1
|
Schmidt P, Lindemeyer J, Raut P, Schütz M, Saniternik S, Jönsson J, Endepols H, Fischer T, Quaas A, Schlößer HA, Thelen M, Grüll H. Multiparametric Characterization of the DSL-6A/C1 Pancreatic Cancer Model in Rats. Cancers (Basel) 2024; 16:1535. [PMID: 38672617 PMCID: PMC11049193 DOI: 10.3390/cancers16081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The DSL-6A/C1 murine pancreatic ductal adenocarcinoma (PDAC) tumor model was established in Lewis rats and characterized through a comprehensive multiparametric analysis to compare it to other preclinical tumor models and explore potential diagnostic and therapeutical targets. DSL-6A/C1 tumors were histologically analyzed to elucidate PDAC features. The tumor microenvironment was studied for immune cell prevalence. Multiparametric MRI and PET imaging were utilized to characterize tumors, and 68Ga-FAPI-46-targeting cancer-associated fibroblasts (CAFs), were used to validate the histological findings. The histology confirmed typical PDAC characteristics, such as malformed pancreatic ductal malignant cells and CAFs. Distinct immune landscapes were identified, revealing an increased presence of CD8+ T cells and a decreased CD4+ T cell fraction within the tumor microenvironment. PET imaging with 68Ga-FAPI tracers exhibited strong tracer uptake in tumor tissues. The MRI parameters indicated increasing intralesional necrosis over time and elevated contrast media uptake in vital tumor areas. We have demonstrated that the DSL-6A/C1 tumor model, particularly due to its high tumorigenicity, tumor size, and 68Ga-FAPI-46 sensitivity, is a suitable alternative to established small animal models for many forms of preclinical analyses and therapeutic studies of PDAC.
Collapse
Affiliation(s)
- Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Johannes Lindemeyer
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Pranali Raut
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Markus Schütz
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| | - Sven Saniternik
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| | - Jannika Jönsson
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Heike Endepols
- Faculty of Medicine and University Hospital of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, 50937 Cologne, Germany;
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany;
- Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Thomas Fischer
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, 50937 Cologne, Germany;
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (H.A.S.); (M.T.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (H.A.S.); (M.T.)
| | - Holger Grüll
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
2
|
Groen JA, Crezee J, van Laarhoven HWM, Coolen BF, Strijkers GJ, Bijlsma MF, Kok HP. Robust, planning-based targeted locoregional tumour heating in small animals. Phys Med Biol 2024; 69:085017. [PMID: 38471172 DOI: 10.1088/1361-6560/ad3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Bram F Coolen
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Gerwing M, Hoffmann E, Kronenberg K, Hansen U, Masthoff M, Helfen A, Geyer C, Wachsmuth L, Höltke C, Maus B, Hoerr V, Krähling T, Hiddeßen L, Heindel W, Karst U, Kimm MA, Schinner R, Eisenblätter M, Faber C, Wildgruber M. Multiparametric MRI enables for differentiation of different degrees of malignancy in two murine models of breast cancer. Front Oncol 2022; 12:1000036. [PMID: 36408159 PMCID: PMC9667047 DOI: 10.3389/fonc.2022.1000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Objective The objective of this study was to non-invasively differentiate the degree of malignancy in two murine breast cancer models based on identification of distinct tissue characteristics in a metastatic and non-metastatic tumor model using a multiparametric Magnetic Resonance Imaging (MRI) approach. Methods The highly metastatic 4T1 breast cancer model was compared to the non-metastatic 67NR model. Imaging was conducted on a 9.4 T small animal MRI. The protocol was used to characterize tumors regarding their structural composition, including heterogeneity, intratumoral edema and hemorrhage, as well as endothelial permeability using apparent diffusion coefficient (ADC), T1/T2 mapping and dynamic contrast-enhanced (DCE) imaging. Mice were assessed on either day three, six or nine, with an i.v. injection of the albumin-binding contrast agent gadofosveset. Ex vivo validation of the results was performed with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), histology, immunhistochemistry and electron microscopy. Results Significant differences in tumor composition were observed over time and between 4T1 and 67NR tumors. 4T1 tumors showed distorted blood vessels with a thin endothelial layer, resulting in a slower increase in signal intensity after injection of the contrast agent. Higher permeability was further reflected in higher Ktrans values, with consecutive retention of gadolinium in the tumor interstitium visible in MRI. 67NR tumors exhibited blood vessels with a thicker and more intact endothelial layer, resulting in higher peak enhancement, as well as higher maximum slope and area under the curve, but also a visible wash-out of the contrast agent and thus lower Ktrans values. A decreasing accumulation of gadolinium during tumor progression was also visible in both models in LA-ICP-MS. Tissue composition of 4T1 tumors was more heterogeneous, with intratumoral hemorrhage and necrosis and corresponding higher T1 and T2 relaxation times, while 67NR tumors mainly consisted of densely packed tumor cells. Histogram analysis of ADC showed higher values of mean ADC, histogram kurtosis, range and the 90th percentile (p90), as markers for the heterogenous structural composition of 4T1 tumors. Principal component analysis (PCA) discriminated well between the two tumor models. Conclusions Multiparametric MRI as presented in this study enables for the estimation of malignant potential in the two studied tumor models via the assessment of certain tumor features over time.
Collapse
Affiliation(s)
- Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- *Correspondence: Mirjam Gerwing,
| | - Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Christiane Geyer
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Lena Hiddeßen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Michel Eisenblätter
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Department of Diagnostic and Interventional Radiology, University of Freiburg, Freiburg, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
4
|
Eresen A, Sun C, Zhou K, Shangguan J, Wang B, Pan L, Hu S, Ma Q, Yang J, Zhang Z, Yaghmai V. Early Differentiation of Irreversible Electroporation Ablation Regions With Radiomics Features of Conventional MRI. Acad Radiol 2022; 29:1378-1386. [PMID: 34933803 PMCID: PMC10029937 DOI: 10.1016/j.acra.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023]
Abstract
RATIONALE AND OBJECTIVES Irreversible electroporation (IRE) is a promising non-thermal ablation technique for the treatment of patients with hepatocellular carcinoma. Early differentiation of the IRE zone from surrounding reversibly electroporated (RE) penumbra is vital for the evaluation of treatment response. In this study, an advanced statistical learning framework was developed by evaluating standard MRI data to differentiate IRE ablation zones, and to correlate with histological tumor biomarkers. MATERIALS AND METHODS Fourteen rabbits with VX2 liver tumors were scanned following IRE ablation and forty-six features were extracted from T1w and T2w MRI. Following identification of key imaging variables through two-step feature analysis, multivariable classification and regression models were generated for differentiation of IRE ablation zones, and correlation with histological markers reflecting viable tumor cells, microvessel density, and apoptosis rate. The performance of the multivariable models was assessed by measuring accuracy, receiver operating characteristics curve analysis, and Spearman correlation coefficients. RESULTS The classifiers integrating four radiomics features of T1w, T2w, and T1w+T2w MRI data distinguished IRE from RE zones with an accuracy of 97%, 80%, and 97%, respectively. Also, pixelwise classification models of T1w, T2w, and T1w+T2w MRI labeled each voxel with an accuracy of 82.8%, 66.5%, and 82.9%, respectively. Regression models obtained a strong correlation with behavior of viable tumor cells (0.62 ≤ r2 ≤ 0.85, p < 0.01), apoptosis (0.40 ≤ r2 ≤ 0.82, p < 0.01), and microvessel density (0.48 ≤ r2 ≤ 0.58, p < 0.01). CONCLUSION MRI radiomics features provide descriptive power for early differentiation of IRE and RE zones while observing strong correlations among multivariable MRI regression models and histological tumor biomarkers.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Radiological Sciences, University of California Irvine, Irvine, California
| | - Chong Sun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kang Zhou
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Su Hu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Radiological Sciences, University of California Irvine, Irvine, California
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Radiological Sciences, University of California Irvine, Irvine, California; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California Irvine, Irvine, California; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California.
| |
Collapse
|
5
|
Non-Invasive Monitoring of Increased Fibrotic Tissue and Hyaluronan Deposition in the Tumor Microenvironment in the Advanced Stages of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14040999. [PMID: 35205746 PMCID: PMC8870395 DOI: 10.3390/cancers14040999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a poor prognosis. A better understanding of the tumor microenvironment may help better treat the disease. Magnetic resonance imaging may be a great tool for monitoring the tumor microenvironment at different stages of tumor evolution. Here, we used multi-parametric magnetic resonance imaging techniques to monitor underlying pathophysiologic processes during the advanced stages of tumor development and correlated with histologic measurements. Abstract Pancreatic ductal adenocarcinomas are characterized by a complex and robust tumor microenvironment (TME) consisting of fibrotic tissue, excessive levels of hyaluronan (HA), and immune cells. We utilized quantitative multi-parametric magnetic resonance imaging (mp-MRI) methods at 14 Tesla in a genetically engineered KPC (KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre) mouse model to assess the complex TME in advanced stages of tumor development. The whole tumor, excluding cystic areas, was selected as the region of interest for data analysis and subsequent statistical analysis. Pearson correlation was used for statistical inference. There was a significant correlation between tumor volume and T2 (r = −0.66), magnetization transfer ratio (MTR) (r = 0.60), apparent diffusion coefficient (ADC) (r = 0.48), and Glycosaminoglycan-chemical exchange saturation transfer (GagCEST) (r = 0.51). A subset of mice was randomly selected for histological analysis. There were positive correlations between tumor volume and fibrosis (0.92), and HA (r = 0.76); GagCEST and HA (r = 0.81); and MTR and CD31 (r = 0.48). We found a negative correlation between ADC low-b (perfusion) and Ki67 (r = −0.82). Strong correlations between mp-MRI and histology results suggest that mp-MRI can be used as a non-invasive tool to monitor the tumor microenvironment.
Collapse
|
6
|
Gao T, Zou C, Li Y, Jiang Z, Tang X, Song X. A Brief History and Future Prospects of CEST MRI in Clinical Non-Brain Tumor Imaging. Int J Mol Sci 2021; 22:11559. [PMID: 34768990 PMCID: PMC8584005 DOI: 10.3390/ijms222111559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI is a promising molecular imaging tool which allows the specific detection of metabolites that contain exchangeable amide, amine, and hydroxyl protons. Decades of development have progressed CEST imaging from an initial concept to a clinical imaging tool that is used to assess tumor metabolism. The first translation efforts involved brain imaging, but this has now progressed to imaging other body tissues. In this review, we summarize studies using CEST MRI to image a range of tumor types, including breast cancer, pelvic tumors, digestive tumors, and lung cancer. Approximately two thirds of the published studies involved breast or pelvic tumors which are sites that are less affected by body motion. Most studies conclude that CEST shows good potential for the differentiation of malignant from benign lesions with a number of reports now extending to compare different histological classifications along with the effects of anti-cancer treatments. Despite CEST being a unique 'label-free' approach with a higher sensitivity than MR spectroscopy, there are still some obstacles for implementing its clinical use. Future research is now focused on overcoming these challenges. Vigorous ongoing development and further clinical trials are expected to see CEST technology become more widely implemented as a mainstream imaging technology.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Chuyue Zou
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Yifan Li
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
7
|
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188554. [PMID: 33945847 DOI: 10.1016/j.bbcan.2021.188554] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
9
|
Martinho RP, Bao Q, Markovic S, Preise D, Sasson K, Agemy L, Scherz A, Frydman L. Identification of variable stages in murine pancreatic tumors by a multiparametric approach employing hyperpolarized 13 C MRSI, 1 H diffusivity and 1 H T 1 MRI. NMR IN BIOMEDICINE 2021; 34:e4446. [PMID: 33219722 DOI: 10.1002/nbm.4446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
This study explored the usefulness of multiple quantitative MRI approaches to detect pancreatic ductal adenocarcinomas in two murine models, PAN-02 and KPC. Methods assayed included 1 H T1 and T2 measurements, quantitative diffusivity mapping, magnetization transfer (MT) 1 H MRI throughout the abdomen and hyperpolarized 13 C spectroscopic imaging. The progress of the disease was followed as a function of its development; studies were also conducted for wildtype control mice and for mice with induced mild acute pancreatitis. Customized methods developed for scanning the motion- and artifact-prone mice abdomens allowed us to obtain quality 1 H images for these targeted regions. Contrasts between tumors and surrounding tissues, however, were significantly different. Anatomical images, T2 maps and MT did not yield significant contrast unless tumors were large. By contrast, tumors showed statistically lower diffusivities than their surroundings (≈8.3 ± 0.4 x 10-4 for PAN-02 and ≈10.2 ± 0.6 x 10-4 for KPC vs 13 ± 1 x 10-3 mm2 s-1 for surroundings), longer T1 relaxation times (≈1.44 ± 0.05 for PAN-02 and ≈1.45 ± 0.05 for KPC vs 0.95 ± 0.10 seconds for surroundings) and significantly higher lactate/pyruvate ratios by hyperpolarized 13 C MR (0.53 ± 0.2 for PAN-02 and 0.78 ± 0.2 for KPC vs 0.11 ± 0.04 for control and 0.31 ± 0.04 for pancreatitis-bearing mice). Although the latter could also distinguish early-stage tumors from healthy animal controls, their response was similar to that in our pancreatitis model. Still, this ambiguity could be lifted using the 1 H-based reporters. If confirmed for other kinds of pancreatic tumors this means that these approaches, combined, can provide a route to an early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Ricardo P Martinho
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Markovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Dina Preise
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Vohra R, Campbell MD, Park J, Whang S, Gravelle K, Wang YN, Hwang JH, Marcinek DJ, Lee D. Increased tumour burden alters skeletal muscle properties in the KPC mouse model of pancreatic cancer. JCSM RAPID COMMUNICATIONS 2020; 3:44-55. [PMID: 33073264 PMCID: PMC7566781 DOI: 10.1002/rco2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cancer cachexia is a multifactorial wasting syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. We address these issues in a novel transgenic mouse model Kras, Trp53 and Pdx-1-Cre (KPC) of pancreatic ductal adenocarcinoma (PDA) using multi-parametric magnetic resonance (mp-MR) measures. METHODS KPC mice (n = 10) were divided equally into two groups (n = 5/group) depending on the size of the tumor i.e. tumor size <250 mm3 and >250 mm3. Using mp-MR measures, we demonstrated the changes in the gastrocnemius muscle at the microstructural level. In addition, we evaluated skeletal muscle contractile function in KPC mice using an in vivo approach. RESULTS Increase in tumor size resulted in decrease in gastrocnemius maximum cross sectional area, decrease in T2 relaxation time, increase in magnetization transfer ratio, decrease in mean diffusivity, and decrease in radial diffusivity of water across the muscle fibers. Finally, we detected significant decrease in absolute and specific force production of gastrocnemius muscle with increase in tumor size. CONCLUSIONS Our findings indicate that increase in tumor size may cause alterations in structural and functional parameters of skeletal muscles and that MR parameters may be used as sensitive biomarkers to noninvasively detect structural changes in cachectic muscles.
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Radiology, University of Washington, Seattle,
USA
| | | | - Joshua Park
- Department of Radiology, University of Washington, Seattle,
USA
| | - Stella Whang
- Department of Medicine, University of Washington, Seattle,
USA
| | - Kayla Gravelle
- Department of Medicine, University of Washington, Seattle,
USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington,
Seattle, USA
| | - Joo-Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford
University, Stanford, USA
| | | | - Donghoon Lee
- Department of Radiology, University of Washington, Seattle,
USA
| |
Collapse
|
11
|
Maloney E, Wang YN, Vohra R, Son H, Whang S, Khokhlova T, Park J, Gravelle K, Totten S, Hwang JH, Lee D. Magnetic resonance imaging biomarkers for pulsed focused ultrasound treatment of pancreatic ductal adenocarcinoma. World J Gastroenterol 2020; 26:904-917. [PMID: 32206002 PMCID: PMC7081013 DOI: 10.3748/wjg.v26.i9.904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The robust fibroinflammatory stroma characteristic of pancreatic ductal adenocarcinoma (PDA) impedes effective drug delivery. Pulsed focused ultrasound (pFUS) can disrupt this stroma and has improved survival in an early clinical trial. Non-invasive methods to characterize pFUS treatment effects are desirable for advancement of this promising treatment modality in larger clinical trials.
AIM To identify promising, non-invasive pre-clinical imaging methods to characterize acute pFUS treatment effects for in vivo models of PDA.
METHODS We utilized quantitative magnetic resonance imaging methods at 14 tesla in three mouse models of PDA (subcutaneous, orthotopic and transgenic - KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre or “KPC”) to assess immediate tumor response to pFUS treatment (VIFU 2000 Alpinion Medical Systems; 475 W peak electric power, 1 ms pulse duration, 1 Hz, duty cycle 0.1%) vs sham therapy, and correlated our results with histochemical data. These pFUS treatment parameters were previously shown to enhance tumor permeability to chemotherapeutics. T1 and T2 relaxation maps, high (126, 180, 234, 340, 549) vs low (7, 47, 81) b-value apparent diffusion coefficient (ADC) maps, magnetization transfer ratio (MTR) maps, and chemical exchange saturation transfer (CEST) maps for the amide proton spectrum (3.5 parts per million or “ppm”) and the glycosaminoglycan spectrum (0.5-1.5 ppm) were generated and analyzed pre-treatment, and immediately post-treatment, using ImageJ. Animals were sacrificed immediately following post-treatment imaging. The whole-tumor was selected as the region of interest for data analysis and subsequent statistical analysis. T-tests and Pearson correlation were used for statistical inference.
RESULTS Mean high-b value ADC measurements increased significantly with pFUS treatment for all models. Mean glycosaminoglycan CEST and T2 measurements decreased significantly post-treatment for the KPC group. Mean MTR and amide CEST values increased significantly for the KPC group. Hyaluronic acid focal intensities in the treated regions were significantly lower following pFUS treatment for all animal models. The magnetic resonance imaging changes observed acutely following pFUS therapy likely reflect: (1) Sequelae of variable degrees of microcapillary hemorrhage (T1, MTR and amide CEST); (2) Lower PDA glycosaminoglycan content and associated water content (glycosaminoglycan CEST, T2 and hyaluronic acid focal intensity); and (3) Improved tumor diffusivity (ADC) post pFUS treatment.
CONCLUSION T2, glycosaminoglycan CEST, and ADC maps may provide reliable quantitation of acute pFUS treatment effects for patients with PDA.
Collapse
Affiliation(s)
- Ezekiel Maloney
- Department of Radiology, University of Washington, Seattle, WA 98195, United States
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA 98195, United States
| | - Ravneet Vohra
- Department of Radiology, University of Washington, Seattle, WA 98195, United States
| | - Helena Son
- Division of Gastroenterology, University of Washington, Seattle 98195, WA, United States
| | - Stella Whang
- Division of Gastroenterology, University of Washington, Seattle 98195, WA, United States
| | - Tatiana Khokhlova
- Division of Gastroenterology, University of Washington, Seattle 98195, WA, United States
| | - Joshua Park
- Department of Radiology, University of Washington, Seattle, WA 98195, United States
| | - Kayla Gravelle
- Division of Gastroenterology, University of Washington, Seattle 98195, WA, United States
| | - Stephanie Totten
- Division of Gastroenterology, University of Washington, Seattle 98195, WA, United States
| | - Joo Ha Hwang
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Donghoon Lee
- Department of Radiology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
12
|
Non-Invasive Monitoring of Stromal Biophysics with Targeted Depletion of Hyaluronan in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060772. [PMID: 31167451 PMCID: PMC6627077 DOI: 10.3390/cancers11060772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by a pronounced fibroinflammatory stromal reaction consisting of inordinate levels of hyaluronan (HA), collagen, immune cells, and activated fibroblasts that work in concert to generate a robust physical barrier to the perfusion and diffusion of small molecule therapeutics. The targeted depletion of hyaluronan with a PEGylated recombinant human hyaluronidase (PEGPH20) lowers interstitial gel–fluid pressures and re-expands collapsed intratumoral vasculature, improving the delivery of concurrently administered agents. Here we report a non-invasive means of assessing biophysical responses to stromal intervention with quantitative multiparametric magnetic resonance imaging (MRI) at 14 Tesla (T). We found that spin-spin relaxation time T2 values and glycosaminoglycan chemical exchange saturation transfer (GagCEST) values decreased at 24 h, reflecting depletion of intratumoral HA content, and that these parameters recovered at 7 days concurrent with replenishment of intratumoral HA. This was also reflected in an increase in low-b apparent diffusion coefficient (ADC) at 24 h, consistent with improved tumor perfusion that again normalized at 7 days after treatment. Phantom imaging suggests that the GagCEST signal is driven by changes in HA versus other glycosaminoglycans. Thus, multiparametric magnetic resonance imaging (MRI) can be used as a non-invasive tool to assess therapeutic responses to targeted stromal therapy in PDA and likely other stroma-rich solid tumors that have high levels of hyaluronan and collagen.
Collapse
|