1
|
Li W, Zhang W, Liu Z, Song H, Wang S, Zhang Y, Zhan C, Liu D, Tian Y, Tang M, Wen M, Qiao J. Review of Recent Advances in Microbial Production and Applications of Nerolidol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5724-5747. [PMID: 40013722 DOI: 10.1021/acs.jafc.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Nerolidol, an oxygenated sesquiterpene (C15H26O) that occurs in plants, exhibits significant bioactivities such as antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. It is a U.S. Food and Drug Administration-approved flavoring agent and a common ingredient in several commercial products such as toiletries and detergents. In addition, the potential applications of nerolidol that may prove beneficial for human health, agriculture, and the food industry have garnered increasing attention from researchers in these fields. Recent years have witnessed the application of metabolic engineering and synthetic biology strategies for constructing microbial cell factories that can produce nerolidol, which is considered a sustainable and economical approach. This review summarizes recent research on the biological activities and applications of nerolidol as well as nerolidol production using microbial cell factories. In addition, the synthesis of bioactive derivatives of nerolidol is addressed. In summary, this review provides readers with an updated understanding of the potential applications and green production prospects of nerolidol.
Collapse
Affiliation(s)
- Weiguo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yi Zhang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Chuanling Zhan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Damiao Liu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yanjie Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Min Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
2
|
Wang M, Zhang Z, Liu X, Liu Z, Liu R. Biosynthesis of Edible Terpenoids: Hosts and Applications. Foods 2025; 14:673. [PMID: 40002116 PMCID: PMC11854313 DOI: 10.3390/foods14040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Microbial foods include microbial biomass, naturally fermented foods, and heterologously synthesized food ingredients derived from microbial fermentation. Terpenoids, using isoprene as the basic structure, possess various skeletons and functional groups. They exhibit diverse physicochemical properties and physiological activities, such as unique flavor, anti-bacterial, anti-oxidant, anti-cancer, and hypolipemic, making them extensively used in the food industry, such as flavor, fragrance, preservatives, dietary supplements, and medicinal health food. Compared to traditional strategies like direct extraction from natural species and chemical synthesis, microbial cell factories for edible terpenoids have higher titers and yields. They can utilize low-cost raw materials and are easily scaling-up, representing a novel green and sustainable production mode. In this review, we briefly introduce the synthetic pathway of terpenoids and the applications of microbial cell factories producing edible terpenoids. Secondly, we highlight several typical and non-typical microbial chassis in edible terpenoid-producing cell factories. In addition, we reviewed the recent advances of representative terpenoid microbial cell factories with a gram-scale titer in food flavor, food preservation, nutritional enhancers, and medicinal health foods. Finally, we predict the future directions of microbial cell factories for edible terpenoids and their commercialization process.
Collapse
Affiliation(s)
- Mengyu Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Z.Z.); (X.L.); (Z.L.); (R.L.)
| | | | | | | | | |
Collapse
|
3
|
Ge J, Wang T, Yu H, Ye L. De novo biosynthesis of nylon 12 monomer ω-aminododecanoic acid. Nat Commun 2025; 16:175. [PMID: 39747160 PMCID: PMC11695860 DOI: 10.1038/s41467-024-55739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Nylon 12 is valued for its exceptional properties and diverse industrial applications. Traditional chemical synthesis of nylon 12 faces significant technical challenges and environmental concerns, while bioproduction from plant-extracted decanoic acid (DDA) raises issues related to deforestation and biodiversity loss. Here, we show the development of an engineered Escherichia coli cell factory capable of biosynthesizing the nylon 12 monomer, ω-aminododecanoic acid (ω-AmDDA), from glucose. We enable de novo biosynthesis of ω-AmDDA by introducing a thioesterase specific to C12 acyl-ACP and a multi-enzyme cascade converting DDA to ω-AmDDA. Through modular pathway engineering, redesign and dimerization enhancement of the rate-limiting P450, reconstruction of redox and energy homeostasis, and enhancement of oxidative stress tolerance, we achieve a production level of 471.5 mg/L ω-AmDDA from glucose in shake flasks. This work paves the way for sustainable nylon 12 production and offers insights for bioproduction of other fatty acid-derived products.
Collapse
Affiliation(s)
- Jiawei Ge
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ting Wang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Wang J, Ji X, Yi R, Li D, Shen X, Liu Z, Xia Y, Shi S. Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae. Biotechnol J 2025; 20:e202400712. [PMID: 39834096 DOI: 10.1002/biot.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids. This article primarily centers on the heterologous expression of terpenoids in Saccharomyces cerevisiae, detailing the expression of terpenoid biosynthesis pathways through the utilization of cellular microcompartments, strategies for the efficient expression of key P450 enzymes in the synthesis pathway, and the regulation and optimization of host metabolism to enhance flux to terpenoids synthesis. Additionally, we analyze current challenges and propose solutions to further refine yeast chassis for more effective terpenoids production.
Collapse
Affiliation(s)
- Junyang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Renhe Yi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dengbin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yaying Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Yang J, Yu H, Ye L. Evolution of Vitamin E Production: From Chemical Synthesis and Plant Extraction to Microbial Cell Factories. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27701-27714. [PMID: 39644244 DOI: 10.1021/acs.jafc.4c08813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is an essential antioxidant known for its numerous health benefits. This review traces the evolution of vitamin E production, from traditional chemical synthesis and plant extraction methods to cutting-edge microbial cell factories. Chemical synthesis, while well-established, fails to produce specific stereoisomers, and its application is limited to animal feed due to concerns about chemical residues and limited bioactivity. Plant extraction, although yielding natural vitamin E, is constrained by resource availability and high cultivation costs. Recent advancements in metabolic engineering and synthetic biology have revolutionized vitamin E bioproduction, particularly through the use of engineered microbial cell factories. This review highlights the progress of vitamin E biosynthesis in plants and microorganisms and the key metabolic engineering strategies adopted. We also discuss the existing challenges and future perspectives. When these challenges are overcome, microbial cell factories present a sustainable and effective method to fulfill the increasing demand for high-quality vitamin E.
Collapse
Affiliation(s)
- Jingyi Yang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhang Y, Yu H, Ye L. From β-Carotene to Retinoids: A Review of Microbial Production of Vitamin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20752-20762. [PMID: 39285668 DOI: 10.1021/acs.jafc.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from β-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.
Collapse
Affiliation(s)
- Yijun Zhang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Shi Y, Lu S, Zhou X, Wang X, Zhang C, Wu N, Dong T, Xing S, Wang Y, Xiao W, Yao M. Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 10:58-67. [PMID: 39247801 PMCID: PMC11380465 DOI: 10.1016/j.synbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining β-carotene 15,15'-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from β-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5Δ17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.
Collapse
Affiliation(s)
- Yi Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shuhuan Lu
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, 430075, China
| | - Xiao Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Xinhui Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Chenglong Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Nan Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shilong Xing
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
8
|
Beekwilder J, Schempp FM, Styles MQ, Zelder O. Microbial synthesis of terpenoids for human nutrition - an emerging field with high business potential. Curr Opin Biotechnol 2024; 87:103099. [PMID: 38447324 DOI: 10.1016/j.copbio.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Because of their complicated biosynthesis and hydrophobic nature, fermentative production of terpenoids did not play a significant role on a commercial scale until a few years ago. Driven by technological progress in metabolic engineering and process biotechnology, terpene-based food ingredients such as flavors, sweeteners, and vitamins produced by fermentation have now become viable and commercially competitive options. In recent years, several companies have developed microbial platforms for commercial terpene production. Impressive progress has been made in the fermentative production of sesquiterpenes used in flavorings. The development of sweeteners, such as steviol glycosides and mogrosides, and the production of vitamins A and E based on fermentation are also being explored. The production of monoterpenes remains challenging due to their antimicrobial effects.
Collapse
Affiliation(s)
| | - Florence M Schempp
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany
| | | | - Oskar Zelder
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany.
| |
Collapse
|
9
|
Zhao Y, Yao Z, Desai V, Chen D, Shao Z. Building Synthetic Yeast Factories to Produce Fat-soluble Antioxidants. Curr Opin Biotechnol 2024; 87:103129. [PMID: 38703526 DOI: 10.1016/j.copbio.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/06/2024]
Abstract
Fat-soluble antioxidants play a vital role in protecting the body against oxidative stress and damage. The rapid advancements in metabolic engineering and synthetic biology have offered a promising avenue for economically producing fat-soluble antioxidants by engineering microbial chassis. This review provides an overview of the recent progress in engineering yeast microbial factories to produce three main groups of lipophilic antioxidants: carotenoids, vitamin E, and stilbenoids. In addition to discussing the classic strategies employed to improve precursor availability and alleviate carbon flux competition, this review delves deeper into the innovative approaches focusing on enzyme engineering, product sequestration, subcellular compartmentalization, multistage fermentation, and morphology engineering. We conclude the review by highlighting the prospects of microbial engineering for lipophilic antioxidant production.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Vedika Desai
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA, USA
| | - Dan Chen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA, USA; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA; Bioeconomy Institute, Iowa State University, Ames, IA, USA; The Ames Laboratory, Ames, IA, USA.
| |
Collapse
|
10
|
Ren X, Liu M, Yue M, Zeng W, Zhou S, Zhou J, Xu S. Metabolic Pathway Coupled with Fermentation Process Optimization for High-Level Production of Retinol in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8664-8673. [PMID: 38564669 DOI: 10.1021/acs.jafc.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of β-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of β-carotene 15,15'-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.
Collapse
Affiliation(s)
- Xuefeng Ren
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
12
|
Abstract
A fundamental challenge of metabolic engineering involves assembling and screening vast combinations of orthologous enzymes across a multistep biochemical pathway. Current pathway assembly workflows involve combining genetic parts ex vivo and assembling one pathway configuration per tube or well. Here, we present CRAPS, Chromosomal-Repair-Assisted Pathway Shuffling, an in vivo pathway engineering technique that enables the self-assembly of one pathway configuration per cell. CRAPS leverages the yeast chromosomal repair pathway and utilizes a pool of inactive, chromosomally integrated orthologous gene variants corresponding to a target multistep pathway. Supplying gRNAs to the CRAPS host activates the expression of one gene variant per pathway step, resulting in a unique pathway configuration in each cell. We deployed CRAPS to build more than 1000 theoretical combinations of a four-step carotenoid biosynthesis network. Sampling the CRAPS pathway space yielded strains with distinct color phenotypes and carotenoid product profiles. We anticipate that CRAPS will expedite strain engineering campaigns by enabling the generation and sampling of vast biochemical spaces.
Collapse
Affiliation(s)
- Christien B Dykstra
- Department of Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| | - Michael E Pyne
- Department of Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| |
Collapse
|
13
|
Jiao X, Bian Q, Feng T, Lyu X, Yu H, Ye L. Efficient Secretory Production of δ-Tocotrienol by Combining Pathway Modularization and Transportation Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37262183 DOI: 10.1021/acs.jafc.3c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The vitamin E component δ-tocotrienol has shown impressive activities in radioprotection, neuroprotection, and cholesterol reduction. Its production is limited by the low content in plants and difficulty in separation from other tocotrienols. Fermentative production using a microbial cell factory that exclusively produces and secretes δ-tocotrienol is a promising alternative approach. Assembly of the δ-tocotrienol synthetic pathway in Saccharomyces cerevisiae followed by comprehensive pathway engineering led to the production of 73.45 mg/L δ-tocotrienol. Subsequent addition of 2-hydroxypropyl-β-cyclodextrin (CD) and overexpression of the transcription factor PDR1 significantly elevated δ-tocotrienol titer to 241.7 mg/L (63.65 mg/g dry cell weight) in shake flasks, with 30.4% secreted. By properly adding CD and the in situ extractant olive oil, 181.12 mg/L of δ-tocotrienol was collected as an extracellular product, accounting for 85.6% of the total δ-tocotrienol production. This process provides not only a promising δ-tocotrienol cell factory but also insights into yeast engineering toward secretory production of other terpenoids.
Collapse
Affiliation(s)
- Xue Jiao
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qi Bian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Taotao Feng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
14
|
Das R, Tamang B, Najar IN, Thakur N, Mondal K. First report on metagenomics and their predictive functional analysis of fermented bamboo shoot food of Tripura, North East India. Front Microbiol 2023; 14:1158411. [PMID: 37125168 PMCID: PMC10130461 DOI: 10.3389/fmicb.2023.1158411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Moiya pansung, mileye amileye, moiya koshak, and midukeye are naturally fermented bamboo shoot foods of Tripura. The present study aimed to reveal the whole microbial community structure of naturally fermented moiya pangsung, mileye amileye, moiya koshak, and midukeye along with the prediction of microbial functional profiles by shotgun metagenomic sequence analysis. The metataxonomic profile of moiya pangsung, mileye amileye, moiya koshak, and midukeye samples showed different domains, viz., bacteria (97.70%) followed by the virus (0.76%), unclassified (0.09%), eukaryotes (1.46%) and archaea (0.05%). Overall, 49 phyla, 409 families, 841 genera, and 1,799 species were found in all the fermented bamboo shoot samples collected from different places of Tripura. Firmicutes was the most abundant phylum (89.28%) followed by Proteobacteria (5.13%), Bacteroidetes (4.38%), Actinobacteria (1.02%), and Fusobacteria (0.17%). Lactiplantibacillus plantarum was the most abundant species in moiya pangsung, mileye amileye, moiya koshak, and midukeye followed by Lactococcus lactis, Levilactobacillus brevis, Leuconostoc mesenteroides, Weissella paramesenteroides, Leuconostoc kimchii, Pediococcus pentosaceus, Leuconostoc gasicomitatum, and Lacticaseibacillus casei. A few phyla of fungus were found, viz., Ascomycota, Basidiomycota, and Glomeromycota, where Ascomycota was present in high abundance. Functional analysis of moiya pangsung, mileye amileye, moiya koshak, and midukeye metagenome revealed the genes for the synthesis and metabolism of a wide range of bioactive compounds including, various essential amino acids, and conjugated amino acids. The abundance profile and predictive analysis of fermented bamboo shoots revealed a huge plethora of essential microorganisms and KEGG analysis revealed genes for amino acid metabolism, pectin degradation, lipid metabolism, and many other essential pathways that can be essential for the improvement of nutritional and sensory qualities of the fermented bamboo shoot products.
Collapse
Affiliation(s)
- Rohit Das
- Department of Microbiology, Sikkim University, Gangtok, India
| | | | | | - Nagendra Thakur
- Department of Microbiology, Sikkim University, Gangtok, India
| | | |
Collapse
|
15
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
16
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
17
|
Shin KC, Seo MJ, Kim YS, Yeom SJ. Molecular Properties of β-Carotene Oxygenases and Their Potential in Industrial Production of Vitamin A and Its Derivatives. Antioxidants (Basel) 2022; 11:1180. [PMID: 35740077 PMCID: PMC9227343 DOI: 10.3390/antiox11061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
β-Carotene 15,15'-oxygenase (BCO1) and β-carotene 9',10'-oxygenase (BCO2) are potential producers of vitamin A derivatives, since they can catalyze the oxidative cleavage of dietary provitamin A carotenoids to retinoids and derivative such as apocarotenal. Retinoids are a class of chemical compounds that are vitamers of vitamin A or are chemically related to it, and are essential nutrients for humans and highly valuable in the food and cosmetics industries. β-carotene oxygenases (BCOs) from various organisms have been overexpressed in heterogeneous bacteria, such as Escherichia coli, and their biochemical properties have been studied. For the industrial production of retinal, there is a need for increased production of a retinal producer and biosynthesis of retinal using biocatalyst systems improved by enzyme engineering. The current review aims to discuss BCOs from animal, plants, and bacteria, and to elaborate on the recent progress in our understanding of their functions, biochemical properties, substrate specificity, and enzyme activities with respect to the production of retinoids in whole-cell conditions. Moreover, we specifically propose ways to integrate BCOs into retinal biosynthetic bacterial systems to improve the performance of retinal production.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|