W, Chen Y, Wang Y, Wang Y, Zhang W, Dai K, Geng W, Tang S. Azo-linked 5-ASA-coumarin prodrug: Fluorescent tracking for colonic drug release in UC treatment. Talanta 2025; 284:127277. [PMID: 39608145 DOI: 10.1016/j.talanta.2024.127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Theranostic prodrugs that enable real-time, non-invasive monitoring of drug release and biodistribution are highly desirable for optimizing therapeutic efficacy and guiding personalized medication. Herein, we report a colon-targeted theranostic prodrug system (P1) for the simultaneous delivery and tracking of 5-aminosalicylic acid (5-ASA) in the treatment of ulcerative colitis (UC). P1 comprises a fluorescent 7-amino-4-methylcoumarin (7-AMC) reporter covalently linked to 5-ASA via an azo bond, which quenches the fluorescence of 7-AMC until P1 is activated by azoreductases in the colonic microenvironment. This selective activation triggers the release of 5-ASA and the revival of 7-AMC fluorescence, enabling real-time monitoring of drug delivery. To improve the solubility and targeted delivery of P1, it was encapsulated within polymeric micelles (PM) that selectively adhere to the positively charged, inflamed colonic tissues. In vitro studies confirmed the stability, biocompatibility, and selective activation of P1 under simulated colonic conditions. Notably, in a mouse model of UC, the P1-loaded PM achieved targeted delivery of 5-ASA to the inflamed colon, resulting in effective attenuation of colitis symptoms. Importantly, the in situ activation of P1 allowed for the real-time, non-invasive visualization of drug release and biodistribution, providing valuable insights for treatment optimization. This theranostic prodrug approach offers a promising strategy for the simultaneous therapy and tracking of 5-ASA delivery in UC treatment, with the potential to facilitate personalized medication and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Yingjie Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China
| | - Yuan Wang
- University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yijian Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Wenjing Zhang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Keke Dai
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Wujun Geng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China.
| | - Sicheng Tang
- University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China.
| |
Collapse
|
3
|
Chen J, Miao Z, Ma C, Qi B, Qiu L, Tan J, Wei Y, Wang J. Bispecific Metabolic Monitoring Platform for Bacterial Identification and Antibiotic Susceptibility Testing. ACS Sens 2025; 10:1470-1482. [PMID: 39947871 DOI: 10.1021/acssensors.4c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Prompt and reliable bacterial identification and antibiotic susceptibility testing are vital for combating bacterial infections and drug resistance. Herein, we designed a bispecific metabolic monitoring platform that targets enzyme-catalyzed biochemical reactions for bacterial identification and antibiotic susceptibility testing. Specifically, we designed two kinds of coreshell-structured persistent luminescence nanoparticles with surface-confined red and green persistent luminescence, respectively. The persistent luminescence nanoparticles were functionalized with energy acceptors that can be specifically cleaved by bacterial enzymes. The surface-confined persistent luminescence amplified the Förster resonance energy transfer (FRET) efficacy from the nanoparticles to the surface energy acceptors, even though the diameter of the nanoparticles exceeded the critical size of FRET, which improved the sensitivity of bacterial enzyme monitoring. Due to the differentiated expression and secretion of enzymes, different species of bacteria produced discrepant red and green persistent luminescence after incubation with the persistent luminescence nanoprobes. Machine learning models were trained by the characteristic persistent luminescence patterns of bacteria for unknown bacterial identification. Prompt bacteria identification was realized, and the overall accuracy reached 100%. Moreover, the machine learning model could identify the active and inactive states of bacteria treated with antibiotics, which provided a prompt and convenient method to determine whether the bacteria were susceptible to the antibiotics. This study provides a robust method to monitor bacterial metabolism and offers a promising strategy for infection treatment, bacterial communication monitoring, and pathogenicity investigation.
Collapse
Affiliation(s)
- Jiayi Chen
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Ziyun Miao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Chengjie Ma
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bing Qi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Lingling Qiu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jiahui Tan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Yurong Wei
- School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Peng YJ, Xu B, Rokita SE. Breaking the Myth of Enzymatic Azoreduction. ACS Chem Biol 2025; 20:229-237. [PMID: 39707960 DOI: 10.1021/acschembio.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown. We have now prepared a set of azobenzene derivatives and characterized their turnover and products after treatment with azoreductase from Escherichia coli to discover the structural basis regulating aryl amine formation. Without resonance donation by aryl substituents, reduction ceases at the hydrazo product. This indicates that azoreductases do not act on the hydrazo bond. Instead, aryl amine formation depends on a spontaneous hydrazo bond lysis that is promoted by resonance stabilization and subsequent reduction of the quinone-like intermediate by azoreductase. Experimental and computational approaches confirm the substituent dependence of this process. With knowledge of this requirement, full release of aryl amines from azo-conjugates can now be designed and applied with confidence.
Collapse
Affiliation(s)
- Yu-Ju Peng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Bing Xu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Hegazy AM, Shehat MG, Abouelfetouh A, Teleb M, Khattab SN, Haiba NS. Unveiling the structural aspects of novel azo-dyes with promising anti-virulence activity against MRSA: a deep dive into the spectroscopy via integrated experimental and computational approaches. RSC Adv 2025; 15:1665-1679. [PMID: 39835211 PMCID: PMC11744518 DOI: 10.1039/d4ra06367h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework via azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in D2O, prompting a 2D NMR analysis to confirm this phenomenon. Furthermore, comprehensive density functional theory (DFT) calculations were conducted to unravel synthetic dyes' geometrical and electronic properties. Meanwhile, the reactivity of various sites was further investigated through Frontier Molecular Orbitals (FMOs) analysis and molecular electrostatic potential mapping. Besides, the experimental NMR spectra were interpreted by incorporating theoretically computed NMR spectrum and reduced density gradient (RDG) function. These computations revealed a pronounced intramolecular hydrogen bond through O-H⋯N interaction that significantly influenced the proton chemical shift. The dyes were assessed for their antimicrobial activities using agar diffusion, micro broth dilution, and biofilm inhibition assays. Interestingly, one of the synthetic dyes showed promising antibacterial effects against S. aureus (ATCC-6538) as well as against a multidrug-resistant MRSA clinical isolate with a MIC (minimum inhibitory concentration) of 78.12 μg mL-1. Moreover, that dye inhibited biofilm formation of the strong biofilm former clinical MRSA isolate with a concentration as low as 0.25 MIC (19.53 μg mL-1). Indeed, our qPCR data suggest that inhibiting the SaeS/SaeR system is another potential mechanism by which D4 exerts its antibacterial and anti-virulence effects. Altogether, this shows these synthetic azo dyes' promising antibacterial and anti-virulence activities concerning MRSA clinical infections.
Collapse
Affiliation(s)
- Ahmed M Hegazy
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University 21521 Alexandria Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University 21521 Alexandria Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University 51718 Alamein Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University 21521 Alexandria Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University 21521 Alexandria Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Alamein International University (AIU) Alamein City 5060310 Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Egypt
| |
Collapse
|
6
|
Hillyer MB, Jordan JH, Ernst NE, Nam S, Easson MW. Cu 2O/CuO Nanoparticle-Cotton Fiber Biocomposite Catalyst: Self-Improvement through Morphological Changes during Methyl Orange Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27174-27182. [PMID: 39680730 DOI: 10.1021/acs.langmuir.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, the application of a novel polymer-supported Cu2O/CuO nanoparticle catalyst for the efficient degradation of an organic dye, in which the nanoparticle catalyst is incorporated within a natural plant fiber matrix, is presented. The use of plant fibers provides a renewable and environmentally friendly support material, and enhances the catalytic efficiency over consecutive degradation cycles. This innovative design promotes the efficient adsorption and degradation of dye. The nanoparticle biocomposite showed a remarkable capacity to degrade methyl orange in solution (50 ppm, 150 mL) in <3 h (pH 7.2) or <1.5 h (pH 9.1) using 150 mg catalyst material containing 1.7 wt % copper content. Over five catalytic reaction cycles, the content of Cu1+ relative to Cu2+ increased from 57.6 to 94.1%, average particle size decreased from 54.7 ± 58.5 to 28.7 ± 22.0 nm and the average circularity increased from 0.69 ± 0.25 to 0.75 ± 0.25, while maintaining high catalytic degradation efficiency (>99.6%). The experimental results demonstrate high degradation rates, showcasing the catalyst's potential for sustainable industrial waste remediation applications.
Collapse
Affiliation(s)
- Matthew B Hillyer
- Cotton Fiber Bioscience and Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| | - Jacobs H Jordan
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| | - Nicholas E Ernst
- Department of Chemistry, Purdue University Northwest, 2200 169th Street, Hammond, Indiana 46323, United States
| | - Sunghyun Nam
- Cotton Fiber Bioscience and Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| | - Michael W Easson
- Cotton Quality and Innovation Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| |
Collapse
|
7
|
Miyawaki A, Sakai S. Immobilization of laccases on mechanically ground silk fibroin nanofibers for enhanced stability. Int J Biol Macromol 2024; 282:136745. [PMID: 39433192 DOI: 10.1016/j.ijbiomac.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Azo dyes in textile industry effluents pose significant health and environmental risks. Laccase is an enzyme capable of degrading azo dyes, offering an environmentally friendly solution for treating textile wastewater. However, laccases need to be immobilized on specific carriers to enable effective reuse in batch reactors and continuous operation in flow-through reactors. This study employed silk fibroin nanofibers (SFNFs) obtained by mechanically grinding degummed silkworm silk as sustainable carriers to immobilize laccases through carbodiimide-mediated crosslinking. The immobilized laccases (SFNF-laccases) exhibited improved pH tolerance in the range of pH 3.0-8.0 with a smaller reduction in activity compared to free laccases (SFNF-laccases: 32.9 %, free laccases: 50.4 %). The thermal stability of immobilized laccases was also improved, showing 19, 13, and 9 % higher activities than those of free laccases at 40, 50, and 60 °C, respectively. After 8 days of storage, the activity of SFNF-laccases was 79 % of their activity immediately after immobilization, whereas free laccases retained only 29 % of their initial activity. In addition, SFNF-laccases maintained 73 % of their original operational activity in a flow-through reactor after 8 days. These results demonstrate the great potential of mechanically ground SFNFs as carriers of laccase and the resulting SFNF-laccases in industrial wastewater treatment.
Collapse
Affiliation(s)
- Ayari Miyawaki
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
8
|
Chawla N, Gupta L, Kumar S. Bioremediation technologies for remediation of dyes from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1229. [PMID: 39570539 DOI: 10.1007/s10661-024-13410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The colored dyes are extensively applied in diverse industrial setups such as textiles, paper, leather, and cosmetics. The unutilized dyes are released in the waste and pose a serious menace to the environment, ecological balance, and human health. Because of their chemical nature, they are extremely resistant to common methods of treatment and often persist in the aquatic environment. A sustainable and eco-friendly approach for treating dye-contaminated wastewater is "bioremediation." This manuscript aims to discuss the exclusive role of diversified microorganisms and plants, immobilized microbial cells/enzymes, microbial consortia, nanomaterials, and combination approaches in the bioremediation of dyes. It also provides a comprehensive understanding of different bio-remedial technologies used to remove dyes from wastewater. In addition, the underlying mechanisms affecting the efficacy of bio-remedial technologies, the latest breakthroughs, challenges, and potential solutions in scaling up, and prospects in this area are also explored. We also detail the noteworthiness of genetic engineering in different bioremediation technologies to solve the issues associated with dye contamination in wastewater and its removal from the environment.
Collapse
Affiliation(s)
- Niti Chawla
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India.
| |
Collapse
|
9
|
Li T, Liu X, Wang Z, Liu C, Liu Y, Cui N, Meng F, Zhang W, Wang D, Xu Y, Zhu X, Guo C, Wang Y. Characterization and rational engineering of an alkaline-tolerant azoreductase derived from Roseibium sp. H3510 for enhanced decolorization of azo dyes. Int J Biol Macromol 2024; 280:135810. [PMID: 39322137 DOI: 10.1016/j.ijbiomac.2024.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.
Collapse
Affiliation(s)
- Tao Li
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xinqi Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Ziwei Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Cong Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ning Cui
- Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, PR China
| | - Fanling Meng
- Academic Affairs Office, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenbo Zhang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Dandan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yongtao Xu
- Henan Engineering Laboratory of Combinatorial Technique for Clinical & Biomedical Big Data, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xueyi Zhu
- Zhengzhou Feier Medical Laboratory Co., LTD, Zhengzhou 450099, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
10
|
Jasińska A, Walaszczyk A, Paraszkiewicz K. Omics-Based Approaches in Research on Textile Dye Microbial Decolorization. Molecules 2024; 29:2771. [PMID: 38930836 PMCID: PMC11206425 DOI: 10.3390/molecules29122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland;
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
11
|
Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312939. [PMID: 38447161 DOI: 10.1002/adma.202312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 715, Saudi Arabia
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
12
|
Salem MA, Nour El-Din HT, Hashem AM, Aziz RK. Genome-Scale Investigation of the Regulation of azoR Expression in Escherichia coli Using Computational Analysis and Transposon Mutagenesis. MICROBIAL ECOLOGY 2024; 87:63. [PMID: 38691135 PMCID: PMC11062982 DOI: 10.1007/s00248-024-02380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.
Collapse
Affiliation(s)
- Mona A Salem
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, El-Sherouk City, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, 11562, Cairo, Egypt
| | - Abdelgawad M Hashem
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, El-Sherouk City, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, 11562, Cairo, Egypt.
- Center for Genome and Microbiome Research, Cairo University, 11562, Cairo, Egypt.
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt, 57357, 11617, Cairo, Egypt.
| |
Collapse
|
13
|
Mishra R, Modi A, Pandit R, Sadhwani J, Joshi C, Patel AK. Cloning and characterization of FMN-dependent azoreductases from textile industry effluent identified through metagenomic sequencing. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:335-344. [PMID: 38407923 DOI: 10.1080/10962247.2024.2322513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.
Collapse
Affiliation(s)
- Roshani Mishra
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Akhilesh Modi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Jyoti Sadhwani
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| |
Collapse
|
14
|
Zahran SA, Mansour SM, Ali AE, Kamal SM, Römling U, El-Abhar HS, Ali-Tammam M. Sunset Yellow dye effects on gut microbiota, intestinal integrity, and the induction of inflammasomopathy with pyroptotic signaling in male Wistar rats. Food Chem Toxicol 2024; 187:114585. [PMID: 38490351 DOI: 10.1016/j.fct.2024.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Although concern persists regarding possible adverse effects of consumption of synthetic azo food dyes, the mechanisms of any such effects remain unclear. We have tested the hypothesis that chronic consumption of the food dye Sunset Yellow (SY) perturbs the composition of the gut microbiota and alters gut integrity. Male rats were administered SY orally for 12 weeks. Analysis of fecal samples before and after dye administration demonstrated SY-induced microbiome dysbiosis. SY treatment reduced the abundance of beneficial taxa such as Treponema 2, Anaerobiospirillum, Helicobacter, Rikenellaceae RC9 gut group, and Prevotellaceae UCG-003, while increasing the abundance of the potentially pathogenic microorganisms Prevotella 2 and Oribacterium. Dysbiosis disrupted gut integrity, altering the jejunal adherens junction complex E-cadherin/β-catenin and decreasing Trefoil Factor (TFF)-3. SY administration elevated LPS serum levels, activated the inflammatory inflammasome cascade TLR4/NLRP3/ASC/cleaved-activated caspase-1 to mature IL-1β and IL-18, and activated caspase-11 and gasdermin-N, indicating pyroptosis and increased intestinal permeability. The possibility that consumption of SY by humans could have effects similar to those that we have observed in rats should be examined.
Collapse
Affiliation(s)
- Sara Ahmed Zahran
- Department of Microbiology& Immunology, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| | - Suzan Mohamed Mansour
- Departments of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| | - Amal Emad Ali
- Department of Microbiology& Immunology, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| | - Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Hanan Salah El-Abhar
- Departments of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| | - Marwa Ali-Tammam
- Department of Microbiology& Immunology, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| |
Collapse
|
15
|
Jimonet P, Druart C, Blanquet-Diot S, Boucinha L, Kourula S, Le Vacon F, Maubant S, Rabot S, Van de Wiele T, Schuren F, Thomas V, Walther B, Zimmermann M. Gut Microbiome Integration in Drug Discovery and Development of Small Molecules. Drug Metab Dispos 2024; 52:274-287. [PMID: 38307852 DOI: 10.1124/dmd.123.001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.
Collapse
Affiliation(s)
- Patrick Jimonet
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Céline Druart
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stéphanie Blanquet-Diot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Lilia Boucinha
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stephanie Kourula
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Françoise Le Vacon
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Maubant
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Rabot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Tom Van de Wiele
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Frank Schuren
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Vincent Thomas
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Bernard Walther
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Michael Zimmermann
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| |
Collapse
|
16
|
Saravanan A, Yaashikaa PR, Ramesh B, Shaji A, Deivayanai VC. Microorganism-mediated bioremediation of dyes from contaminated soil: Mechanisms, recent advances, and future perspectives. Food Chem Toxicol 2024; 185:114491. [PMID: 38325634 DOI: 10.1016/j.fct.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Many methods have been proposed for the remediation of dye-contaminated soils, a widespread form of environment pollution. Bioremediation, it is hoped, can combine ecological benefits with efficiency of dye decontamination. We review the types and sources of dye contaminants; their possible effects on plant, animal, and human health; and emerging strategies for microbial bioremediation. Challenges, limitations, recommendations for future research, and prospects for large-scale commercialization of microbial bioremediation are discussed.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
17
|
Cabrera MÁ, Márquez SL, Pérez-Donoso JM. New insights into xenobiotic tolerance of Antarctic bacteria: transcriptomic analysis of Pseudomonas sp. TNT3 during 2,4,6-trinitrotoluene biotransformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17256-17274. [PMID: 38337121 DOI: 10.1007/s11356-024-32298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Sebastián L Márquez
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
- Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | - José M Pérez-Donoso
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile.
| |
Collapse
|
18
|
Zouari-Mechichi H, Benali J, Alessa AH, Hadrich B, Mechichi T. Efficient Decolorization of the Poly-Azo Dye Sirius Grey by Coriolopsis gallica Laccase-Mediator System: Process Optimization and Toxicity Assessment. Molecules 2024; 29:477. [PMID: 38257390 PMCID: PMC10819905 DOI: 10.3390/molecules29020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Jihen Benali
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia;
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| |
Collapse
|
19
|
Zhao Z, Li J, Yuan W, Cheng D, Ma S, Li YF, Shi ZJ, Hu K. Nature-Inspired Photocatalytic Azo Bond Cleavage with Red Light. J Am Chem Soc 2024; 146:1364-1373. [PMID: 38082478 DOI: 10.1021/jacs.3c09837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The emerging field of photoredox catalysis in mammalian cells enables spatiotemporal regulation of a wealth of biological processes. However, the selective cleavage of stable covalent bonds driven by low-energy visible light remains a great challenge. Herein, we report that red light excitation of a commercially available dye, abbreviated NMB+, leads to catalytic cleavage of stable azo bonds in both aqueous solutions and hypoxic cells and hence a means to photodeliver drugs or functional molecules. Detailed mechanistic studies reveal that azo bond cleavage is triggered by a previously unknown consecutive two-photon process. The first photon generates a triplet excited state, 3NMB+*, that is reductively quenched by an electron donor to generate a protonated NMBH•+. The NMBH•+ undergoes a disproportionation reaction that yields the initial NMB+ and two-electron-reduced NMBH (i.e., leuco-NMB, abbreviated as LNMB). Interestingly, LNMB forms a charge transfer complex with all four azo substrates that possess an intense absorption band in the red region. A second red photon induces electron transfer from LNMB to the azo substrate, resulting in azo bond cleavage. The charge transfer complex mediated two-photon catalytic mechanism reported herein is reminiscent of the flavin-dependent natural photoenzyme that catalyzes bond cleavage reactions with high-energy photons. The red-light-driven photocatalytic strategy offers a new approach to bioorthogonal azo bond cleavage for photodelivery of drugs or functional molecules.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jili Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Wei Yuan
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Dajiao Cheng
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Suze Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ye-Fei Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ke Hu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
20
|
Sparatore F, Sparatore A. 3,3-Disubstituted 3,4-Dihydro-1,2,4-benzotriazines: Chemistry, Biological Activity, and Affinity to Sigma Receptors. Molecules 2023; 29:132. [PMID: 38202715 PMCID: PMC10780181 DOI: 10.3390/molecules29010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
By reducing the 2-nitrophenylhydrazone of cyclohexanone with sodium dithionite, an unexpected yellow compound was obtained instead of the corresponding colorless amino derivative. Many years later, the structure of this compound, namely, cyclohexane-3-spiro-3,4-dihydro-1,2,4-benzotriazine, was demonstrated. From that time, the reduction of 2-nitrophenylhydrazones of different kinds of ketones, followed by air oxidation of the initially formed amino compounds, has represented a general way to synthesize a variety of 3,3-disubstituted 3,4-dihydro-1,2,4-benzotriazines. Many derivatives have been obtained so far by a single research group, and most of them have demonstrated interesting pharmacological activities, mainly antihypertensive, anti-inflammatory, and diuretic effects and other activities with lower diffusion. Moreover, 3,3-disubstituted 3,4-dihydro-1,2,4-benzotriazines represent a novel class of ligands for sigma receptors, with nanomolar affinity to the σ1 subtype. This property might promote the development of agents for cardiovascular, neurodegenerative, and proliferative pathologies. The present commentary, by collecting compounds and biological results obtained so far, intends to celebrate the centennial of the discovery of the first member of this class of compounds and to promote further investigation in the field.
Collapse
Affiliation(s)
- Fabio Sparatore
- Department of Pharmacy, University of Genova, 16132 Genova, Italy
| | - Anna Sparatore
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20133 Milano, Italy;
| |
Collapse
|
21
|
Daphedar AB, Kakkalameli S, Faniband B, Bilal M, Bhargava RN, Ferreira LFR, Rahdar A, Gurumurthy DM, Mulla SI. Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124638-124653. [PMID: 35653025 DOI: 10.1007/s11356-022-21196-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Various types of colored pigments have been recovered naturally from biological sources including shells, flowers, insects, and so on in the past. At present, such natural colored substances (dyes) are replaced by manmade dyes. On the other hand, due to their continuous usage in various purpose, these artificial dyes or colored substances persist in the environmental surroundings. For example, industrial wastewater contains diverse pollutant substances including dyes. Several of these (artificial dyes) were found to be toxic to living organisms. In recent times, microbial-based removal of dye(s) has gained more attention. These methods were relatively inexpensive for eliminating such contaminants in the environmental system. Hence, various researchers were isolated microbes from environmental samples having the capability of decolorizing synthetic dyes from industrial wastewater. Furthermore, the microorganisms which are genetically engineered found higher degradative/decolorize capacity to target compounds in the natural environs. Very few reviews are available on specific dye treatment either by chemical treatments or by bacteria and/or fungal treatments. Here, we have enlightened literature reports on the removal of different dyes in microbes like bacteria (including anaerobic and aerobic), fungi, GEM, and microbial enzymes and also green-synthesized nanoparticles. This up-to-date literature survey will help environmental managements to co-up such contaminates in nature and will help in the decolorization of dyes.
Collapse
Affiliation(s)
- Azharuddin B Daphedar
- Department of Studies in Botany, Anjuman Arts, Science and Commerce College, Vijayapura, Karnataka, 586 101, India
| | - Siddappa Kakkalameli
- Department of Studies in Botany, Davangere University, Shivagangotri, Davangere, Karnataka, 577007, India
| | - Basheerabegum Faniband
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bhargava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032‑490, Brazil
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol, 98615538, Iran
| | | | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore , 560064, India.
| |
Collapse
|
22
|
Pieper LM, Spanogiannopoulos P, Volk RF, Miller CJ, Wright AT, Turnbaugh PJ. The global anaerobic metabolism regulator fnr is necessary for the degradation of food dyes and drugs by Escherichia coli. mBio 2023; 14:e0157323. [PMID: 37642463 PMCID: PMC10653809 DOI: 10.1128/mbio.01573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE This work has broad relevance due to the ubiquity of dyes containing azo bonds in food and drugs. We report that azo dyes can be degraded by human gut bacteria through both enzymatic and nonenzymatic mechanisms, even from a single gut bacterial species. Furthermore, we revealed that environmental factors, oxygen, and L-Cysteine control the ability of E. coli to degrade azo dyes due to their impacts on bacterial transcription and metabolism. These results open up new opportunities to manipulate the azoreductase activity of the gut microbiome through the manipulation of host diet, suggest that azoreductase potential may be altered in patients suffering from gastrointestinal disease, and highlight the importance of studying bacterial enzymes for drug metabolism in their natural cellular and ecological context.
Collapse
Affiliation(s)
- Lindsey M. Pieper
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Regan F. Volk
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Carson J. Miller
- Biological Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron T. Wright
- Biological Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Biology, Baylor University, Waco, Texas, USA
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Yeruva DK, S VM. Electrogenic engineered flow through tri-phasic wetland system for azo dye treatment: Microbial dynamics and functional metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122107. [PMID: 37369299 DOI: 10.1016/j.envpol.2023.122107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Electrogenic engineered flow through tri-phasic wetland (EEFW) system based on nature-based ecological principles was studied by integrating successive biological microenvironments. The potential mechanism of the plant root-based microbial community and its functional diversity with the influence of plant-microbe-electrode synergism towards dye degradation was evaluated. The EEFW system was operated at three varied dye loads of 10, 25 and 50 mg L-1, where the results from the cumulative outlets revealed a maximum dye removal efficiency of 96%, 96.5% and 93%, respectively. Microbial community analysis depicted synergistic dependence on the plant-microbe-electrode interactions, influencing their functional diversity and metabolism towards detoxification of pollutants. The core microbial taxa enriched against the microenvironment variation were mostly associated with carbon and dye removal viz., Desulfomonile tiedjei and Rhodopseudomonas palustris in Tank 1 and Chloroflexi bacterium and Steroidobacter denitrificans in Tank 2. The degradation of polycyclic aromatic hydrocarbons, chloroalkane/chloroalkene, nitrotoluene, bisphenol, caprolactam and 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) were observed to be predominant in Tank 1. EEFW system could be one of the option for utilizing nature-based processes for the treatment of wastewater by self-induced bioelectrogenesis to augment process efficiency.
Collapse
Affiliation(s)
- Dileep Kumar Yeruva
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkata Mohan S
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Li X, Tian T, Cui T, Liu B, Jin R, Zhou J. Alkaline-thermal hydrolysate of waste activated sludge as a co-metabolic substrate enhances biodegradation of refractory dye reactive black 5. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:40-49. [PMID: 37544233 DOI: 10.1016/j.wasman.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Aromatic azo dyes possess inherent resistance and are known to be carcinogenic, posing a significant threat to human and ecosystems. Enhancing the biodegradation of azo dyes usually requires the presence of co-metabolic substrates to optimize the process. In addressing the issue of excessive waste activated sludge (WAS) generation, this study explored the potential of utilizing alkaline-thermal hydrolysate of WAS as a co-metabolic substrate to boost the degradation of reactive black 5 (RB5) dyes. The acclimated microbial consortium, when supplemented with the WAS hydrolysate obtained at a hydrolysis temperature of 30 °C, achieved an impressive RB5 decolorization efficiency of 90.3% (pH = 7, 35 °C) with a corresponding COD removal efficiency of 45.0%. The addition of WAS hydrolysate as a co-substrate conferred the consortium with a remarkable tolerance to high dye concentration (1500 mg/L RB5) and salinity levels (4-5%), surpassing the performance of conventional co-metabolic sugars in RB5 degradation. 3D-EEM analysis revealed that protein-like substances rich in tyrosine and tryptophan, present in the WAS hydrolysate, played a crucial role in promoting RB5 biodegradation. Furthermore, the microbial consortium community exhibited an enrichment of dye-degrading species, including Acidovorax, Bordetella, Kerstersia, and Brevundimonas, which dominated the community. Notably, functional genes associated with dye degradation and intermediates were also enriched during the RB5 decolorization and biodegradation process. These findings present a practical strategy for the simultaneous treatment of dye-containing wastewater and recycling of WAS.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tiantian Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baocun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
25
|
Cai J, Auster A, Cho S, Lai Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage. J Adv Res 2023; 52:171-201. [PMID: 37419381 PMCID: PMC10555929 DOI: 10.1016/j.jare.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.
Collapse
Affiliation(s)
- Jingwei Cai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Auster
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sungjoon Cho
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Al-Sakkaf MK, Basfer I, Iddrisu M, Bahadi SA, Nasser MS, Abussaud B, Drmosh QA, Onaizi SA. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2152. [PMID: 37570470 PMCID: PMC10420689 DOI: 10.3390/nano13152152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.
Collapse
Affiliation(s)
- Mohammed K. Al-Sakkaf
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Basfer
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustapha Iddrisu
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem A. Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Basim Abussaud
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qasem A. Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A. Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
27
|
Samuchiwal S, Mathur M, Bhattacharya A, Kalia S, Khandare RV, Malik A. Mechanistic insights on enzyme mediated-metabolite cascade during decolourization of Reactive Blue 13 using novel microbial consortium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121718. [PMID: 37105464 DOI: 10.1016/j.envpol.2023.121718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Understanding the role of oxido-reductase enzymes followed by deciphering the functional genes and their corresponding proteins are crucial for the speculation of molecular mechanism for azo dye degradation. In the present study, decolourization efficiency of developed microbial consortium was tested using 100 mgL-1 reactive blue 13 (RB13) and the results showed ∼92.67% decolourization of RB13 at 48 h of incubation. The fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis were performed to identify the metabolites formed during RB13 degradation, followed by hypothesizing the metabolic pathway. The GC-MS analysis showed formation of 1,4-dihydronaphthalen-1-ol and 1,3,5-triazin-2-amine as the final degraded compounds after enzymatic breakdown of RB13 dye. The activity of different oxido-reductase enzymes was determined, and the results showed that NADH DCIP reductase and azo reductase had higher activity than other enzymes. It clearly indicated the degradation was initiated with the enzymatic cleavage of azo bond of RB13. Further, the functional genes were annotated against the database of clusters of orthologous groups (COGs) and kyoto encyclopedia of genes and genomes (KEGG). It provided valuable information about the role of crucial functional genes and their corresponding proteins correlated with dominant bacterial species in degradation of RB13. Hence, the present research is the first systematic study that correlated the formation of degradation compounds with the functional genes/enzymes and their corresponding bacterial species responsible for RB13 degradation.
Collapse
Affiliation(s)
- Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Megha Mathur
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Arghya Bhattacharya
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | | | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| |
Collapse
|
28
|
Josephy PD, Allen-Vercoe E. Reductive metabolism of azo dyes and drugs: Toxicological implications. Food Chem Toxicol 2023; 178:113932. [PMID: 37451600 DOI: 10.1016/j.fct.2023.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Azo compounds are widely distributed synthetic chemicals in the modern world. Their most important applications are as dyes, but, in addition, several azo compounds are used as pharmaceuticals. Ingested azo compounds can be reduced by the action of bacteria in the gut, where the oxygen tension is low, and the development of microbiome science has allowed more precise delineation of the roles of specific bacteria in these processes. Reduction of the azo bond of an azo compound generates two distinct classes of aromatic amine metabolites: the starting material that was used in the synthesis of the azo compound and a product which is formed de novo by metabolism. Reductive metabolism of azo compounds can have toxic consequences, because many aromatic amines are toxic/genotoxic. In this review, we discuss aspects of the development and application of azo compounds in industry and medicine. Current understanding of the toxicology of azo compounds and their metabolites is illustrated with four specific examples - Disperse Dyes used for dyeing textiles; the drugs phenazopyridine and eltrombopag; and the ubiquitous food dye, tartrazine - and knowledge gaps are identified. SUBMISSION TO: FCT VSI: Toxicology of Dyes.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Maity S, Gaur D, Mishra B, Dubey NC, Tripathi BP. Bactericidal and biocatalytic temperature responsive microgel based self-cleaning membranes for water purification. J Colloid Interface Sci 2023; 642:129-144. [PMID: 37003009 DOI: 10.1016/j.jcis.2023.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The present study focuses on creating an antimicrobial and biocatalytic smart gating membrane by synthesizing unique core-shell microgels. The core-shell microgels are synthesized by grafting short chains of poly(ethylenimine) (PEI) onto a poly((N-isopropyl acrylamide)-co-glycidyl methacrylate)) (P(NIPAm-co-GMA)) core. Subsequently, the produced microgels are utilized as a substrate for synthesizing and stabilizing silver nanoparticles (Ag NPs) through an in-situ approach. These Ag NPs immobilized microgels are then suction filtered over a polyethylene terephthalate (PET) track-etched support to create cross-linked composite microgel membranes (CMMs). After structural and permeation characterization of the prepared CMMs, the laccase enzyme is then covalently grafted to the surface of the membrane and tested for its effectiveness in degrading Reactive red-120 dye. The laccase immobilized biocatalytic CMMs show effective degradation of the Reactive red-120 by 71%, 48%, and 34% at pH 3, 4, and 5, respectively. Furthermore, the immobilized laccase enzyme showed better activity and stability in terms of thermal, pH, and storage compared to the free laccase, leading to increased reusability. The unique combination of Ag NPs and laccase on a thermoresponsive microgel support resulted in a responsive self-cleaning membrane with excellent antimicrobial and dye degradation capabilities for environmentally friendly separation technology.
Collapse
|
30
|
Harish BS, Thayumanavan T, Nambukrishnan V, Sakthishobana K. Heterogeneous biocatalytic system for effective decolorization of textile dye effluent. 3 Biotech 2023; 13:165. [PMID: 37162807 PMCID: PMC10163993 DOI: 10.1007/s13205-023-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
The current physicochemical methods for decolorizing toxic synthetic dyes are not sustainable to halt the environmental damage as they are expensive and often produce concentrated sludge, which may lead to secondary disposal problems. Biocatalysis (microbes and/or their enzymes) is a cost-effective, versatile, energy-saving and clean alternative. The most common enzymes involved in dye degradation are laccases, azoreductases and peroxidases. Toxic dyes could be converted into less harmful byproducts through the combined action of many enzymes or the utilization of whole cells. The action of whole cells to treat dye effluents is either by biosorption or degradation (aerobic or anaerobic). Using immobilized cells or enzymes will offer advantages such as superior stability, persistence against harsh environmental conditions, reusability and longer half-lives. This review envisages the recent strategies of immobilization and bioreactor considerations with the immobilized system as the effective treatment of textile dye effluents. Packed bed reactors are the most popular heterogeneous biocatalytic reactors for dye decolorization due to their efficiency and cost-effectiveness.
Collapse
Affiliation(s)
- B. S. Harish
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - Tha Thayumanavan
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - Veerasekar Nambukrishnan
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - K. Sakthishobana
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401 India
| |
Collapse
|
31
|
Kumar A, Nighojkar A, Varma P, Prakash NJ, Kandasubramanian B, Zimmermann K, Dixit F. Algal mediated intervention for the retrieval of emerging pollutants from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131568. [PMID: 37187121 DOI: 10.1016/j.jhazmat.2023.131568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Water is a crucial elemental contributor for all sectors; however, the agricultural sector alone accounts for 70% of the world's total water withdrawal. The anthropogenic activity from various industries including agriculture, textiles, plastics, leather, and defence has resulted in the release of contaminants into water systems, resulting harm to the ecosystem and biotic community. Algae-based organic pollutant removal uses several methods, such as biosorption, bioaccumulation, biotransformation, and biodegradation. The adsorption of methylene blue by algal species Chlamydomonas sp. showed a maximum adsorption capacity of 2744.5 mg/g with 96.13% removal efficiency; on the other hand, Isochrysis galbana demonstrated a maximum of 707 µg/g nonylphenol accumulation in the cell with 77% removal efficiency indicating the potential of algal systems as efficient retrieval system for organic contaminants. This paper is a compilation of detailed information about biosorption, bioaccumulation, biotransformation, biodegradation, and their mechanism, along with the genetic alteration of algal biomass. Where the genetic engineering and mutations on algae can be advantageously utilized for the enhancement of removal efficiency without any secondary toxicity.
Collapse
Affiliation(s)
- Alok Kumar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Amrita Nighojkar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Payal Varma
- Microbiology Department, Sinhgad College of Science, Pune 411041, Maharashtra, India
| | - Niranjana Jaya Prakash
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| |
Collapse
|
32
|
Sharma B, Tiwari S, Kumar R, Kumar M, Tewari L. Eco-friendly detoxification of hazardous Congo red dye using novel fungal strain Trametes flavida WTFP2: Deduced enzymatic biomineralization process through combinatorial in-silico and in-vitro studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131503. [PMID: 37150098 DOI: 10.1016/j.jhazmat.2023.131503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Growing textile industry is a major global concern, owing to the presence of recalcitrant hazardous pollutants, like synthetic dyes in discharged effluents. To explore new bioresources for mycoremediation, a high laccase-producing novel white-rot fungus (WRF), Trametes flavida WTFP2, was employed. T. flavida is an underexplored member of Polyporales. Using bioinformatic tools, 8 different cis-acting RNA elements were identified in the 5.8 S ITS gene sequence, where CRISPR (CRISPR-DR15), sRNA (RUF1), and snoRNA (ceN111) are uniquely present. Molecular docking was adopted to predict the catalytic interaction of chosen toxic diazo colorant, Congo red (CR), with four dye-degrading enzymes (laccase, lignin peroxidase, azoreductase, and aryl alcohol oxidase). With 376.41 × 103 U/L laccase production, novel WRF exhibited dye-decolorization potential. WTFP2 effectively removed 99.48 ± 0.04% CR (100 mg/L) and demonstrated remarkable recyclability and persistence in consecutive remediation trials. Mycelial dye adsorption was not only substantial driver of colorant elimination; decolorization using active T. flavida was regulated by enzymatic catalysis, as outlined by in-vitro growth, induction of extracellular enzymes, and FESEM. Fifteen metabolites were identified using HRLCMS-QTOF, and novel CR degradation pathway was proposed. Furthermore, microbial and phyto-toxicity tests of metabolites suggested complete detoxification of toxic dye, making the process clean, green, and economically sustainable.
Collapse
Affiliation(s)
- Barkha Sharma
- Department of Microbiology, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Shalini Tiwari
- Department of Microbiology, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116 Bihar, India
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India.
| |
Collapse
|
33
|
Gai L, Liu Y, Zhou Z, Lu H, Guo Z. BODIPY-based probes for hypoxic environments. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
34
|
Gul R, Sharma P, Kumar R, Umar A, Ibrahim AA, Alhamami MAM, Jaswal VS, Kumar M, Dixit A, Baskoutas S. A sustainable approach to the degradation of dyes by fungal species isolated from industrial wastewaters: Performance, parametric optimization, kinetics and degradation mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114407. [PMID: 36216116 DOI: 10.1016/j.envres.2022.114407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Fungal abetted processes are among the finest approaches for the transformation or degradation and decolorization of dyes in effluents. In this piece of research; biodegradation and metabolic pathways of two toxic dyes Congo Red (CR) and Reactive black 5 (RB5) by two strains of Aspergillus sp. fungus in batch experiments has been investigated. Morphological characteristics of the isolates were observed with both light and electron microscopies. Based on molecular characterization the isolates were identified as Aspergillus flavus and Aspergillus niger. The degradation was also optimized via. operational parameters such as pH, temperature, incubation time, inoculums size, dye concentration, carbon sources and nitrogen sources. Degradation measurements revealed that the isolates effectively degraded 90% and 96% of CR and RB5 respectively. Metabolites were identified with Liquid chromatography-mass spectrometry (LCMS) and degradation pathways of the dyes were proposed. Toxicity assay Phaseolus mungo seeds showed that pure CR and RB5 dyes exhibits significant toxicity whereas fungal treated dye solution resulted in an abatement of the toxicity and cell viability was increased. The results stipulated in this article clearly showed the effectiveness of the isolates on detoxification of CR and RB5 dyes.
Collapse
Affiliation(s)
- Roshan Gul
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India
| | - Priyanka Sharma
- Shaheed Bhagat Singh Khalsa College for Women Padiala, S.A.S. Nagar, Punjab, 140103, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Vivek Sheel Jaswal
- Department of Chemistry and Chemical Science, Central University of Himachal Pradesh, Dharamshala, H.P., India
| | - Manish Kumar
- Department of Chemistry and Chemical Science, Central University of Himachal Pradesh, Dharamshala, H.P., India
| | - Ashutosh Dixit
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 265000, Patras, Greece
| |
Collapse
|
35
|
Biju LM, K VG, Senthil Kumar P, Kavitha R, Rajagopal R, Rangasamy G. Application of Salvinia sps. in remediation of reactive mixed azo dyes and Cr (VI) - Its pathway elucidation. ENVIRONMENTAL RESEARCH 2023; 216:114635. [PMID: 36309215 DOI: 10.1016/j.envres.2022.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The emerging industrialization has resulted in the rapid growth of textile industries across the globe. The presence of xenobiotic pollutants in textile wastewater threatens the ecosystem. Applying different microbes (bacteria, fungi & algae) has paved the way for phytoremediation - the eco-friendly, cost-effective method. The present study focuses on the phytoremediation of reactive dyes - Reactive red, Reactive Brown & Reactive Black and Cr (VI) in synthetic textile wastewater using Salvinia sps. The mixed azo dyes of each 100 mg/L showed decolourization of 75 ± 0.5% and 82 ± 0.5% of removal of 20 mg/L of Cr (VI) after eight days of incubation in a phytoreactor setup. Chlorophyll analysis revealed the gradual decrease in the photosynthetic pigments during the remediation. The degraded metabolites were analyzed using FT-IR and showed the presence of aromatic amines on day zero, which were converted to aliphatic amines on day four. The GC-MS analysis revealed the disruption of -NN- bond, rupture of -CN- bond, scission of -N-N-bond, and loss of -SO3H from the Reactive Black dye leading to the formation of an intermediate p-Hydroxy phenylhydrazinyl. The rupture of Reactive red dye resulted in the formation of p-Hydrazinyl toluene sulphonic acid, Naphthyl amine -3,6-disulphonic acid and 8-Hydroxy Naphthyl amine -3,6-disulphonic acid. Decarboxylation, desulphonation, deoxygenation and deamination of Reactive Brown dye showed the presence of different metabolites and metabolic pathways were proposed for the reactive azo dyes which were phytoremediated.
Collapse
Affiliation(s)
- Leena Merlin Biju
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India; Department of Microbiology, Kumararani Meena Muthiah College of Arts & Science, India
| | - Veena Gayathri K
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India; Department of Chemistry, Madras Christian College, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
36
|
Simpson JB, Sekela JJ, Carry BS, Beaty V, Patel S, Redinbo MR. Diverse but desolate landscape of gut microbial azoreductases: A rationale for idiopathic IBD drug response. Gut Microbes 2023; 15:2203963. [PMID: 37122075 PMCID: PMC10132220 DOI: 10.1080/19490976.2023.2203963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Prodrugs reliant on microbial activation are widely used but exhibit a range of efficacies that remain poorly understood. The anti-inflammatory compound 5-aminosalicylic acid (5-ASA), which is packaged in a variety of azo-linked prodrugs provided to most Ulcerative Colitis (UC) patients, shows confounding inter-individual variabilities in response. Such prodrugs must be activated by azo-bond reduction to form 5-ASA, a process that has been attributed to both enzymatic and non-enzymatic catalysis. Gut microbial azoreductases (AzoRs) are the first catalysts shown to activate azo-linked drugs and to metabolize toxic azo-chemicals. Here, we chart the scope of the structural and functional diversity of AzoRs in health and in patients with the inflammatory bowel diseases (IBDs) UC and Crohn's Disease (CD). Using structural metagenomics, we define the landscape of gut microbial AzoRs in 413 healthy donor and 1059 IBD patient fecal samples. Firmicutes encode a significantly higher number of unique AzoRs compared to other phyla. However, structural and biochemical analyses of distinct AzoRs from the human microbiome reveal significant differences between prevalent orthologs in the processing of toxic azo-dyes, and their generally poor activation of IBD prodrugs. Furthermore, while individuals with IBD show higher abundances of AzoR-encoding gut microbial taxa than healthy controls, the overall abundance of AzoR-encoding microbes is markedly low in both disease and health. Together, these results establish that gut microbial AzoRs are functionally diverse but sparse in both health and disease, factors that may contribute to non-optimal processing of azo-linked prodrugs and idiopathic IBD drug responses.
Collapse
Affiliation(s)
- Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh J. Sekela
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin S. Carry
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet Beaty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shakshi Patel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew. R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, Department of Microbiology and Immunology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Pérez-Aranda M, Pajuelo E, Navarro-Torre S, Pérez-Palacios P, Begines B, Rodríguez-Llorente ID, Torres Y, Alcudia A. Antimicrobial and Antibiofilm Effect of 4,4'-Dihydroxy-azobenzene against Clinically Resistant Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11121800. [PMID: 36551456 PMCID: PMC9774766 DOI: 10.3390/antibiotics11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The spread of antibiotic resistance among human and animal pathogens is one of the more significant public health concerns. Moreover, the restrictions on the use of particular antibiotics can limit the options for the treatment of infections in veterinary clinical practice. In this context, searching for alternative antimicrobial substances is crucial nowadays. In this study, 4,4'-dihydroxy-azobenzene (DHAB) was tested for its potential in vitro as an antimicrobial agent against two relevant human and animal pathogens, namely Staphylococcus aureus and Staphylococcus pseudintermedius. The values of minimal inhibitory concentration (MIC) were 64 and 32 mg/L respectively, and they comparable to other azo compounds of probed antimicrobial activity. In addition, the minimal bactericidal concentrations (MCB) were 256 and 64 mg/L. The mechanism by which DHAB produces toxicity in staphylococci has been investigated. DHAB caused membrane damage as revealed by the increase in thiobarbituric acid reactive substances (TBARS) such as malondialdehyde. Furthermore, differential induction of the enzymes peroxidases and superoxide dismutase in S. aureus and S. pseudintermedius suggested their prevalent role in ROS-scavenging due to the oxidative burst induced by this compound in either species. In addition, this substance was able to inhibit the formation of biofilms by both bacteria as observed by colorimetric tests and scanning electron microscopy. In order to assess the relevance of DHAB against clinical strains of MRSA, 10 clinical isolates resistant to either methicillin or daptomycin were assayed; 80% of them gave values of CMI and CMB similar to those of the control S. aureus strain. Finally, cutaneous plasters containing a composite formed by an agar base supplemented with DHAB were designed. These plasters were able to inhibit in vitro the growth of S. aureus and S. pseudintermedius, particularly the later, and this suggests that this substance could be a promising candidate as an alternative to antibiotics in the treatment of animal skin infections, as it has been proven that the toxicity of this substance is very low particularly at a dermal level.
Collapse
Affiliation(s)
- María Pérez-Aranda
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Patricia Pérez-Palacios
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41009 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| |
Collapse
|
38
|
El-Dershaby NH, El-Hawash SA, Kassab SE, Dabees HG, Abdel Moneim AE, Abdel Wahab IA, Abd-Alhaseeb MM, El-Miligy MMM. Rational design of biodegradable sulphonamide candidates treating septicaemia by synergistic dual inhibition of COX-2/PGE2 axis and DHPS enzyme. J Enzyme Inhib Med Chem 2022; 37:1737-1751. [PMID: 35707920 PMCID: PMC9225712 DOI: 10.1080/14756366.2022.2086868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A new series of co-drugs was designed based on hybridising the dihydropteroate synthase (DHPS) inhibitor sulphonamide scaffold with the COX-2 inhibitor salicylamide pharmacophore through biodegradable linkage to achieve compounds with synergistic dual inhibition of COX-2/PGE2 axis and DHPS enzyme to enhance antibacterial activity for treatment of septicaemia. Compounds 5 b, 5j, 5n and 5o demonstrated potent in vitro COX-2 inhibitory activity comparable to celecoxib. 5j and 5o exhibited ED50 lower than celecoxib in carrageenan-induced paw edoema test with % PGE2 inhibition higher than celecoxib. Furthermore, 5 b, 5j and 5n showed gastric safety profile like celecoxib. Moreover, in vivo antibacterial screening revealed that, 5j showed activity against S.aureus and E.coli higher than sulfasalazine. While, 5o revealed activity against E.coli higher than sulfasalazine and against S.aureus comparable to sulfasalazine. Compound 5j achieved the target goal as potent inhibitor of COX-2/PGE2 axis and in vivo broad-spectrum antibacterial activity against induced septicaemia in mice.
Collapse
Affiliation(s)
- Nada H El-Dershaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Soad A El-Hawash
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.,Department of organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia,Egypt
| | - Hoda G Dabees
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ibrahim A Abdel Wahab
- Microbiology and Immunology Department, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhour, Egypt
| | - Mostafa M M El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
40
|
Rawat D, Sharma U, Poria P, Finlan A, Parker B, Sharma RS, Mishra V. Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system. ISME COMMUNICATIONS 2022; 2:83. [PMID: 36407791 PMCID: PMC9476460 DOI: 10.1038/s43705-022-00161-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 01/11/2023]
Abstract
Phototrophic communities of autotrophic microalgae and heterotrophic bacteria perform complex tasks of nutrient acquisition and tackling environmental stress but remain underexplored as a basis for the bioremediation of emerging pollutants. In industrial monoculture designs, poor iron uptake by microalgae limits their productivity and biotechnological efficacy. Iron supplementation is expensive and ineffective because iron remains insoluble in an aqueous medium and is biologically unavailable. However, microalgae develop complex interkingdom associations with siderophore-producing bacteria that help solubilize iron and increase its bioavailability. Using dye degradation as a model, we combined environmental isolations and synthetic ecology as a workflow to design a simplified microbial community based on iron and carbon exchange. We established a mutualism between the previously non-associated alga Chlorella sorokiniana and siderophore-producing bacterium Ralstonia pickettii. Siderophore-mediated increase in iron bioavailability alleviated Fe stress for algae and increased the reductive iron uptake mechanism and bioremediation potential. In exchange, C. sorokiniana produced galactose, glucose, and mannose as major extracellular monosaccharides, supporting bacterial growth. We propose that extracellular iron reduction by ferrireductase is crucial for azoreductase-mediated dye degradation in microalgae. These results demonstrate that iron bioavailability, often overlooked in cultivation, governs microalgal growth, enzymatic processes, and bioremediation potential. Our results suggest that phototrophic communities with an active association for iron and carbon exchange have the potential to overcome challenges associated with micronutrient availability, while scaling up bioremediation designs.
Collapse
Affiliation(s)
- Deepak Rawat
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT UK
- Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi, 110060 India
| | - Udita Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
| | - Pankaj Poria
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
| | - Arran Finlan
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT UK
| | - Brenda Parker
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT UK
| | - Radhey Shyam Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
- Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007 India
| | - Vandana Mishra
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
- Centre for Interdisciplinary Studies on Mountain & Hill Environment, University of Delhi, Delhi, 110007 India
| |
Collapse
|
41
|
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022; 12:818. [PMID: 36144222 PMCID: PMC9505297 DOI: 10.3390/metabo12090818] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of microorganisms to detoxify xenobiotic compounds allows them to thrive in a toxic environment using carbon, phosphorus, sulfur, and nitrogen from the available sources. Biotransformation is the most effective and useful metabolic process to degrade xenobiotic compounds. Microorganisms have an exceptional ability due to particular genes, enzymes, and degradative mechanisms. Microorganisms such as bacteria and fungi have unique properties that enable them to partially or completely metabolize the xenobiotic substances in various ecosystems.There are many cutting-edge approaches available to understand the molecular mechanism of degradative processes and pathways to decontaminate or change the core structure of xenobiotics in nature. These methods examine microorganisms, their metabolic machinery, novel proteins, and catabolic genes. This article addresses recent advances and current trends to characterize the catabolic genes, enzymes and the techniques involved in combating the threat of xenobiotic compounds using an eco-friendly approach.
Collapse
Affiliation(s)
- Rashi Miglani
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Nagma Parveen
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Ankit Kumar
- Department of Pharmaceutical Sciences, Sir J. C Bose Technical Campus, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Mohd. Arif Ansari
- Department of Forestry and Environmental Science, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Soumya Khanna
- Department of Anatomy, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Rawat
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Amrita Kumari Panda
- Department of Biotechnology, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India
| | - Satpal Singh Bisht
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
42
|
Farjadian F, Moghadam M, Monfared M, Mohammadi‐Samani S. Mesoporous Silica Nanostructure Modified with Azo Gatekeepers for Colon Targeted Delivery of
5‐Fluorouracil. AIChE J 2022. [DOI: 10.1002/aic.17900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Maryam Moghadam
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
- Department of Pharmaceutics, School of Pharmacy Shiraz University of Medical Science Shiraz Iran
| | - Mohammad Monfared
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Soliman Mohammadi‐Samani
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
- Department of Pharmaceutics, School of Pharmacy Shiraz University of Medical Science Shiraz Iran
| |
Collapse
|
43
|
Rolf J, Ngo ACR, Lütz S, Tischler D, Rosenthal K. Cell-Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor. Chembiochem 2022; 23:e202200121. [PMID: 35593146 PMCID: PMC9401864 DOI: 10.1002/cbic.202200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.
Collapse
Affiliation(s)
- Jascha Rolf
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Anna Christina Reyes Ngo
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Stephan Lütz
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Dirk Tischler
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| |
Collapse
|
44
|
Walker ME, Simpson JB, Redinbo MR. A structural metagenomics pipeline for examining the gut microbiome. Curr Opin Struct Biol 2022; 75:102416. [PMID: 35841748 PMCID: PMC10039758 DOI: 10.1016/j.sbi.2022.102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.
Collapse
Affiliation(s)
- Morgan E Walker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrated Program for Biological and Genome Sciences, And Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
45
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
46
|
Comparative Genomic Analysis of Antarctic Pseudomonas Isolates with 2,4,6-Trinitrotoluene Transformation Capabilities Reveals Their Unique Features for Xenobiotics Degradation. Genes (Basel) 2022; 13:genes13081354. [PMID: 36011267 PMCID: PMC9407559 DOI: 10.3390/genes13081354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Since physicochemical methods for remediation are poorly effective, the use of microorganisms has gained interest as an alternative to restore TNT-contaminated sites. We previously demonstrated the high TNT-transforming capability of three novel Pseudomonas spp. isolated from Deception Island, Antarctica, which exceeded that of the well-characterized TNT-degrading bacterium Pseudomonas putida KT2440. In this study, a comparative genomic analysis was performed to search for the metabolic functions encoded in the genomes of these isolates that might explain their TNT-transforming phenotype, and also to look for differences with 21 other selected pseudomonads, including xenobiotics-degrading species. Comparative analysis of xenobiotic degradation pathways revealed that our isolates have the highest abundance of key enzymes related to the degradation of fluorobenzoate, TNT, and bisphenol A. Further comparisons considering only TNT-transforming pseudomonads revealed the presence of unique genes in these isolates that would likely participate directly in TNT-transformation, and others involved in the β-ketoadipate pathway for aromatic compound degradation. Lastly, the phylogenomic analysis suggested that these Antarctic isolates likely represent novel species of the genus Pseudomonas, which emphasizes their relevance as potential agents for the bioremediation of TNT and other xenobiotics.
Collapse
|
47
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
48
|
Jayapal M, Jagadeesan H, Krishnasamy V, Shanmugam G, Muniyappan V, Chidambaram D, Krishnamurthy S. Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119009. [PMID: 35182656 DOI: 10.1016/j.envpol.2022.119009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Collapse
Affiliation(s)
| | - Hema Jagadeesan
- PSG College of Technology, Coimbatore, Tamil Nadu, 641 004, India.
| | | | | | | | - Dinesh Chidambaram
- M/s.Dinesh Process, (Soft Flow Unit, Dyers of Knitted Fabrics), College Road, Analpalayam, Sirupuluvapatti, Tirupur, TamilNadu, 641603, India
| | - Satheesh Krishnamurthy
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| |
Collapse
|
49
|
Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn Off–On Probes for Hypoxia Imaging. Cancers (Basel) 2022; 14:cancers14112686. [PMID: 35681666 PMCID: PMC9179281 DOI: 10.3390/cancers14112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hypoxia-activated prodrugs (HAPs), selectively reduced by specific oxidoreductases under hypoxic conditions, form cytotoxic agents damaging the local cancer cells. On the basis of the reported clinical data concerning several HAPs, one can draw conclusions regarding their preclinical attractiveness and, regrettably, the low efficacy of Phase III clinical trials. Clinical failure may be explained, inter alia, by the lack of screening of patients on the basis of tumor hypoxia and low availability of specific oxidoreductases involved in HAP activation. There is surprisingly little information on the quantification of these enzymes in cells or tissues, compared to the advanced research associated with the use of HAPs. Our knowledge about the expression and activity of these enzymes in various cancer cell lines under hypoxic conditions is inadequate. Only in a few cases were researchers able to demonstrate the differences in the expression or activity of selected oxidoreductases, depending on the oxygen concentration. Additionally, it was cell line dependent. More systematic studies are required. The optical probes, based on turning on the fluorescence emission upon irreversible reduction catalyzed by the overexpressed oxidoreductases, can be helpful in this type of research. Ultimately, such sensors can estimate both the oxidoreductase activity and the degree of oxygenation in one step. To achieve this goal, their response must be correlated with the expression or activity of enzymes potentially involved in turning on their emissions, as determined by biochemical methods. In conclusion, the incorporation of biomarkers to identify hypoxia is a prerequisite for successful HAP therapies. However, it is equally important to assess the level of specific oxidoreductases required for their activation. Abstract Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off–on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.
Collapse
|
50
|
Dikeocha IJ, Al-Kabsi AM, Miftahussurur M, Alshawsh MA. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB J 2022; 36:e22350. [PMID: 35579628 DOI: 10.1096/fj.202101986r] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
Gut microbiota is the most diverse and complex biological ecosystem, which is estimated to consist of greater than 5 million distinct genes and 100 trillion cells which are in constant communication with the host environment. The interaction between the gut microbiota and drugs and other xenobiotic compounds is bidirectional, quite complicated, and not fully understood yet. The impact of xenobiotics from pollution, manufacturing processes or from the environment is harmful to human health at varying degrees and this needs to be recognized and addressed. The gut microbiota is capable of biotransforming/metabolizing of various drugs and xenobiotic compounds as well as altering the activity and toxicity of these substances, thereby influencing how a host responds to drugs and xenobiotics and this emerging field is known as pharmacomicrobiomics. In this review, we discussed different mechanisms of drug-gut microbiota interaction and highlighted the influence of drug-gut microbiome interactions on the clinical response in humans.
Collapse
Affiliation(s)
| | | | - Muhammad Miftahussurur
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|