1
|
Olazábal DE, Alsina-Llanes M. Neural basis of aggressive behavior toward newborns in Mice: Advances and future Challenges. Neuroscience 2025; 574:1-12. [PMID: 40158612 DOI: 10.1016/j.neuroscience.2025.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Infanticidal or pup-directed aggressive behavior is present in most species, including humans. It occurs in both reproductive and non-reproductive contexts and its incidence and biological basis may vary among species, strains, sex, and individual experiences. This review has two objectives: 1) to describe the most likely neural circuit that mediates aggressive behavior towards pups in mice, including hormonal, neuroendocrine and neurochemical changes that may increase the probability of attacking pups; and 2) to discuss whether aggressive behavior toward pups in mice is rewarding, an impulsive or predatory response, or a form of maltreatment or adaptive behavior. We propose a neural model to explain aggressive behavior towards pups and discuss evidence suggesting that infanticidal and pup-directed aggressive behavior, although hard-wired in the brain, can be blocked or inhibited by changing the experiences of the subject prior to the access to pups.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Unidad Académica Fisiología, Facultad de Medicina, Udelar, Montevideo, Uruguay.
| | | |
Collapse
|
2
|
Sasaki T, Hara K, Tanemura K. Early-life exposure to acephate inhibits sexual development and induces testicular and ovarian toxicity in mice. Reprod Toxicol 2023; 121:108472. [PMID: 37717670 DOI: 10.1016/j.reprotox.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Acephate is an organophosphate insecticide that exerts its toxicity by acting on the nervous system of insects. In addition to its action on the mammalian nervous system, acephate can also induce endocrine disruption of the reproductive system in mammals. However, the effects of acephate on sexual maturation and ovary development remain unclear. This study evaluated whether early-life exposure to acephate negatively impacts the male and female sexual maturation process and mature reproductive tissues. C57BL/6N mice were exposed to acephate (0, 0.3, 300 ppm) in drinking water from embryonic day 11.5 to ablactation, when the pups were four weeks old. Both sexes in the high-dose group experienced an early postnatal growth deficit, while females in the low-dose group continued to gain weight until 10 weeks of age. Exposure to acephate altered the anogenital index in females. Furthermore, preputial separation and vaginal opening were delayed in the high-dose group. At maturity, the weight of the seminal vesicles was decreased in the high-dose group. All treated groups exhibited increased vacuolation, accumulation of residual bodies, and degeneration in the testes. Furthermore, follicle regression was observed, and the healthy follicle number at each developmental stage was decreased in all treated groups. These results are probably due to the inhibition of the regulation by the hypothalamic-pituitary-gonadal axis and direct toxicity to reproductive organs. In conclusion, our study demonstrates that early-life exposure to acephate in mice may disrupt normal postnatal development, postpone puberty onset, and adversely affect reproductive functions during the reproductive period in both sexes.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
3
|
Strekalova T, Moskvin O, Jain AY, Gorbunov N, Gorlova A, Sadovnik D, Umriukhin A, Cespuglio R, Yu WS, Tse ACK, Kalueff AV, Lesch KP, Lim LW. Molecular signature of excessive female aggression: study of stressed mice with genetic inactivation of neuronal serotonin synthesis. J Neural Transm (Vienna) 2023; 130:1113-1132. [PMID: 37542675 PMCID: PMC10460733 DOI: 10.1007/s00702-023-02677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Singapore Medical School, BluMaiden Biosciences, Singapore, Singapore
| | - Aayushi Y Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Daria Sadovnik
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, Beliv Plateau, Claude-Bernard Lyon-1 University, Bron, France
| | - Wing Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anna Chung Kwan Tse
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
4
|
McIntyre C, Li XF, de Burgh R, Ivanova D, Lass G, O’Byrne KT. GABA Signaling in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2022; 164:6855642. [PMID: 36453253 PMCID: PMC9757692 DOI: 10.1210/endocr/bqac197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
Psychological stress is linked to infertility by suppressing the hypothalamic GnRH pulse generator. The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream regulator of GnRH pulse generator activity and displays increased neuronal activation during psychological stress. The MePD is primarily a GABAergic nucleus with a strong GABAergic projection to hypothalamic reproductive centers; however, their functional significance has not been determined. We hypothesize that MePD GABAergic signalling mediates psychological stress-induced suppression of pulsatile LH secretion. We selectively inhibited MePD GABA neurons during psychological stress in ovariectomized (OVX) Vgat-cre-tdTomato mice to determine the effect on stress-induced suppression of pulsatile LH secretion. MePD GABA neurons were virally infected with inhibitory hM4DGi-designer receptor exclusively activated by designer drugs (DREADDs) to selectively inhibit MePD GABA neurons. Furthermore, we optogenetically stimulated potential MePD GABAergic projection terminals in the hypothalamic arcuate nucleus (ARC) and determined the effect on pulsatile LH secretion. MePD GABA neurons in OVX female Vgat-cre-tdTomato mice were virally infected to express channelrhodopsin-2 and MePD GABAergic terminals in the ARC were selectively stimulated by blue light via an optic fiber implanted in the ARC. DREADD-mediated inhibition of MePD GABA neurons blocked predator odor and restraint stress-induced suppression of LH pulse frequency. Furthermore, sustained optogenetic stimulation at 10 and 20 Hz of MePD GABAergic terminals in the ARC suppressed pulsatile LH secretion. These results show for the first time that GABAergic signalling in the MePD mediates psychological stress-induced suppression of pulsatile LH secretion and suggest a functionally significant MePD GABAergic projection to the hypothalamic GnRH pulse generator.
Collapse
Affiliation(s)
| | | | | | - Deyana Ivanova
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Geffen Lass
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kevin T O’Byrne
- Correspondence: Kevin T. O’Byrne, PhD, Department of Women and Children's Health, Faculty of Life Sciences and Medicine, Guy's Campus, King's College London, 2.92W Hodgkin Building, London, SE1 1UL, UK. kevin.o'
| |
Collapse
|
5
|
ADGRL1 haploinsufficiency causes a variable spectrum of neurodevelopmental disorders in humans and alters synaptic activity and behavior in a mouse model. Am J Hum Genet 2022; 109:1436-1457. [PMID: 35907405 PMCID: PMC9388395 DOI: 10.1016/j.ajhg.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.
Collapse
|
6
|
Navarro-Moreno C, Barneo-Muñoz M, Ibáñez-Gual MV, Lanuza E, Agustín-Pavón C, Sánchez-Catalán MJ, Martínez-García F. Becoming a mother shifts the activity of the social and motivation brain networks in mice. iScience 2022; 25:104525. [PMID: 35754727 PMCID: PMC9218376 DOI: 10.1016/j.isci.2022.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
During pregnancy hormones increase motivated pup-directed behaviors. We here analyze hormone-induced changes in brain activity, by comparing cFos-immunoreactivity in the sociosexual (SBN) and motivation brain networks (including medial preoptic area, MPO) of virgin versus late-pregnant pup-naïve female mice exposed to pups or buttons (control). Pups activate more the SBN than buttons in both late-pregnant and virgin females. By contrast, pregnancy increases pup-elicited activity in the motivation circuitry (e.g. accumbens core) but reduces button-induced activity and, consequently, button investigation. Principal components analysis supports the identity of the social and motivation brain circuits, placing the periaqueductal gray between both systems. Linear discriminant analysis of cFos-immunoreactivity in the socio-motivational brain network predicts the kind of female and stimulus better than the activity of the MPO alone; this suggests that the neuroendocrinological basis of social (e.g. maternal) behaviors conforms to a neural network model, rather than to distinct hierarchical linear pathways for different behaviors. Pups activate the sociosexual brain network of females more than nonsocial objects Pregnancy boosts motivation for pups and reduces incentive salience of buttons During pregnancy, specific circuits govern decision of caring or attacking pups The socio-motivational brain works as a network rather than a labelled-line circuit
Collapse
Affiliation(s)
- Cinta Navarro-Moreno
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Manuela Barneo-Muñoz
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - María Victoria Ibáñez-Gual
- Department of Mathematics, IMAC, School of Technology and Experimental Sciences (ESTCE), Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Enrique Lanuza
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UV. Department of Cell and Functional Biology and Physical Anthropology, Faculty of Biology, Universitat de València. C. Doctor Moliner 50, Burjassot 46100, Spain
| | - Carmen Agustín-Pavón
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UV. Department of Cell and Functional Biology and Physical Anthropology, Faculty of Biology, Universitat de València. C. Doctor Moliner 50, Burjassot 46100, Spain
| | - María José Sánchez-Catalán
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Fernando Martínez-García
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| |
Collapse
|
7
|
Ji H, Niu C, Zhan X, Xu J, Lian S, Xu B, Guo J, Zhen L, Yang H, Li S, Ma L. Identification, functional prediction, and key lncRNA verification of cold stress-related lncRNAs in rats liver. Sci Rep 2020; 10:521. [PMID: 31949263 PMCID: PMC6965121 DOI: 10.1038/s41598-020-57451-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Cold stimulation reduces the quality of animal products and increases animal mortality, causing huge losses to the livestock industry in cold regions. Long non-coding RNAs (lncRNAs) take part in many biological processes through transcriptional regulation, intracellular material transport, and chromosome remodeling. Although cold stress-related lncRNAs have been reported in plants, no research is available on the characteristic and functional analysis of lncRNAs after cold stress in rats. Here, we built a cold stress animal model firstly. Six SPF male Wistar rats were randomly divided to the acute cold stress group (4 °C, 12 h) and the normal group (24 °C, 12 h). lncRNA libraries were constructed by high-throughput sequencing (HTS) using rat livers. 2,120 new lncRNAs and 273 differentially expressed (DE) lncRNAs were identified in low temperature environments. The target genes of DElncRNA were predicted by cis and trans, and then functional and pathway analysis were performed to them. GO and KEGG analysis revealed that lncRNA targets were mainly participated in the regulation of nucleic acid binding, cold stimulation reaction, metabolic process, immune system processes, PI3K-Akt signaling pathway and pathways in cancer. Next, a interaction network between lncRNA and its targets was constructed. To further reveal the mechanism of cold stress, DElncRNA and DEmRNA were extracted to reconstruct a co-expression sub-network. We found the key lncRNA MSTRG.80946.2 in sub-network. Functional analysis of key lncRNA targets showed that targets were significantly enriched in fatty acid metabolism, the PI3K-Akt signaling pathway and pathways in cancer under cold stress. qRT-PCR confirmed the sequencing results. Finally, hub lncRNA MSTRG.80946.2 was characterized, and verified its relationship with related mRNAs by antisense oligonucleotide (ASO) interference and qRT-PCR. Results confirmed the accuracy of our analysis. To sum up, our work was the first to perform detailed characterization and functional analysis of cold stress-related lncRNAs in rats liver. lncRNAs played crucial roles in energy metabolism, growth and development, immunity and reproductive performance in cold stressed rats. The MSTRG.80946.2 was verified by network and experiments to be a key functional lncRNA under cold stress, regulating ACP1, TSPY1 and Tsn.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jing Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
8
|
Baek SU, Lim SS, Kim J, Yoon JH. How Does Economic Inequality Affect Infanticide Rates? An Analysis of 15 Years of Death Records and Representative Economic Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193679. [PMID: 31574941 PMCID: PMC6801423 DOI: 10.3390/ijerph16193679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022]
Abstract
Background: Is there a relationship between economic inequality and infanticide rates? Few studies have examined the socioeconomic factors that trigger infanticide. This study aims to statistically analyze the effect of these factors on infanticide rates. Methods: This study used infant death records in South Korea from 2003 to 2017 to assess the impact of unemployment rates and various statistical indicators (e.g., GDP and income inequality index) on the rate of infanticide. A generalized additive model and a quasi-Poisson regression were used for statistical analyses. Results: A time-trend analysis shows that the infanticide rate tended to grow despite a decreasing trend in the quarterly infant mortality rate. A 1% increase in the unemployment rate is associated with a significant rise in the relative risk of infanticide after a lag of two quarters. Relative risks increased significantly three and four quarters after a 0.1 rise in the p80/p20 ratio (income inequality index). Conclusions: Policymakers should pay attention to socioeconomic factors while formulating healthcare regulations to protect potential infanticide victims, including vulnerable infants and their parents.
Collapse
Affiliation(s)
- Seong-Uk Baek
- College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Sung-Shil Lim
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Jihyun Kim
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Jin-Ha Yoon
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|