1
|
Le Bloch J, Jones-Dias D, Ferreira R, Michelet O, Iriantsoa V, Rouault M, Côrte-Real S. Toxicological evaluation of Alpinia oxyphylla-derived molecule (PD-00105): In vitro genotoxicity studies and 90-day oral toxicity study in rats. Toxicol Rep 2024; 13:101684. [PMID: 39040953 PMCID: PMC11261439 DOI: 10.1016/j.toxrep.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
PD-00105 corresponds to a compound initially identified in the fruit of Alpinia oxyphylla Miq., obtained by chemical synthesis and proposed to be use in dietary supplements for its potential neuroprotective properties. The aim of this study was to perform a toxicological evaluation of PD-00105 in accordance with the testing strategy recommended by food regulatory authorities. All studies were conducted in accordance with Good Laboratory Practice (GLP), and followed the Organization for Economic Co-operation and Development (OECD) test guidelines for chemicals. Studies included a bacterial reverse mutation test, one in vitro micronucleus test in mammalian cells, and a repeated dose 90-day oral toxicity study. No sign of toxicity was observed in the two genotoxicity tests. The test item induced a significant liver and kidney toxicity at high doses (50 and 100 mg/kg BW/day), highlighted by significant increases in liver and kidney absolute and relative weights, associated with histopathological findings and concomitant changes in hematology and clinical chemistry. Increases in alanine aminotransferase, alkaline phosphatase, total protein, albumin, globulin, cholesterol, LDL, and HDL have been measured in these two groups. However, findings observed in the low-dose group (10 mg/kg BW/day) were considered as minimal and non-adverse, and were limited to an increase in liver weight in males and in kidneys weight in females, without concomitant changes in blood chemistry. The No Observed Adverse Effect Level (NOAEL) of PD-00105 was established as 10 mg/kg BW/day under the conditions of this study. This study substantiates the use of PD-00105 in dietary supplements at doses of 10 mg/day, taking into account a safety margin factor for dose conversion to humans.
Collapse
Affiliation(s)
- Jérôme Le Bloch
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, Saint-Brieuc 22000, France
| | - Daniela Jones-Dias
- Technophage, Investigação e Desenvolvimento em Biotecnologia S.A., Av. Egas Moniz, Ed. Egas Moniz 1649-028, Portugal
| | - Raquel Ferreira
- Technophage, Investigação e Desenvolvimento em Biotecnologia S.A., Av. Egas Moniz, Ed. Egas Moniz 1649-028, Portugal
| | - Olivier Michelet
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, Saint-Brieuc 22000, France
| | - Victoria Iriantsoa
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, Saint-Brieuc 22000, France
| | - Marie Rouault
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, Saint-Brieuc 22000, France
| | - Sofia Côrte-Real
- Technophage, Investigação e Desenvolvimento em Biotecnologia S.A., Av. Egas Moniz, Ed. Egas Moniz 1649-028, Portugal
| |
Collapse
|
2
|
Yan Z, Zhang L, Kang Y, Liu S, Li X, Li L, Rui K, Xiao M, Xie Y. Integrating serum pharmacochemistry and network pharmacology to explore potential compounds and mechanisms of Alpiniae oxyphyllae fructus in the treatment of cellular senescence in diabetic kidney disease. Front Med (Lausanne) 2024; 11:1424644. [PMID: 39021818 PMCID: PMC11251962 DOI: 10.3389/fmed.2024.1424644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Diabetic kidney disease (DKD), one of the microvascular complications in patients with diabetes mellitus, is a common cause of end-stage renal disease. Cellular senescence is believed to be an essential participant in the pathogenesis of DKD. Although there is evidence that Alpiniae oxyphyllae fructus (AOF) can ameliorate DKD progression and organismal senescence, its ability to ameliorate renal cellular senescence in DKD as well as active components and molecular mechanisms remain to be explored. Purpose This study aimed to investigate the role of AOF in the treatment of cellular senescence in DKD and to explore its active components and potential molecular mechanisms. Methods The pharmacological efficacy of AOF in ameliorating cellular senescence in DKD was assessed by establishing DKD mouse models and HK-2 cells under high glucose stress. UHPLC-QTOF-MS was used to screen the active compounds in AOF, which were used in conjunction with network pharmacology to predict the molecular mechanism of AOF in the treatment of cellular senescence in DKD. Results In vivo experiments showed that AOF reduced GLU, mAlb, Scr, BUN, MDA, SOD levels, and ameliorated renal pathological damage and renal cell senescence in DKD mice. In vitro experiments showed that AOF-containing serum improved the decline in HK-2 cell viability and alleviated cellular senescence under high glucose intervention. The results of the UHPLC-QTOF-MS screened 26 active compounds of AOF. The network pharmacological analyses revealed that Cubebin, 2',6'-dihydroxy-4'-methoxydihydrochalcone, Chalcone base + 3O,1Prenyl, Batatasin IV, and Lucidenolactone were the five core compounds and TP53, SRC, STAT3, PIK3CA, and AKT1 are the five core targets of AOF in the treatment of DKD. Molecular docking simulation results showed that the five core compounds had good binding ability to the five core targets. Western blot validated the network pharmacological prediction results and showed that AOF and AOF-containing serum down-regulate the expression of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT. Conclusion Our study shows that AOF may delay the development of cellular senescence in DKD by down-regulating the levels of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT.
Collapse
Affiliation(s)
- Zijie Yan
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Lin Zhang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Yu Kang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shuman Liu
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Xiaoyan Li
- First Clinical College of Medicine of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lidan Li
- First Clinical College of Medicine of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kai Rui
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Man Xiao
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Wang J, Wang X, Ma T, Xie Y. Research progress on Alpinia oxyphylla in the treatment of diabetic nephropathy. Front Pharmacol 2024; 15:1390672. [PMID: 38948461 PMCID: PMC11211572 DOI: 10.3389/fphar.2024.1390672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic nephropathy (DN) constitutes a major microvascular complication of diabetes and is a primary cause of mortality in diabetic individuals. With the global rise in diabetes, DN has become an urgent health issue. Currently, there is no definitive cure for DN. Alpinia oxyphylla, a Chinese herbal medicine traditionally used, exhibits a wide range of pharmacological effects and is frequently used in the prevention and management of DN. This paper offers an extensive review of the biological mechanisms by which A. oxyphylla delivers therapeutic advantages in DN management. These mechanisms include activating podocyte autophagy, regulating non-coding RNA, modulating gut microbiota, alleviating lipotoxicity, counteracting oxidative stress, and diminishing inflammatory responses, underscoring the therapeutic potential of A. oxyphylla in DN treatment.
Collapse
Affiliation(s)
- Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianpeng Ma
- Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
4
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
5
|
Bharati J, Kumar M, Kumar N, Malhotra A, Singhal PC. MicroRNA193a: An Emerging Mediator of Glomerular Diseases. Biomolecules 2023; 13:1743. [PMID: 38136614 PMCID: PMC10742064 DOI: 10.3390/biom13121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding small RNAs that regulate the protein expression of coding messenger RNAs. They are used as biomarkers to aid in diagnosing, prognosticating, and surveillance of diseases, especially solid cancers. MiR-193a was shown to be directly pathogenic in an experimental mouse model of focal segmental glomerulosclerosis (FSGS) during the last decade. Its specific binding and downregulation of Wilm's tumor-1 (WT-1), a transcription factor regulating podocyte phenotype, is documented. Also, miR-193a is a regulator switch causing the transdifferentiation of glomerular parietal epithelial cells to a podocyte phenotype in in vitro study. Interaction between miR-193a and apolipoprotein 1 (APOL1) mRNA in glomeruli (filtration units of kidneys) is potentially involved in the pathogenesis of common glomerular diseases. Since the last decade, there has been an increasing interest in the role of miR-193a in glomerular diseases, including diabetic nephropathy and membranous nephropathy, besides FSGS. Considering the lack of biomarkers to manage FSGS and diabetic nephropathy clinically, it is worthwhile to invest in evaluating miR-193a in the pathogenesis of these diseases. What causes the upregulation of miR-193a in FSGS and how the mechanism is different in different glomerular disorders still need to be elucidated. This narrative review highlights the pathogenic mechanisms of miR-193a elevation in various glomerular diseases and its potential use in clinical management.
Collapse
Affiliation(s)
- Joyita Bharati
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra Northwell Health, Great Neck, NY 11021, USA
| | - Megan Kumar
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Neil Kumar
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Pravin C. Singhal
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra Northwell Health, Great Neck, NY 11021, USA
| |
Collapse
|
6
|
Zhu YT, Fang HB, Liu XN, Yan YM, Feng WS, Cheng YX, Wang YZ. Unusual acetylated flavonol glucuronides, oxyphyllvonides A-H with renoprotective activities from the fruits of Alpinae oxyphylla. PHYTOCHEMISTRY 2023; 215:113849. [PMID: 37673290 DOI: 10.1016/j.phytochem.2023.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
As a widely consumed spice and Traditional Chinese Medicine, Alpinae oxyphylla has been used to treat conditions such as diarrhea, ulcers, dementia, and enuresis. Fruits of A. oxyphylla were phytochemically studied and the bioactive constituents against renal fibrosis were identified. Eight previously undescribed acetylated flavonol glucuronides named oxyphyllvonides A-H (1-7 and 10), two known acetylated flavonol glucuronides (8 and 9), together with seven known flavone glycosides (11-17) were isolated from the fruits of A. oxyphylla. Among them, flavonol glucuronides were discovered in Zingiberaceae for the first time. The planar structures of 1-7 and 10 were determined using HRESIMS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). The absolute configurations of the sugar moiety in these compounds were determined by using LC-MS analysis of acid-hydrolyzed derivatized monosaccharides. Biological evaluation showed that 7-10, 13, 14, 16 and 17 inhibit renal fibrosis in TGF-β1-induced kidney proximal tubular cells. In addition, 7, 8 and 14 were superior to nootkatone in inhibiting Fibronectin expression. The finding has significant relevance to our ongoing research on the anti-renal fibrosis activity of A. oxyphylla.
Collapse
Affiliation(s)
- Yue-Tong Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hong-Bin Fang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ning Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-construction by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Yan-Zhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-construction by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Cui C, Wu SL, Chen JJ, Gongpan P, Guan M, Geng CA. Sesquiterpenoids from Alpinia oxyphylla with GLP-1 Stimulative Effects through Ca 2+/CaMKII and PKA Pathways and Multiple-Enzyme Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16148-16159. [PMID: 37871265 DOI: 10.1021/acs.jafc.3c06093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Six new sesquiterpenoids (1-6), a pair of enantiomers (7a and 7b), and six known ones (8-13) were isolated from the fruits of Alpinia oxyphylla. The structures of the new compounds were elucidated by extensive spectroscopic data and ECD calculations. The stereochemistry of 7a and 7b was reported for the first time. All compounds showed significant GLP-1 stimulation in NCI-H716 cells with promoting ratios ranging from 90.4 to 668.9% at 50 μM. Mechanism study indicated that compound 6 stimulated GLP-1 secretion mainly by regulating the transcription and the shearing process of proglucagon, while compound 13 exerted its effects through up-regulating prkaca levels. Interestingly, the GLP-1 stimulative effects of 6 and 13 were both closely related with Ca2+/CaMKII and PKA pathways but irrelevant to TGR5 and GPR119 receptors. Moreover, most compounds exhibited inhibitory activity against α-glucosidase and PTP1B at concentrations of 100 and 200 μM, while showing no activity against GPa. Compounds 3, 9, 11, and 13 could suppress α-glucosidase with IC50 values of 190.0, 204.0, 181.8, and 159.6 μM, equivalent to acarbose (IC50 = 212.0 μM). This study manifests that A. oxyphylla contains diverse sesquiterpenoids with multiple activities.
Collapse
Affiliation(s)
- Can Cui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Sheng-Li Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pianchou Gongpan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
8
|
Liu J, Chen H, Li X, Song C, Wang L, Wang D. Micro-Executor of Natural Products in Metabolic Diseases. Molecules 2023; 28:6202. [PMID: 37687031 PMCID: PMC10488769 DOI: 10.3390/molecules28176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.
Collapse
Affiliation(s)
- Jinxin Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Huanwen Chen
- Center for Agricultural and Rural Development, Zhangdian District, Zibo 255000, China;
| | - Xiaoli Li
- Zibo Digital Agriculture and Rural Development Center, Zibo 255000, China;
| | - Chunmei Song
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
9
|
Urinary microRNA in Diabetic Kidney Disease: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020354. [PMID: 36837555 PMCID: PMC9962090 DOI: 10.3390/medicina59020354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Diabetic kidney disease is the most common primary disease of end-stage kidney disease globally; however, a sensitive and accurate biomarker to predict this disease remains awaited. microRNAs are endogenous single-stranded noncoding RNAs that have intervened in different post-transcriptional regulations of various cellular biological functions. Previous literatures have reported its potential role in the pathophysiology of diabetic kidney disease, including regulation of Transforming Growth Factor-β1-mediated fibrosis, extracellular matrix and cell adhesion proteins, cellular hypertrophy, growth factor, cytokine production, and redox system activation. Urinary microRNAs have emerged as a novel, non-invasive liquid biopsy for disease diagnosis. In this review, we describe the available experimental and clinical evidence of urinary microRNA in the context of diabetic kidney disease and discuss the future application of microRNA in routine practice.
Collapse
|
10
|
Xiao M, Chen B, Niu K, Long Z, Yang F, Xie Y. Alpiniae oxyphylla fructus extract promotes longevity and stress resistance of C. elegans via DAF-16 and SKN-1. Front Pharmacol 2022; 13:1034515. [PMID: 36506568 PMCID: PMC9730235 DOI: 10.3389/fphar.2022.1034515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Alpiniae Oxyphylla Fructus (AOF) is Traditional Chinese medicine and a dietary supplements for centuries, which posseses cardiotonic, neuroprotective, antioxidant, warming the kidney and nourish the spleen, these biological fuction is related to potential anti-aging properties. However, little is known about their effects on aging. This work aimed to investigate the effects of extracts of AOF on longevity and stress resistance in Caenorhabditis elegans (C. elegans) and the mechanisms that underlie its effects. Methods: Wild-type (WT) strand of C.elegans (N2)worms were cultured in growth medium with or without AOF. First, we examined the effects of AOF on lifespan, reproduction and healthspan assay, stress resistance and oxidative analysis, lipofuscin levels. Second, The levels of ROS and MDA, the antioxidant enzyme activities were examined to explore the underlying mechanism of AOF. Finally, the expression of the longevity-related genes were investigated to further understand the AOF's underlying mechanism. Results: The lifespan of C. elegans was prolonged by 23.44% after treatment with high-dose AOF (100 ug/ml). AOF alleviated aging-related declines in C. elegans health and enhanced resistance to heat shock. Furthermore, AOF decreased reactive oxygen species and malondialdehyde, increased the activities of superoxide dismutase and catalase, and reduced accumulation of fat. AOF upregulated the expression of sod-3, gst-4, daf-16, and skn-1 but downregulated the expression of daf-2 and age-1 and accelerated the translocation of DAF-16 into the nucleus. The extended lifespan induced by AOF was reversed in daf-16(mu86) and skn-1(zu135) mutants, indicating that this gene is involved in AOF-regulated longevity. Conclusion: Our findings demonstrated that AOF extends lifespan and healthspan and enhances stress via boosting the activity of the antioxidant enzyme and controlling the expression of genes associated with insulin/IGF signaling and SKN-1 pathways. As a result, this work suggested AOF as a possible candidate to reduce the signs of aging by activating and inhibiting target genes.
Collapse
Affiliation(s)
- Man Xiao
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| | - Bocen Chen
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| | - Kun Niu
- College of Chinese Traditional Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Ziyu Long
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| | - Fan Yang
- College of Chinese Traditional Medicine, Hainan Medical University, Haikou, Hainan, China,*Correspondence: Fan Yang, ; Yiqiang Xie,
| | - Yiqiang Xie
- College of Chinese Traditional Medicine, Hainan Medical University, Haikou, Hainan, China,*Correspondence: Fan Yang, ; Yiqiang Xie,
| |
Collapse
|
11
|
Chen X, Liangliang, Zhang H, Buriebao, Wang X, Tai W. Sugemule-10: Source of prescription and modern clinical application. CHINESE HERBAL MEDICINES 2022; 14:376-384. [PMID: 36118002 PMCID: PMC9476780 DOI: 10.1016/j.chmed.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Sugemule-10, one of the traditional Mongolian medicine (TMM) formulae, is derived from Four Medical Classics (Vol. 4) and composed of 10 Mongolian medicines. It is used to treat kidney cold, low back pain, urinary obstruction, kidney/bladder stones, and is the main prescription for kidney cold. The current research on Sugemule-10 is mostly focused on its clinical efficacy, and few papers are available upon its historical changes. Therefore, we systematically reviewed Sugemule-10 from the aspects of prescription source, prescription interpretation, efficacy evolution, and modern clinical applications.
Collapse
|
12
|
Zahari Sham SY, Ng CT, Azwar S, Yip WK, Abdullah M, Thevandran K, Osman M, Seow HF. Circulating miRNAs in Type 2 Diabetic Patients with and without Albuminuria in Malaysia. Kidney Blood Press Res 2022; 47:81-93. [PMID: 35158353 DOI: 10.1159/000518866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease. Dysregulation of circulating miRNAs has been reported, suggesting their pathological roles in DKD. This study aimed to investigate differentially expressed miRNAs in the sera of type 2 diabetes mellitus (T2DM) patients with and without albuminuria in a selected Malaysian population. METHOD Forty-one T2DM patients on follow-up at a community clinic were divided into normo-(NA), micro-(MIC), and macroalbuminuria (MAC) groups. Differential levels of miRNAs in 12 samples were determined using the pathway-focused (human fibrosis) miScript miRNA qPCR array and was validated in 33 samples, using the miScript custom qPCR array (CMIHS02742) (Qiagen GmbH, Hilden, Germany). RESULTS Trends of upregulation of 3 miRNAs in the serum, namely, miR-874-3p, miR-101-3p, and miR-145-5p of T2DM patients with MAC compared to those with NA. Statistically significant upregulation of miR-874-3p (p = 0.04) and miR-101-3p (p = 0.01) was seen in validation cohort. Significant negative correlations between the estimated glomerular filtration rate (eGFR) and miR-874-3p (p = 0.05), miR-101-3p (p = 0.03), and miR-145-5p (p = 0.05) as well as positive correlation between miR-874-3p and age (p = 0.03) were shown by Pearson's correlation coefficient analysis. CONCLUSION Upregulation of previously known miRNA, namely, miR-145-5p, and possibly novel ones, namely, miR-874-3p and miR-101-3p in the serum of T2DM patients, was found in this study. There was a significant correlation between the eGFR and these miRNAs. The findings of this study have provided encouraging evidence to further investigate the putative roles of these differentially expressed miRNAs in DKD.
Collapse
Affiliation(s)
- Siti Yazmin Zahari Sham
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chin Tat Ng
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kalaiselvam Thevandran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malina Osman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
13
|
Chen CM, Lin CY, Chung YP, Liu CH, Huang KT, Guan SS, Wu CT, Liu SH. Protective Effects of Nootkatone on Renal Inflammation, Apoptosis, and Fibrosis in a Unilateral Ureteral Obstructive Mouse Model. Nutrients 2021; 13:nu13113921. [PMID: 34836176 PMCID: PMC8621682 DOI: 10.3390/nu13113921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Nootkatone is one of the major active ingredients of Alpiniae oxyphyllae, which has been used as both food and medicinal plants for the treatment of diarrhea, ulceration, and enuresis. In this study, we aimed to investigate whether nootkatone treatment ameliorated the progression of chronic kidney diseases (CKD) and clarified its underlying mechanisms in an obstructive nephropathy (unilateral ureteral obstructive; UUO) mouse model. Our results revealed that nootkatone treatment preventively decreased the pathological changes and significantly mitigated the collagen deposition as well as the protein expression of fibrotic markers. Nootkatone could also alleviate oxidative stress-induced injury, inflammatory cell infiltration, and renal cell apoptotic death in the kidneys of UUO mice. These results demonstrated for the first time that nootkatone protected against the progression of CKD in a UUO mouse model. It may serve as a potential therapeutic candidate for CKD intervention.
Collapse
Affiliation(s)
- Chang-Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan;
| | - Chen-Yu Lin
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (C.-Y.L.); (Y.-P.C.)
| | - Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (C.-Y.L.); (Y.-P.C.)
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11041, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11041, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kuo-Tong Huang
- Department of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan;
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Master Program of Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
- Correspondence: (C.-T.W.); (S.-H.L.); Tel.: +886-4-22053366 (ext. 7525) (C.-T.W.); +886-2-23123456 (ext. 88605) (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (C.-Y.L.); (Y.-P.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Paediatrics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (C.-T.W.); (S.-H.L.); Tel.: +886-4-22053366 (ext. 7525) (C.-T.W.); +886-2-23123456 (ext. 88605) (S.-H.L.)
| |
Collapse
|
14
|
Zuo L, Li J, Xue L, Jia Q, Li Z, Zhang M, Zhao M, Wang M, Kang J, Du S, Sun Z. Integrated UPLC-MS/MS and UHPLC-Q-orbitrap HRMS Analysis to Reveal Pharmacokinetics and Metabolism of Five Terpenoids from Alpiniae oxyphyllae Fructus in Rats. Curr Drug Metab 2021; 22:70-82. [PMID: 33334283 DOI: 10.2174/1389200221666201217154219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alpiniae oxyphyllae Fructus (AOF), a traditional Chinese medicine (TCM), is widely used in the treatment of urinary, gastrointestinal and neurologic diseases in China. Although terpenoids are the main active ingredients of AOF, there are few researches on their pharmacokinetics and metabolism. METHODS In this study, a sensitive, rapid, accurate and novel ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to evaluate the pharmacokinetic behavior of five terpenoids (oxyphyllenodiol B, (4S*,5E,10R*)-7-oxo-tri-nor-eudesm-5-en-4β-ol, 7-epi-teucrenone, (+)- (4R,5S,7R)-13-hydroxynootkatone, (E)-labda-12,14-dien-15(16)-olide-17-oic acid) in rats after oral administration of AOF extracts. 27 metabolic metabolites of the five terpenoids were identified by ultra high performance liquid chromatography -Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Q-Orbitrap HRMS) based on precise mass and fragment ions. RESULTS The established pharmacokinetic analysis method showed good linearity over a wide concentration range, and the lower quantitative limit (LLOQ) ranged from 0.97 to 4.25 ng/mL. Other validation parameters were within the acceptable range. In addition, 27 metabolites were identified in plasma, urine and feces samples, and the metabolic pathways of five terpenoids were mainly focused on glucoside conjugation, dehydration, desaturation and glycine conjugation. CONCLUSION This is the first study on the pharmacokinetics and metabolism of five terpenoids in AOF, illuminating the disposal process of terpenoids in vivo. It was expected that the results of this study would provide some references for the apprehension of the action mechanism and the further pharmacological study of five terpenoids in AOF.
Collapse
Affiliation(s)
- Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingquan Jia
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengya Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengfan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Wei H, Wang L, An Z, Xie H, Liu W, Du Q, Guo Y, Wu X, Li S, Shi Y, Zhang X, Liu H. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy. Biomed Pharmacother 2020; 133:111061. [PMID: 33378964 DOI: 10.1016/j.biopha.2020.111061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
QiDiTangShen granules (QDTS), a traditional Chinese herbal medicine, have been used in clinical practice for treating diabetic kidney disease for several years. In our previous study, we have demonstrated that QDTS displayed good efficacy on reducing proteinuria in mice with diabetic nephropathy (DN). However, the exact mechanism by which QDTS exerts its reno-protection remains largely unknown. To ascertain whether QDTS could target the gut microbiota-bile acid axis, the db/db mice were adopted as a mouse model of DN. After a 12-week of treatment, we found that QDTS significantly reduced urinary albumin excretion (UAE), and attenuated the pathological injuries of kidney in the db/db mice, while the body weight and blood glucose levels of those mice were not affected. In addition, we found that QDTS significantly altered the gut microbiota composition, and decreased serum levels of total bile acid (TBA) and BA profiles such as β-muricholic acid (β-MCA), taurocholic acid (TCA), tauro β-muricholic acid (Tβ-MCA) and deoxycholic acid (DCA). These BAs are associated with the activation of farnesoid X receptor (FXR), which is highly expressed in kidney. However, there was no significant difference between QDTS-treated and -untreated db/db mice regarding the renal expression of FXR, indicating that other mechanisms may be involved. Conclusively, our study revealed that QDTS significantly alleviated renal injuries in mice with DN. The gut microbiota-bile acid axis may be an important target for the reno-protection of QDTS in DN, but the specific mechanism merits further study.
Collapse
Affiliation(s)
- Huili Wei
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Lin Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Zhichao An
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Huidi Xie
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Weijing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Qing Du
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yan Guo
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xi Wu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Sicheng Li
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yang Shi
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xianhui Zhang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Dongsibei Road No. 279, Dongcheng District, Beijing, 100700, China.
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China.
| |
Collapse
|
16
|
Wu JX, Jia A, Tan YF, Xu H, Tian JP, Wang Y, Li HL, Gao BM, Li YH. Effect of Alpina oxyphylla extract on streptozotocin-induced kidney injure via regulating TGF-β1 and MyD88. BMC Complement Med Ther 2020; 20:217. [PMID: 32660472 PMCID: PMC7359227 DOI: 10.1186/s12906-020-02972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Abnormal renal metabolism is closely related to the development of chronic kidney disease. It is well known that renal inflammation plays an important role in the occurrence and development of tubulointerstitial damage in the renal tubules. The purpose of the experiment was to observe the bioactivity of Alpina oxyphylla extract (AOE) on renal injury in diabetic nephropathy (DN) rats induced by streptozotocin (STZ). METHODS Thirty male Wistar rats were randomly divided into five group (n = 6): (1) intact control (non-diabetic, ND); (2) intact diabetic (STZ), (3) diabetic rats treated with gliclazide 5 mg/kg (STZ-gli), (4) diabetic rats treated with AOE 400 mg/kg (AOE 400), (5) diabetic rats treated with AOE 800 mg/kg (AOE 800). The diabetic nephropathy rat model was established by single intraperitoneal injected 50 mg/kg STZ. Fasting blood glucose (FBG) and body weight was observed at 1、3、6 weeks. After 6 weeks, the renal function parameters of five groups and 24 h urinary protein were detected. Expression of transforming growth factor-beta1 (TGF-β1) and myeloid differentiation factor 88 (MyD88) were assessed by Western Blot. RESULTS The STZ group showed hyperglycemia, proteinuria, renal function damage, and the levels of 24 h urinary protein, fasting blood glucose (FBG), blood urea nitrogen (BUN), serum creatinine (Scr), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and interleukin-6 (IL-6) in the STZ group increased significantly compared with the ND group. The expression of TGF-β1 in STZ group was increase (p < 0.01), and the expression of MyD88 was significantly lower than in ND group (p < 0.05). The treatment of DN rats with AOE attenuated DN-associated in the serum biochemical index and the expression of TGF-β1. CONCLUSIONS AOE can effectively protect kidney tissues of diabetic nephropathy, and probably through regulating level of TGF-β1/MyD88.
Collapse
Affiliation(s)
- Jiao-xia Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - An Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001 PR China
- Medical School, Huanghe Science & Technology College, Zhengzhou, 450063 PR China
| | - Yin-feng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - Han Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - Jian-ping Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - Hai Long Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - Bing-miao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
| | - Yong-hui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 PR China
- Medical School, Huanghe Science & Technology College, Zhengzhou, 450063 PR China
| |
Collapse
|
17
|
Wang X, Zhao L, Ajay AK, Jiao B, Zhang X, Wang C, Gao X, Yuan Z, Liu H, Liu WJ. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol 2019; 10:1224. [PMID: 31632286 PMCID: PMC6779835 DOI: 10.3389/fphys.2019.01224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
QiDiTangShen granules (QDTS) have been proven to reduce the proteinuria in patients with diabetic nephropathy (DN) effectively. The present study was aimed to investigate the mechanism underlying QDTS's renoprotection. The main components of QDTS were identified by ultra-high liquid chromatography-tandem mass spectrometry and pharmacological databases, among which active components were screened by oral bioavailability and drug-likeness. Their regulation on autophagy-related nutrient-sensing signal molecules (AMPK, SIRT1, and mTOR) was retrieved and analyzed through the Pubmed database. Then, db/db mice were randomly divided into three groups (model control, valsartan and QDTS), and given intragastric administration for 12 weeks, separately. Fasting and random blood glucose, body weight, urinary albumin excretion (UAE) and injury markers of liver and kidney were investigated to evaluate the effects and safety. Renal histological lesions were assessed, and the expressions of proteins related to nutrient-sensing signals and autophagy were investigated. Thirteen active components were screened from 78 components identified. Over half the components had already been reported to improve nutrient-sensing signals. QDTS significantly reduced UAE, ameliorated mesangial matrix deposition, alleviate the expression of protein and mRNA of TGF-β, α-SMA, and Col I, as well as improved the quality of mitochondria and the number of autophagic vesicles of renal tubular cells although the blood glucose was not decreased in db/db mice. Compared to the db/db group, the expression of the autophagy-inducible protein (Atg14 and Beclin1) and microtubule-associated protein 1 light chain 3-II (LC3-II) were up-regulated, autophagic substrate transporter p62 was down-regulated in QDTS group. It was also found that the expression of SIRT1 and the proportion of p-AMPK (thr172)/AMPK were increased, while the p-mTOR (ser2448)/mTOR ratio was decreased after QDTS treatment in db/db mice, which was consistent with the effect of its active ingredients on the nutrient-sensing signal pathway as reported previously. Therefore, QDTS may prevent the progression of DN by offering the anti-fibrotic effect. The renoprotection is probably attributable to the regulation of nutrient-sensing signal pathways, which activates autophagy.
Collapse
Affiliation(s)
- Xiangming Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhao
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Amrendra K. Ajay
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Baihai Jiao
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xianhui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Gao
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Yuan
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Zhang Q, Zheng Y, Hu X, Hu X, Lv W, Lv D, Chen J, Wu M, Song Q, Shentu J. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:149-168. [PMID: 29738847 DOI: 10.1016/j.jep.2018.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL USAGES Fructus Alpiniae oxyphyllae (A. oxyphylla) is an important medicinal plant that is used not only as an edible fruit, but also as an important traditional medicine for benefiting cognitive performance and alleviating a wide spectrum of diseases. Such as; warming kidney, securing essence and arresting polyuria, as well as warming the spleen and stopping diarrhea and saliva. AIMS The purpose of this review is to provide updated, comprehensive and categorized information on the traditional uses, phytochemistry and pharmacological research of A. oxyphylla in order to explore their therapeutic potential and establish a solid foundation for directing future research. MATERIALS AND METHODS All the available information on A. oxyphylla was collected via electronic search (using Pubmed, SciFinder, Scirus, Google Scholar and Web of Science) and additionally a number of unpublished resources, (e.g. books, Ph.D. and M.Sc. dissertations, government reports). RESULTS Phytochemical research on A. oxyphylla has led to the isolation of components such as essential oils, terpenes, diarylheptanoids, flavones, nucleobases and nucleosides, steroids and others. Crude extracts, fractions and phytochemical constituents isolated from A. oxyphylla showed a wide spectrum of in vitro and in vivo pharmacological activities like neuroprotective, anti-diarrheal, anti-diuretic, anti-neoplastic, anti-oxidant, anti-inflammatory, anti-allergic, viscera protective and anti-diabetic activities. Neuroprotective, anti-cancer, anti-diarrheal and anti-diuretic effects are major areas of research conducted on A. oxyphylla. CONCLUSIONS Modern pharmacological studies have supported many traditional uses of A. oxyphylla, including nervous system, urinary system and gastrointestinal system disease. There was convincing evidence in experimental animal models in support of its neuroprotection, secure essence, reduce urination, and anti-carcinogenic effects. However, all the reported pharmacological activities were carried out at pre-clinical level and the authors urge further investigation in clinical trials about these therapeutic fields of A. oxyphylla.
Collapse
Affiliation(s)
- Qiao Zhang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yunliang Zheng
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenwen Lv
- Pharmacy Department, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Duo Lv
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jinjin Chen
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Minglan Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Qichao Song
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
19
|
Xie Y, Xiao M, Ni Y, Jiang S, Feng G, Sang S, Du G. Alpinia oxyphylla Miq. Extract Prevents Diabetes in Mice by Modulating Gut Microbiota. J Diabetes Res 2018; 2018:4230590. [PMID: 29967794 PMCID: PMC6008625 DOI: 10.1155/2018/4230590] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/05/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, the role of gut microbiota in the development of obesity and type 2 diabetes mellitus (T2DM) has been highlighted. We performed an 8-week administration protocol on T2DM (C57BL/6J db-/db-) mice and fecal samples were collected. Comparisons of fecal bacterial communities were performed between db-/db- mice and normal mice (DB/DB) and between the db-/db mice treated and untreated with AOE using next-generation sequencing technology. Our results showed that the db-/db-AOE group had improved glycemic control and renal function compared with the db-/db-H2O group. Compared with the db-/db-H2O group, AOE administration resulted in significantly increased ratio of Bacteroidetes-to-Firmicutes in db-/db- mice. In addition, the abundance of Akkermansia was significantly increased, while Helicobacter was significantly suppressed in the db-/db-AOE group compared with the db-/db-H2O group. Our data suggest that AOE treatment decreased blood glucose levels and significantly reduced damage of renal pathology in the T2DM mice by modulating gut microbiota composition.
Collapse
Affiliation(s)
- Yiqiang Xie
- First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| | - Yali Ni
- First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Shangfei Jiang
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| | - Guizhu Feng
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| | - Shenggang Sang
- First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| |
Collapse
|