1
|
Chen Y, Haringa C, Wang Z, Zhuang Y, Wang G. Physiological Response of Penicillium chrysogenum to Mimicked Local and Global Perturbations of Substrate and Dissolved Oxygen Gradients at Industrial-Scale. Biotechnol Bioeng 2025; 122:1402-1423. [PMID: 40079378 DOI: 10.1002/bit.28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/24/2024] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Industrial-scale microbial fermentation processes often face limitations in mixing and mass transfer, leading to the formation of environmental gradients within the bioreactor. These gradients expose microbes to heterogeneous conditions over time and space. In this study, we evaluated the effects of combined substrate and dissolved oxygen (DO) gradients on the metabolic response of Penicillium chrysogenum at an industrial scale. Three representative heterogeneous environments were simulated in scale-down systems: (1) feed inlet (high glucose, low oxygen (HGLO): CS > 20 mM, DO < 0.012 mM), (2) aeration inlet (high oxygen, low glucose (HOLG): CS < 0.8 mM, DO > 0.2 mM), and (3) global environment (periodic 360 s fluctuation cycle with 45 s of HGLO and 75 s of HOLG conditions). Results showed that prolonged exposure to feed inlet conditions led to a complete loss of penicillin production capacity, accompanied by significant excretion of intracellular metabolites, and this effect was largely irreversible. While, cells randomly walking under the top impeller zone did not lose production capacity but showed signs of premature degeneration due to increased energy demand. When exposed to the global environment, cells finely tuned their metabolism in a periodical manner, with nearly a 50% loss of penicillin productivity. In summary, substrate gradients alone did not cause irreversible effects, but large substrate gradients contributed to reduced productivity. Oxygen gradients, however, not only reduced production but also caused irreversible cellular damage. These findings provide valuable insights for developing scale-up criteria and strain engineering strategies aimed at improving large-scale culture performance.
Collapse
Affiliation(s)
- Yining Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Cees Haringa
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Minden S, Aniolek M, Noorman H, Takors R. Mimicked Mixing-Induced Heterogeneities of Industrial Bioreactors Stimulate Long-Lasting Adaption Programs in Ethanol-Producing Yeasts. Genes (Basel) 2023; 14:genes14050997. [PMID: 37239357 DOI: 10.3390/genes14050997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit the microbial adaptation time from minutes to hours. This mismatch carries the risk of inadequate adaptation effects, especially considering that nutrients are available at optimal concentrations on average. Consequently, industrial bioprocesses that strive to maintain microbes in a phenotypic sweet spot, during lab-scale development, might suffer performance losses when said adaptive misconfigurations arise during scale-up. Here, we investigated the influence of fluctuating glucose availability on the gene-expression profile in the industrial yeast Ethanol Red™. The stimulus-response experiment introduced 2 min glucose depletion phases to cells growing under glucose limitation in a chemostat. Even though Ethanol Red™ displayed robust growth and productivity, a single 2 min depletion of glucose transiently triggered the environmental stress response. Furthermore, a new growth phenotype with an increased ribosome portfolio emerged after complete adaptation to recurring glucose shortages. The results of this study serve a twofold purpose. First, it highlights the necessity to consider the large-scale environment already at the experimental development stage, even when process-related stressors are moderate. Second, it allowed the deduction of strain engineering guidelines to optimize the genetic background of large-scale production hosts.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Mayer F, Cserjan-Puschmann M, Haslinger B, Shpylovyi A, Sam C, Soos M, Hahn R, Striedner G. Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes. Biotechnol J 2023; 18:e2200152. [PMID: 36442862 DOI: 10.1002/biot.202200152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future.
Collapse
Affiliation(s)
- Florian Mayer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benedikt Haslinger
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anton Shpylovyi
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Sam
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Praha, Czech Republic
| | - Rainer Hahn
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Fungi Can Be More Effective than Bacteria for the Bioremediation of Marine Sediments Highly Contaminated with Heavy Metals. Microorganisms 2022; 10:microorganisms10050993. [PMID: 35630436 PMCID: PMC9145406 DOI: 10.3390/microorganisms10050993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination of coastal marine sediments with heavy metals (HMs) is a widespread phenomenon that requires effective remediation actions. Bioremediation based on the use of bacteria is an economically and environmentally sustainable effective strategy for reducing HM contamination and/or toxicity in marine sediments. However, information on the efficiency of marine-derived fungi for HM decontamination of marine sediments is still largely lacking, despite evidence of the performance of terrestrial fungal strains on other contaminated matrixes (e.g., soils, freshwater sediments, industrial wastes). Here, we carried out for the first time an array of parallel laboratory experiments by using different combinations of chemical and microbial amendments (including acidophilic autotrophic and heterotrophic bacteria, as well as filamentous marine fungi) for the bioremediation of highly HM-contaminated sediments of the Portman Bay (NW Mediterranean Sea), an area largely affected by long-term historical discharges of mine tailings. Our results indicate that the bioleaching performance of metals from the sediment is based on the addition of fungi (Aspergillus niger and Trichoderma sp.), either alone or in combination with autotrophic bacteria, was higher when compared to other treatments. In particular, fungal addition allowed obtaining bioleaching yields for As eight times higher than those by chemical treatments and double compared with the addition of bacteria alone. Moreover, in our study, the fungal addition was the only treatment allowing effective bioleaching of otherwise not mobile fractions of Zn and Cd, thus overtaking bacterial treatments. We found that the lower the sediment pH reached by the experimental conditions, as in the case of fungal addition, the higher the solubilization yield of metals, suggesting that the specific metabolic features of A. niger and Trichoderma sp. enable lowering sediment pH and enhance HM bioleaching. Overall, our findings indicate that fungi can be more effective than acidophilic autotrophic and heterotrophic bacteria in HM bioleaching, and as such, their use can represent a promising and efficient strategy for the bioremediation of marine sediments highly contaminated with heavy metals.
Collapse
|
5
|
Zong X, Wen L, Wang Y, Li L. Research progress of glucoamylase with industrial potential. J Food Biochem 2022; 46:e14099. [PMID: 35132641 DOI: 10.1111/jfbc.14099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
Glucoamylase is one of the most widely used enzymes in industry, but the development background and existing circumstances of industrial glucoamylase were not described by published articles. CiteSpace, a powerful tool for bibliometric, was used to analyze the past, existing circumstances, and trends of a professional field. In this study, 1820 Web-of-Science-indexed articles from 1991 to 2021 were collected and analyzed by CiteSpace. The research hotspots of industrial glucoamylase, like glucoamylase strain directional improvement, Aspergillus niger glucoamylase, glucoamylase immobilization, application of glucoamylase in ethanol production, and "customized production" of porous starch, were found by analyzing countries, institutions, authors, keywords, and references of articles. PRACTICAL APPLICATIONS: The research progress of glucoamylase with industrial potential was analyzed by CiteSpace, and a significant research direction of glucoamylase with industrial potential was found. This is helpful for academic and corporate audiences to understand the current situation of glucoamylase with industrial potential and carry out follow-up works.
Collapse
Affiliation(s)
- Xuyan Zong
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Lei Wen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Yanting Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Li
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China
| |
Collapse
|
6
|
Liu P, Hua Y, Zhang W, Xie T, Zhuang Y, Xia J, Noorman H. A new strategy for dynamic metabolic flux estimation by integrating transient metabolome data into genome-scale metabolic models. Bioprocess Biosyst Eng 2021; 44:2553-2565. [PMID: 34459987 DOI: 10.1007/s00449-021-02626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Metabolic flux analysis (MFA) is a powerful tool for studying microbial cell physiology. Isotope-based MFA is the accepted standard for studying metabolic fluxes under steady-state conditions. However, its application under dynamic extracellular conditions is limited due to lack of proper techniques, such as rapid sampling and quenching, high cost and laborious execution. Here, we propose a new strategy to tackle this through incorporating dynamic metabolite abundance data into genome-scale metabolic models (GEM). First, a dummy extracellular pool concept is proposed for each dynamically changing metabolite, which represents a "sink" or "source", with corresponding dummy reactions coded into the GEM model. The dynamic model (expressed as differential equations) is then transformed into a quasi-steady-state model (expressed as linear equations), which can be easily solved by constraining the GEM model with the dynamic metabolite quantification data. For this, common linear-programming optimization algorithms were utilized to estimate the dynamic fluxes. Dynamic high-accuracy metabolite abundance data were obtained through the Isotope Dilution Mass Spectrometry (IDMS) method and high-speed sampling-quenching, and it was demonstrated that the newly proposed strategy could be successfully applied to obtain intracellular dynamic fluxes of Aspergillus niger under regimes of single and periodic extracellular glucose pulses. The applicability of the new method was also tested on dynamic fluxes estimation in a glucose pulse-response study of Saccharomyces cerevisiae. The proposed method provides a powerful tool to investigate cell physiology under dynamic conditions, especially relevant for bioprocess scale-up to industrial-scale bioreactors.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ye Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tingting Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Henk Noorman
- DSM Biotechnology Center, A. Fleminglaan 1, 2613 AX, Delft, The Netherlands
| |
Collapse
|
7
|
Liu P, Wang S, Li C, Zhuang Y, Xia J, Noorman H. Dynamic response of Aspergillus niger to periodical glucose pulse stimuli in chemostat cultures. Biotechnol Bioeng 2021; 118:2265-2282. [PMID: 33666237 DOI: 10.1002/bit.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
In industrial large-scale bioreactors, microorganisms encounter heterogeneous substrate concentration conditions, which can impact growth or product formation. Here we carried out an extended (12 h) experiment of repeated glucose pulsing with a 10-min period to simulate fluctuating glucose concentrations with Aspergillus niger producing glucoamylase, and investigated its dynamic response by rapid sampling and quantitative metabolomics. The 10-min period represents worst-case conditions, as in industrial bioreactors the average cycling duration is usually in the order of 1 min. We found that cell growth and the glucoamylase productivity were not significantly affected, despite striking metabolomic dynamics. Periodical dynamic responses were found across all central carbon metabolism pathways, with different time scales, and the frequently reported ATP paradox was confirmed for this A. niger strain under the dynamic conditions. A thermodynamics analysis revealed that several reactions of the central carbon metabolism remained in equilibrium even under periodical dynamic conditions. The dynamic response profiles of the intracellular metabolites did not change during the pulse exposure, showing no significant adaptation of the strain to the more than 60 perturbation cycles applied. The apparent high tolerance of the glucoamylase producing A. niger strain for extreme variations in the glucose availability presents valuable information for the design of robust industrial microbial hosts.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuai Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Henk Noorman
- DSM Biotechnology Center, Delft, The Netherlands
| |
Collapse
|
8
|
Xia J, Wang G, Fan M, Chen M, Wang Z, Zhuang Y. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Gelain L, Geraldo da Cruz Pradella J, Carvalho da Costa A, van der Wielen L, van Gulik WM. A possible influence of extracellular polysaccharides on the analysis of intracellular metabolites from Trichoderma harzianum grown under carbon-limited conditions. Fungal Biol 2020; 125:368-377. [PMID: 33910678 DOI: 10.1016/j.funbio.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
Intracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11 under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L of glucose, 5.26/5.26 g/L of fructose/glucose and 10 g/L of sucrose in the feed). Differences in the values of some specific concentrations of intracellular metabolites were observed at steady-state for the duplicates. The presence of extracellular polysaccharide was confirmed in the supernatant of all conditions based on FT-IR and proton NMR. Fragments of polysaccharides from the cell wall could be released due to the shear stress and since the cells can consume them under carbon-limited conditions, this could create an unpredictable carbon flow rate into the cells. According to the values of the metabolite concentrations, it was considered that the consumption of those fragments was interfering with the analysis.
Collapse
Affiliation(s)
- Lucas Gelain
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands; University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Campinas, Brazil.
| | - José Geraldo da Cruz Pradella
- Federal University of São Paulo, Institute of Science and Technology, Av. Cesare Mansueto Giulio Lattes, 1201, S. J. Campos, Brazil
| | - Aline Carvalho da Costa
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Campinas, Brazil
| | - Luuk van der Wielen
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands; University of Limerick, Bernal Institute, V94 T9PX, Limerick, Ireland
| | - Walter M van Gulik
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands
| |
Collapse
|
10
|
Understanding gradients in industrial bioreactors. Biotechnol Adv 2020; 46:107660. [PMID: 33221379 DOI: 10.1016/j.biotechadv.2020.107660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
Gradients in industrial bioreactors have attracted substantial research attention since exposure to fluctuating environmental conditions has been shown to lead to changes in the metabolome, transcriptome as well as population heterogeneity in industrially relevant microorganisms. Such changes have also been found to impact key process parameters like the yield on substrate and the productivity. Hence, understanding gradients is important from both the academic and industrial perspectives. In this review the causes of gradients are outlined, along with their impact on microbial physiology. Quantifying the impact of gradients requires a detailed understanding of both fluid flow inside industrial equipment and microbial physiology. This review critically examines approaches used to investigate gradients including large-scale experimental work, computational methods and scale-down approaches. Avenues for future work have been highlighted, particularly the need for further coordinated development of both in silico and experimental tools which can be used to further the current understanding of gradients in industrial equipment.
Collapse
|
11
|
Ren Y, Liu Q, Liu H, Zhou X, Zhang Y, Cai M. Engineering substrate and energy metabolism for living cell production of cytidine-5'-diphosphocholine. Biotechnol Bioeng 2020; 117:1426-1435. [PMID: 31997310 DOI: 10.1002/bit.27291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Cytidine-5'-diphosphocholine (CDP-choline) is a widely used neuroprotective drug for multiple indications. In industry, CDP-choline is synthesized by a two-step cell culture/permeabilized cell biotransformation method because substrates often do not enter cells in an efficient manner. This study develops a novel one-step living cell fermentation method for CDP-choline production. For this purpose, the feasibility of Pichia pastoris as a chassis was demonstrated by substrate feeding and CDP-choline production. Overexpression of choline phosphate cytidylyltransferase and choline kinase enhanced the choline transformation pathway and improved the biosynthesis of CDP-choline. Furthermore, co-overexpression of ScHnm1, which is a heterologous choline transporter, highly improved the utilization of choline substrates, despite its easy degradation in cells. This strategy increased CDP-choline titer by 55-folds comparing with the wild-type (WT). Overexpression of cytidine-5'-monophosphate (CMP) kinase and CDP kinase in the CMP transformation pathway showed no positive effects. An increase in the ATP production by citrate stimulation or metabolic pathway modification further improved CDP-choline biosynthesis by 120%. Finally, the orthogonal optimization of key substrates and pH was carried out, and the resulting CDP-choline titer (6.0 g/L) at optimum conditions increased 88 times the original titer in the WT. This study provides a new paradigm for CDP-choline bioproduction by living cells.
Collapse
Affiliation(s)
- Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharmaceutical Co, Ltd, Liaocheng, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,China Resources Angde Biotech Pharmaceutical Co, Ltd, Liaocheng, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|