1
|
Piccoli RC, Simões WS, Custódio SV, Goularte KCM, Luduvico KP, de Mello JE, de Souza AA, Teixeira AC, da Costa DA, Barschak AG, Deniz BF, de Almeida W, Pereira P, Nicolai M, Spanevello RM, Stefanello FM, Tavares RG, Palma ML. Sustainable Intervention: Grape Pomace Flour Ameliorates Fasting Glucose and Mitigates Streptozotocin-Induced Pancreatic Damage in a Type 2 Diabetes Animal Model. Pharmaceuticals (Basel) 2024; 17:1530. [PMID: 39598440 PMCID: PMC11597639 DOI: 10.3390/ph17111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with 'Arinto' grape pomace flour (GPF) (WGPF) and 'Touriga Nacional' GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the 21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM + Metformin (250 mg/kg), T2DM + 10% 'Arinto' GPF (WGPF), and T2DM + 10% 'Touriga Nacional' GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pancreatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape pomace, a winemaking by-product, promoting sustainability by transforming waste into functional foods with significant health benefits.
Collapse
Affiliation(s)
- Raphaela Cassol Piccoli
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - William Sanabria Simões
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Solange Vega Custódio
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Kelen Cristiane Machado Goularte
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Karina Pereira Luduvico
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Julia Eisenhardt de Mello
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Anita Avila de Souza
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Ana Carolina Teixeira
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Diego Araujo da Costa
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
| | - Alethéa Gatto Barschak
- Clinical Analysis Laboratory, Federal University of Health Sciences of Porto Alegre, Department of Basic Health Sciences, Porto Alegre 90050-170, RS, Brazil;
| | - Bruna Ferrary Deniz
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Wellington de Almeida
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Paula Pereira
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Natural Resources and Environment (CERENA), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- EPCV, School of Phycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marisa Nicolai
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| | - Roselia Maria Spanevello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Rejane Giacomelli Tavares
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Maria Lídia Palma
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| |
Collapse
|
2
|
Martínez-Meza Y, Escobar-Ortiz A, Buergo-Martínez F, Pérez-Ramírez IF, Pérez-Jiménez J, Salgado LM, Reynoso-Camacho R. Three Varieties of Grape Pomace, with Distinctive Extractable:Non-Extractable Polyphenol Ratios, Differentially Reduce Obesity and Its Complications in Rats Fed a High-Fat High-Fructose Diet. Foods 2023; 12:foods12071370. [PMID: 37048194 PMCID: PMC10093191 DOI: 10.3390/foods12071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Grape pomace is a commonly discarded by-product characterized by high extractable (EPP) and non-extractable (NEPP) polyphenol contents which exhibits anti-obesogenic effects. However, the relevance of each fraction needs to be elucidated. In this work, we examined the effects of three pomaces with different concentrations of EPPs and NEPPs on metabolic alterations associated with obesity. The NEPP:EPP ratio of the grape pomaces was 1.48 for Malbec, 1.10 for Garnacha, and 5.76 for Syrah grape varieties. Rats fed a high-fat high-fructose diet supplemented with Malbec grape pomace (HFFD + MAL) Syrah grape pomace (HFFD + SYR) or Garnacha grape pomace (HFFD + GAR) showed significantly less weight gain: 20%, 15%, and 12% less, respectively, compared to HFFD controls. The adiposity index was also significantly decreased by 20% in the HFFD + MAL and HFFD + SYR groups, and by 13% in the HFFD + GAR group. Serum triglycerides were significantly decreased by 46% in the HFFD + MAL group and by 31% in the HFFD + GAR group, compared to the HFFD group, but not in the HFFD + SYR group. All pomace supplementations regulated postprandial glucose in an oral glucose tolerance test. Therefore, grape pomaces containing both EPPs and NEPPs exert beneficial effects on body weight and glucose homeostasis, while EPPs seem to control triglyceride levels more effectively.
Collapse
Affiliation(s)
- Yuridia Martínez-Meza
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Qro., Mexico
| | | | | | | | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis M Salgado
- CICATA-Querétaro, Instituto Politécnico Nacional, Querétaro 76010, Qro., Mexico
| | | |
Collapse
|
3
|
López-Fernández-Sobrino R, Soliz-Rueda JR, Margalef M, Arola-Arnal A, Suárez M, Bravo FI, Muguerza B. ACE Inhibitory and Antihypertensive Activities of Wine Lees and Relationship among Bioactivity and Phenolic Profile. Nutrients 2021; 13:nu13020679. [PMID: 33672674 PMCID: PMC7924335 DOI: 10.3390/nu13020679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Wine lees (WL) are by-products generated in the winemaking process. The aim of this study was to investigate the angiotensin-converting enzyme inhibitory (ACEi) activity, and the blood pressure (BP) lowering effect of WL from individual grape varieties. The relationship among their activities and phenolic profiles was also studied. Three WL, from Cabernet, Mazuela, and Garnacha grape varieties, were firstly selected based on their ACEi properties. Their phenolic profiles were fully characterized by UHPLC-ESI-Q-TOF-MS. Then, their potential antihypertensive effects were evaluated in spontaneously hypertensive rats (SHR). BP was recorded before and after their oral administrations (2, 4, 6, 8, 24, and 48 h) at a dose of 5 mL/kg bw. Cabernet WL (CWL) exhibited a potent antihypertensive activity, similar to that obtained with the drug Captopril. This BP-lowering effect was related to the high amount of anthocyanins and flavanols present in these lees. In addition, a potential hypotensive effect of CWL was discarded in normotensive Wistar-Kyoto rats. Finally, the ACEi and antihypertensive activities of CWL coming from a different harvest were confirmed. Our results suggest the potential of CWL for controlling arterial BP, opening the door to commercial use within the wine industry.
Collapse
|
4
|
Vojáčková K, Mlček J, Škrovánková S, Adámková A, Adámek M, Orsavová J, Bučková M, Fic V, Kouřimská L, Búran M. Biologically active compounds contained in grape pomace. POTRAVINARSTVO 2020. [DOI: 10.5219/1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A healthy lifestyle and gastronomic trends based on traditional and local foods accompanied by waste-free technologies are currently in the primary focus. One of the raw materials with properties in alignment with such requirements is grape pomace. This paper evaluates the antioxidant activity of grape pomace (which is homogenized into a brown powder) and selected commonly available commercial flours – wheat bread, rye plain, and rye whole grain flour – using DPPH (2,2‑diphenyl-1-picryl-hydrazyl-hydrate) and total polyphenol content method, where was used Folin-Ciocalteaure agent and then it was determined by spectrophotometric method (the measure of absorbance). The total amount of polyphenols in grape pomace was measured of 47.94 mg GAE.g-1, but the value 0.27 mg GAE.g-1 was measured in wheat bread flour. Grape pomace performed the antioxidant activity of 57.45 mg AAE.g-1, whereas wheat bread flour of only 0.21 mg AAE.g‑1 Compared to selected commercial flours, the total amount of polyphenols in grape pomace was up to 150 times higher and the ratio of antioxidant activity between grape pomace and wheat bread flour was even more than 280 times higher. This makes it possible to fortify commercial, commonly available flours with different amount of grape pomace so that products with a higher amount of biologically active substances can be prepared. Another benefit could be a reduction in health risks and a contribution to improving consumer health.
Collapse
|
5
|
Reyes P, Urquiaga I, Echeverría G, Durán E, Morales MS, Valenzuela C. Wine grape pomace flour in broiler diets effects growth and some meat characteristics. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Grape pomace maybe useful in broiler diets as a source of low cost antioxidants.
Aims
The objective of this work was to determine the effect of including high concentrations of wine-grape pomace flour (WGPF) in broiler chicken diets on productive parameters and antioxidant capacity of the meat.
Methods
WGPF of white (WGPF-W) and red (WGPF-R) grape varieties were nutritionally and chemically characterised. Then, 120 broiler chickens were allocated to three isoenergetic and isoproteic feeding treatments: 0% WGPF (Control), 20% WGPF-W and 20% WGPF-R.
Key results
WGPF-W had no effect on bodyweight, daily weight gain, feed intake or feed conversion ratio (FCR). However, FCR was higher for WGPF-R treatment at the end of the study (Day 42). Meanwhile, breast meat from WGPF-R treatment had the highest content of ether extract (P < 0,05), followed by WGPF-W and by control treatment, due to the addition of higher amounts of soy oil to those diets with WGPF to ensure an isoenergetic composition. Breast and leg meat, respectively, showed greater antioxidant capacity (µM Trolox Eq/g) when WGPF-W (16.7 and 16.4) was fed, than the antioxidant capacity obtained for control (13.8 and 13.8) and WGPF-R (11.9 and 14.2) treatments.
Conclusions
Inclusion of 20% of WGPF-W increased antioxidant capacity of chicken meat by 17%, without decreasing productive parameters, provided the diets were made isoenergetic and isoproteic by adding soy oil.
Implications
The grape pomace flour could be useful in the diet of other animals.
Collapse
|
6
|
Red Wine Grape Pomace Attenuates Atherosclerosis and Myocardial Damage and Increases Survival in Association with Improved Plasma Antioxidant Activity in a Murine Model of Lethal Ischemic Heart Disease. Nutrients 2019; 11:nu11092135. [PMID: 31500172 PMCID: PMC6770693 DOI: 10.3390/nu11092135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
A healthy dietary pattern and high quality nutrient intake reduce atherosclerotic cardiovascular disease risk. Red wine grape pomace (RWGP)—a rich natural source of dietary fiber and antioxidants—appears to be a potential functional food ingredient. The impact of a dietary supplementation with RWGP flour was evaluated in atherogenic diet-fed SR-B1 KO/ApoER61h/h mice, a model of lethal ischemic heart disease. SR-B1 KO/ApoER61h/h mice were fed with atherogenic (high fat, cholesterol, and cholic acid, HFC) diet supplemented with: (a) 20% chow (HFC-Control), (b) 20% RWGP flour (HFC-RWGP), or (c) 10% chow/10% oat fiber (HFC-Fiber); and survival time was evaluated. In addition, SR-B1 KO/ApoER61h/h mice were fed for 7 or 14 days with HFC-Control or HFC-RWGP diets and plasma lipid levels, inflammation, oxidative damage, and antioxidant activity were measured. Atherosclerosis and myocardial damage were assessed by histology and magnetic resonance imaging, respectively. Supplementation with RWGP reduced premature death, changed TNF-α and IL-10 levels, and increased plasma antioxidant activity. Moreover, decreased atheromatous aortic and brachiocephalic plaque sizes and attenuated myocardial infarction and dysfunction were also observed. These results suggest that RWGP flour intake may be used as a non-pharmacological therapeutic approach, contributing to decreased progression of atherosclerosis, reduced coronary heart disease, and improved cardiovascular outcomes.
Collapse
|
7
|
French and Mediterranean-style diets: Contradictions, misconceptions and scientific facts-A review. Food Res Int 2018; 116:840-858. [PMID: 30717015 DOI: 10.1016/j.foodres.2018.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Abstract
The determination of appropriate dietary strategies for the prevention of chronic degenerative diseases, cancer, diabetes, and cardiovascular diseases remains a challenging and highly relevant issue worldwide. Epidemiological dietary interventions have been studied for decades with contrasting impacts on human health. Moreover, research scientists and physicians have long debated diets encouraging alcohol intake, such as the Mediterranean and French-style diets, with regard to their impact on human health. Understanding the effects of these diets may help to improve in the treatment and prevention of diseases. However, further studies are warranted to determine which individual food components, or combinations thereof, have a beneficial impact on different diseases, since a large number of different compounds may occur in a single food, and their fate in vivo is difficult to measure. Most explanations for the positive effects of Mediterranean-style diet, and of the French paradox, have focused largely on the beneficial properties of antioxidants, among other compounds/metabolites, in foods and red wine. Wine is a traditional alcoholic beverage that has been associated with both healthy and harmful effects. Not withstanding some doubts, there is reasonable unanimity among researchers as to the beneficial effects of moderate wine consumption on cardiovascular disease, diabetes, osteoporosis, and longevity, which have been ascribed to polyphenolic compounds present in wine. Despite this, conflicting findings regarding the impact of alcohol consumption on human health, and contradictory findings concerning the effects of non-alcoholic wine components such as resveratrol, have led to confusion among consumers. In addition to these contradictions and misconceptions, there is a paucity of human research studies confirming known positive effects of polyphenols in vivo. Furthermore, studies balancing both known and unknown prognostic factors have mostly been conducted in vitro or using animal models. Moreover, current studies have shifted focus from red wine to dairy products, such as cheese, to explain the French paradox. The aim of this review is to highlight the contradictions, misconceptions, and scientific facts about wines and diets, giving special focus to the Mediterranean and French diets in disease prevention and human health improvement. To answer the multiplicity of questions regarding the effects of diet and specific diet components on health, and to relieve consumer uncertainty and promote health, comprehensive cross-demographic studies using the latest technologies, which include foodomics and integrated omics approaches, are warranted.
Collapse
|
8
|
Baroreflex Impairment Precedes Cardiometabolic Dysfunction in an Experimental Model of Metabolic Syndrome: Role of Inflammation and Oxidative Stress. Sci Rep 2018; 8:8578. [PMID: 29872081 PMCID: PMC5988715 DOI: 10.1038/s41598-018-26816-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
This study analyzes whether autonomic dysfunction precedes cardiometabolic alterations in spontaneously hypertensive rats (SHR) with fructose overload. Animals were randomly distributed into three groups: control, hypertensive and hypertensive with fructose overload. Fructose overload (100 g/L) was initiated at 30 days old, and the animals (n = 6/group/time) were evaluated after 7, 15, 30 and 60 days of fructose consumption. Fructose consumption reduced baroreflex sensitivity by day 7, and still induced a progressive reduction in baroreflex sensitivity over the time. Fructose consumption also increased TNFα and IL-6 levels in the adipose tissue and IL-1β levels in the spleen at days 15 and 30. Fructose consumption also reduced plasmatic nitrites (day 15 and 30) and superoxide dismutase activity (day 15 and 60), but increased hydrogen peroxide (day 30 and 60), lipid peroxidation and protein oxidation (day 60). Fructose consumption increased arterial pressure at day 30 (8%) and 60 (11%). Fructose consumption also induced a late insulin resistance at day 60, but did not affect glucose levels. In conclusion, the results show that baroreflex sensitivity impairment precedes inflammatory and oxidative stress disorders, probably by inducing hemodynamic and metabolic dysfunctions observed in metabolic syndrome.
Collapse
|
9
|
Miller SA, White JA, Chowdhury R, Gales DN, Tameru B, Tiwari AK, Samuel T. Effects of consumption of whole grape powder on basal NF-κB signaling and inflammatory cytokine secretion in a mouse model of inflammation. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018; 11:1-8. [PMID: 29568797 PMCID: PMC5858739 DOI: 10.1016/j.jnim.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dietary consumption of polyphenol-rich fruits, such as grapes, may reduce inflammation and potentially prevent diseases linked to inflammation. Here, we used a genetically engineered murine model to measure Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity and pro-inflammatory cytokine secretion to test the hypothesis that oral consumption of whole grape formulation reduces inflammatory signaling in the body. NF-κB luciferase reporter mice were divided into two groups, one which was fed an experimental diet formulated with 4% (w/w) whole grape powder (WGP) or another which was fed a control diet formulated with 3.6% glucose/fructose (w/w) combination. Simulated inflammation was induced in the mice by intraperitoneal injection of lipopolysaccharide (LPS). In vivo imaging was used to determine the effect of each diet on NF-κB activity. We found that there were no significant differences in weight gain between the WGP and control diet groups. However, there was a statistically significant (p<0.0001) difference in the progression of basal levels of NF-κB signaling between mice fed on control or WGP diet. There were no significant differences in NF-κB reporter indices between WGP- and control-diet groups after either acute or repeated inflammatory challenge. However, terminal blood collection revealed significantly (p<0.01) lower serum concentrations of the inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNFα) only among WGP diet mice subjected to acute inflammatory challenge. Overall, these data suggest that while diets supplemented with WGP may suppress steady-state low levels of inflammatory signaling, such a supplementation may not alleviate exogenously induced massive NF-κB activation.
Collapse
Affiliation(s)
- Sonni-Ali Miller
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Jason A. White
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Rupak Chowdhury
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Dominique N. Gales
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Berhanu Tameru
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | | | - Temesgen Samuel
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| |
Collapse
|
10
|
Effects of ascorbic acid on spermatogenesis and sperm parameters in diabetic rats. Cell Tissue Res 2017; 370:305-317. [DOI: 10.1007/s00441-017-2660-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023]
|
11
|
Hernández-Alonso P, Camacho-Barcia L, Bulló M, Salas-Salvadó J. Nuts and Dried Fruits: An Update of Their Beneficial Effects on Type 2 Diabetes. Nutrients 2017; 9:673. [PMID: 28657613 PMCID: PMC5537788 DOI: 10.3390/nu9070673] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
Nuts and dried fruit are essential foods in the Mediterranean diet. Their frequent consumption has been associated with the prevention and/or the management of such metabolic conditions as type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. Several previous reviews of epidemiological studies and clinical trials have evaluated the associations of nuts and/or dried fruit with various metabolic disorders. However, no reviews have focused on the mechanisms underlying the role of nuts and/or dried fruit in insulin resistance and T2D. This review aims to report nut and dried-fruit nutritional interventions in animals and humans, and to focus on mechanisms that could play a significant role in the prevention and treatment of insulin resistance and T2D.
Collapse
Affiliation(s)
- Pablo Hernández-Alonso
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Lucía Camacho-Barcia
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Mònica Bulló
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Kaprinay B, Lipták B, Slovák L, Švík K, Knezl V, Sotníková R, Gáspárová Z. Hypertriglyceridemic rats fed high fat diet as a model of metabolic syndrome. Physiol Res 2017; 65:S515-S518. [PMID: 28006934 DOI: 10.33549/physiolres.933524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
People with metabolic syndrome have higher risk of cardiovascular diseases then those without. The aim of the work was to investigate whether high fat diet administered to Prague hereditary hypertriglyceridemic (HTG) rats can induce signs of metabolic syndrome (MetS). Our results showed that HTG rats fed high fat diet (HTGch) had disturbed glucose metabolism and also lipid metabolism - increased serum triacylglycerols (TAG), total cholesterol (Ch), low-density lipoprotein-Ch (LDL-Ch), and decreased high-density lipoprotein-Ch (HDL-Ch). Their livers proved markers of developing steatosis. Moreover, HTGch had increased blood pressure, yet the vascular endothelium was not significantly damaged. All these changes were accompanied with oxidative stress and tissue damage identified as increased liver concentrations of thiobarbituric acid reactive substances (TBARS) and activity of the lysosomal enzyme N-acetyl-D-glucosaminidase (NAGA). We assume that the model used may be suitable for the study of MetS with no evidence of obesity. Prolongation of the high fat diet duration might have a major impact on all parameters tested, especially on vascular endothelial function.
Collapse
Affiliation(s)
- B Kaprinay
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|