1
|
Covarrubias AA, Reyna-Jeldes M, Pedroso-Santana S, Marín S, Madero-Mendoza C, Demergasso C, Coddou C. Arsenic Nanoparticles Trigger Apoptosis via Anoikis Induction in OECM-1 Cells. Int J Mol Sci 2024; 25:6723. [PMID: 38928430 PMCID: PMC11204275 DOI: 10.3390/ijms25126723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on these cells using 1-100 µM of AsNPs, finding a concentration-dependent reduction in cell viability that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3 were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest a prospective mechanism of action for AsNPs that involves a potential interaction with extracellular matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an anchorage-dependent type of apoptosis.
Collapse
Affiliation(s)
- Alejandra A. Covarrubias
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (M.R.-J.)
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
- Facultad de Ciencias Agropecuarias, Universidad del Alba, La Serena 1700000, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (M.R.-J.)
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
- Laboratory of Cancer Biology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Seidy Pedroso-Santana
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta 1200000, Chile
| | - Sabrina Marín
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta 1200000, Chile
| | - Carolina Madero-Mendoza
- Carrera de Medicina, Facultad de Medicina y Odontología, Universidad de Antofagasta, Antofagasta 1200000, Chile;
| | - Cecilia Demergasso
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta 1200000, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (M.R.-J.)
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
| |
Collapse
|
2
|
Mazioti AA, Vyrides I. Treatment of high-strength saline bilge wastewater by four pilot-scale aerobic moving bed biofilm reactors and comparison of the microbial communities. ENVIRONMENTAL TECHNOLOGY 2024; 45:1066-1080. [PMID: 36315853 DOI: 10.1080/09593330.2022.2137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Four Pilot-scale Moving Bed Biofilm Reactors (MBBRs) were operated for the treatment of real, saline, bilge wastewater. The MBBRs were connected in pairs to create two system configurations with different filling ratios (20%, 40%) and were operated in parallel. The inflow organic loading rate (OLR) varied from 3.6 ± 0.2 to 7.8 ± 0.6 g COD L-1 d-1, salinity was >15 ppt and three hydraulic residence times (HRTs) were tested 48, 30 and 24 h. In both systems, the first-stage bioreactors (R1 and R3) eliminated the higher part of the organic load (57%-65%). The second-stage bioreactors (R2 and R4) removed an additional fraction (18%-31%) of the organic load received by the effluent of R1 and R3, respectively. The microbial communities of the influent wastewater, suspended, and attached biomass were determined using 16S rRNA gene amplicon sequencing analysis. The evolution of the microbial communities was investigated and compared over the different operational phases. The microbial communities of the biofilm presented higher diversity and greater stability in composition over time, while the suspended biomass exhibited intense and rapid changes in the dominance of genera. Proteobacteria, Bacteroidetes and Firmicutes were highly present in the biofilm. The genera Celeribacter, Novispirillum, Roseovarius (class: Alphaproteobacteria) and Formosa (class: Flavobacteriia) were highly present during all operational phases. Principal Component Analysis (PCA) was used to identify similarities between samples, exhibiting high relation of samples according to the series of the bioreactor (1st, 2nd).
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
3
|
Brioukhanov AL, Kadnikov VV, Beletsky AV, Savvichev AS. Aerotolerant Thiosulfate-Reducing Bacterium Fusibacter sp. Strain WBS Isolated from Littoral Bottom Sediments of the White Sea-Biochemical and Genome Analysis. Microorganisms 2023; 11:1642. [PMID: 37512815 PMCID: PMC10386464 DOI: 10.3390/microorganisms11071642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The strain WBS, an anaerobic, psychro- and halotolerant bacterium belonging to the genus Fusibacter, was isolated from the littoral bottom sediments of the White Sea, Arctic, Russia. Fusibacter bizertensis WBS grew at temperatures between 8 and 32 °C (optimum growth at 18-20 °C), pH between 5.2 and 8.3 (optimum growth at pH 7.2), and at NaCl concentrations between 0 and 70 g L-1 (optimum growth at 32 g L-1). It reduced sulfate, thiosulfate, and elemental sulfur into sulfide, and, probably, the strain is able to disproportionate thiosulfate. The strain also utilized a wide range of substrates as it is a chemoorganotrophic bacterium. Analysis of the sequenced genome revealed genes for all enzymes involved in the Embden-Meyerhof glycolytic pathway as well as genes for the non-oxidative stage of the pentose phosphate pathway. The presence of genes encoding aldehyde dehydrogenases and alcohol dehydrogenases also suggests that, in addition to acetate, alcohols can also be the fermentation products. The strain possessed superoxide dismutase and peroxidase activities and the ability to consume O2, which is in full accordance with the presence of corresponding genes of antioxidant defense in the genome. The phylogenetic analysis suggested that the strain WBS is the closest relative of Fusibacter bizertensis LTF Kr01T (16S rRNA gene sequence similarity 98.78%). Based on biochemical and genomic characteristics, the strain WBS is proposed to represent a novel aero-, halo- and psychrotolerant strain from the genus Fusibacter, isolated for the first time among its members from cold oxygenated marine bottom sediments.
Collapse
Affiliation(s)
| | - Vitaly V Kadnikov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Alexey V Beletsky
- Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Alexander S Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| |
Collapse
|
4
|
Acosta-Grinok M, Vázquez S, Guiliani N, Marín S, Demergasso C. Looking for the mechanism of arsenate respiration of Fusibacter sp. strain 3D3, independent of ArrAB. Front Microbiol 2022; 13:1029886. [PMID: 36532432 PMCID: PMC9751042 DOI: 10.3389/fmicb.2022.1029886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The literature has reported the isolation of arsenate-dependent growing microorganisms which lack a canonical homolog for respiratory arsenate reductase, ArrAB. We recently isolated an arsenate-dependent growing bacterium from volcanic arsenic-bearing environments in Northern Chile, Fusibacter sp. strain 3D3 (Fas) and studied the arsenic metabolism in this Gram-positive isolate. Features of Fas deduced from genome analysis and comparative analysis with other arsenate-reducing microorganisms revealed the lack of ArrAB coding genes and the occurrence of two arsC genes encoding for putative cytoplasmic arsenate reductases named ArsC-1 and ArsC-2. Interestingly, ArsC-1 and ArsC-2 belong to the thioredoxin-coupled family (because of the redox-active disulfide protein used as reductant), but they conferred differential arsenate resistance to the E. coli WC3110 ΔarsC strain. PCR experiments confirmed the absence of arrAB genes and results obtained using uncouplers revealed that Fas growth is linked to the proton gradient. In addition, Fas harbors ferredoxin-NAD+ oxidoreductase (Rnf) and electron transfer flavoprotein (etf) coding genes. These are key molecular markers of a recently discovered flavin-based electron bifurcation mechanism involved in energy conservation, mainly in anaerobic metabolisms regulated by the cellular redox state and mostly associated with cytoplasmic enzyme complexes. At least three electron-bifurcating flavoenzyme complexes were evidenced in Fas, some of them shared in conserved genomic regions by other members of the Fusibacter genus. These physiological and genomic findings permit us to hypothesize the existence of an uncharacterized arsenate-dependent growth metabolism regulated by the cellular redox state in the Fusibacter genus.
Collapse
Affiliation(s)
| | - Susana Vázquez
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina,Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Guiliani
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Antofagasta, Chile
| | - Sabrina Marín
- Biotechnology Center, Universidad Católica del Norte, Antofagasta, Chile
| | - Cecilia Demergasso
- Biotechnology Center, Universidad Católica del Norte, Antofagasta, Chile,Nucleus for the Study of Cancer at a Basic, Applied, and Clinical Level, Universidad Católica del Norte, Antofagasta, Chile,*Correspondence: Cecilia Demergasso,
| |
Collapse
|
5
|
Marghoob MU, Rodriguez-Sanchez A, Imran A, Mubeen F, Hoagland L. Diversity and functional traits of indigenous soil microbial flora associated with salinity and heavy metal concentrations in agricultural fields within the Indus Basin region, Pakistan. Front Microbiol 2022; 13:1020175. [PMID: 36419426 PMCID: PMC9676371 DOI: 10.3389/fmicb.2022.1020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | | | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Response of the reactor performances and bacterial communities to the evolution of sulfide-based mixotrophic denitrification processes from nitrate-type to nitrite-type. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Wasmund K, Pelikan C, Schintlmeister A, Wagner M, Watzka M, Richter A, Bhatnagar S, Noel A, Hubert CRJ, Rattei T, Hofmann T, Hausmann B, Herbold CW, Loy A. Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. Nat Microbiol 2021; 6:885-898. [PMID: 34127845 PMCID: PMC8289736 DOI: 10.1038/s41564-021-00917-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Extracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagenomics to study microbial catabolism of DNA and its subcomponents in marine sediments. 13C-DNA added to sediment microcosms was largely degraded within 10 d and mineralized to 13CO2. SIP probing of DNA revealed diverse 'Candidatus Izemoplasma', Lutibacter, Shewanella and Fusibacteraceae incorporated DNA-derived 13C-carbon. NanoSIMS confirmed incorporation of 13C into individual bacterial cells of Fusibacteraceae sorted from microcosms. Genomes of the 13C-labelled taxa all encoded enzymatic repertoires for catabolism of DNA or subcomponents of DNA. Comparative genomics indicated that diverse 'Candidatus Izemoplasmatales' (former Tenericutes) are exceptional because they encode multiple (up to five) predicted extracellular nucleases and are probably specialized DNA-degraders. Analyses of additional sediment metagenomes revealed extracellular nuclease genes are prevalent among Bacteroidota at diverse sites. Together, our results reveal the identities and functional properties of microorganisms that may contribute to the key ecosystem function of degrading and recycling DNA in the seabed.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Claus Pelikan
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Arno Schintlmeister
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Margarete Watzka
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Austrian Polar Research Institute, Vienna, Austria
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Amy Noel
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Division of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Wang Y, Zhang G, Wang H, Cheng Y, Liu H, Jiang Z, Li P, Wang Y. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125146. [PMID: 33485230 DOI: 10.1016/j.jhazmat.2021.125146] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) play key roles in the biotransformation of arsenic in groundwater systems. However, the effects of different types of DOM on arsenic biogeochemistry remain poorly understood. In this study, four typical DOM compounds (acetate, lactate, AQS and humic acid) were amended to high As aquifer sediments to investigate their effects on arsenic/iron biotransformation and microbial community response. Results demonstrated that different DOM drove different microbial community shifts and then enhanced microbially-mediated arsenic release and iron reduction. With labile DOM (acetate and lactate) amendment, the abundance of putative dissimilatory iron and sulfate reducers Desulfomicrobium and Clostridium sensu stricto increased within the first week, and subsequently the anaerobic fermentative bacterial genus Acetobacterium and arsenate/sulfate-reducing bacterial genus Fusibacter became predominant. In contrast, recalcitrant DOM (AQS and humic acid) mainly stimulated the abundances of sulfur compounds respiratory genus Desulfomicrobium and fermentative bacterial genus Alkalibacter in the whole incubation. Accompanied with the microbial community structure and function shifts, dissolved organic carbon concentration and oxidation-reduction potential changed and the arsenic/iron reduction increased, which resulted in the enhanced arsenic mobilization. Collectively, the present study linked DOM type to microbial community structure and explored the potential roles of different DOM on arsenic biotransformation in aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Guanglong Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
9
|
Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS. Meta-Analysis of Microbial Communities in Hot Springs: Recurrent Taxa and Complex Shaping Factors beyond pH and Temperature. Microorganisms 2020; 8:microorganisms8060906. [PMID: 32560103 PMCID: PMC7356817 DOI: 10.3390/microorganisms8060906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.
Collapse
Affiliation(s)
- Francisco L. Massello
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Edgardo Donati
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - María Sofía Urbieta
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
- Correspondence:
| |
Collapse
|
10
|
Rios-Valenciana EE, Briones-Gallardo R, Chazaro-Ruiz LF, Lopez-Lozano NE, Sierra-Alvarez R, Celis LB. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). CHEMOSPHERE 2020; 239:124823. [PMID: 31726520 DOI: 10.1016/j.chemosphere.2019.124823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Several studies have demonstrated that gypsum (CaSO4·2H2O) and calcite (CaCO3) can be important hosts of arsenic in contaminated hydrogeological systems. However, the extent to which microbial reducing processes contribute to the dissolution and transformation of carbonate and sulfate minerals and, thereby, to arsenic mobilization is poorly understood. These processes are likely to have a strong impact on arsenic mobility in iron-poor environments and in reducing aquifers where iron oxyhydroxides become unstable. Anoxic batch bioassays with arsenate (As(V)) coprecipitated with calcite, gypsum, or ferrihydrite (Fe(OH)3) were conducted in the presence of sulfate or molybdate to examine the impact of bioprocesses (i.e. As(V), sulfate, and Fe(III)-reduction) on arsenic dissolution, speciation, and eventual remineralization. Microbial reduction of As(V)-bearing calcite caused an important dissolution of arsenite, As(III), which remained in solution up to the end of the experiment (30 days). The reduction of As(V) from gypsum-As(V) also led to the release of As(III), which was subsequently remineralized, possibly as arsenic sulfides. The presence of sulfate triggered arsenic dissolution in the bioassays with ferrihydrite-As(V). This study showed that although gypsum and calcite have a lower capacity to bind arsenic, compared to iron oxides, they can play a critical role in the biogeochemical cycle of arsenic in natural calcareous and gypsiferous systems depleted of iron since they can be a source of electron acceptors for reducing bioprocesses.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Roberto Briones-Gallardo
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Luis F Chazaro-Ruiz
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Nguyen E Lopez-Lozano
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
11
|
Qu J, Chen X, Zhou J, Li H, Mai W. Treatment of real sodium saccharin wastewater using multistage contact oxidation reactor and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 289:121714. [PMID: 31323719 DOI: 10.1016/j.biortech.2019.121714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
In this study, multistage contact oxidation reactor (MCOR) with a novel carrier was used for treatment of high-strength sodium saccharin wastewater (SSW) under stepwise increasing salinities from 1.0% to 8.0%. The results revealed that MCOR could effectively remove the organic pollutants from SSW when influent salinity was no more than 4.5%; the chemical oxygen demand (COD) and NH4+-N removal efficiency under the optimal operating parameters ranged up to 91.5% and 92.7%, respectively. Microbial diversity analysis illustrated that the dominant microbes in SSW treatment system were substantially distinct at different salinities. Pseudomonas was predominant at salinity of 3.5%, while Marinobacterium (a species involved in COD removal) was enriched to a greater degree at salinity of 7.0%. CCA suggested that salinity was the main factor for dynamic evolutions of microbial community structures. This work demonstrated that MCOR is an appropriate method for the treatment of high-strength, high-salinity SSW.
Collapse
Affiliation(s)
- Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenning Mai
- School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Mahjoubi M, Aliyu H, Cappello S, Naifer M, Souissi Y, Cowan DA, Cherif A. The genome of Alcaligenes aquatilis strain BU33N: Insights into hydrocarbon degradation capacity. PLoS One 2019; 14:e0221574. [PMID: 31550268 PMCID: PMC6759156 DOI: 10.1371/journal.pone.0221574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/10/2019] [Indexed: 01/12/2023] Open
Abstract
Environmental contamination with hydrocarbons though natural and anthropogenic activities is a serious threat to biodiversity and human health. Microbial bioremediation is considered as the effective means of treating such contamination. This study describes a biosurfactant producing bacterium capable of utilizing crude oil and various hydrocarbons as the sole carbon source. Strain BU33N was isolated from hydrocarbon polluted sediments from the Bizerte coast (northern Tunisia) and was identified as Alcaligenes aquatilis on the basis of 16S rRNA gene sequence analysis. When grown on crude oil and phenanthrene as sole carbon and energy sources, isolate BU33N was able to degrade ~86%, ~56% and 70% of TERHc, n-alkanes and phenanthrene, respectively. The draft genome sequence of the A. aquatilis strain BU33N was assembled into one scaffold of 3,838,299 bp (G+C content of 56.1%). Annotation of the BU33N genome resulted in 3,506 protein-coding genes and 56 rRNA genes. A large repertoire of genes related to the metabolism of aromatic compounds including genes encoding enzymes involved in the complete degradation of benzoate were identified. Also genes associated with resistance to heavy metals such as copper tolerance and cobalt-zinc-cadmium resistance were identified in BU33N. This work provides insight into the genomic basis of biodegradation capabilities and bioremediation/detoxification potential of A. aquatilis BU33N.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Simone Cappello
- Istituto per l’Ambiente Marino Costiero (IAMC)-CNR of Messina. Sp. San Raineri, Messina, Italy
| | - Mohamed Naifer
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Yasmine Souissi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
- * E-mail:
| |
Collapse
|
13
|
Perez Calderon LJ, Gontikaki E, Potts LD, Shaw S, Gallego A, Anderson JA, Witte U. Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiologyopen 2018; 8:e00768. [PMID: 30444300 PMCID: PMC6562134 DOI: 10.1002/mbo3.768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Hatton-Rockall Basin (North-East Atlantic) is an area with potential for deep-sea (2,900 m) hydrocarbon exploration. Following the Deepwater Horizon oil spill, many investigations into the responses of sediment microbial communities to oil pollution have been undertaken. However, hydrostatic pressure is a parameter that is often omitted due to the technical difficulties associated with conducting experiments at high pressure (>10 MPa). In this study, sediments from 2,900 m in the Hatton-Rockall Basin, following a one-week decompression period in a temperature-controlled room at 5°C, were incubated in factorial combinations of 0.1 and 30 MPa, 5 and 20°C, and contamination with a hydrocarbon mixture or uncontaminated controls to evaluate the effect of these environmental variables on the bacterial community composition. Our results revealed varying effects of pressure, temperature, and oil contamination on the composition of the bacterial community within the sediment. Temperature was the strongest determinant of differences in the bacterial community structure between samples followed by pressure. Oil contamination did not exert a strong change in the sediment bacterial community structure when pressure and temperature conditions were held at in situ levels (30 MPa and 5°C). The γ-proteobacteria Pseudomonas and Colwellia, and several Bacteroidetes dominated communities at 30 MPa. In contrast, hydrocarbon degraders such as Halomonas, Alcanivorax, and Marinobacter decreased in relative abundance at the same pressure. This study highlights the importance of considering hydrostatic pressure in ex situ investigations into hydrocarbon-degrading deepwater microbial communities.
Collapse
Affiliation(s)
- Luis J Perez Calderon
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK.,Marine Laboratory Aberdeen, Marine Scotland Science, Aberdeen, UK
| | - Evangelia Gontikaki
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| | - Lloyd D Potts
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - James A Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Ursula Witte
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
14
|
Blum JS, Hernandez-Maldonado J, Redford K, Sing C, Bennett SC, Saltikov CW, Oremland RS. Arsenate-dependent growth is independent of an ArrA mechanism of arsenate respiration in the termite hindgut isolate Citrobacter sp. strain TSA-1. Can J Microbiol 2018; 64:619-627. [PMID: 30169127 DOI: 10.1139/cjm-2017-0523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrobacter sp. strain TSA-1 is an enteric bacterium isolated from the hindgut of the termite. Strain TSA-1 displays anaerobic growth with selenite, fumarate, tetrathionate, nitrate, or arsenate serving as electron acceptors, and it also grows aerobically. In regards to arsenate, genome sequencing revealed that strain TSA-1 lacks a homolog for respiratory arsenate reductase, arrAB, and we were unable to obtain amplicons of arrA. This raises the question as to how strain TSA-1 achieves As(V)-dependent growth. We show that growth of strain TSA-1 on glycerol, which it cannot ferment, is linked to the electron acceptor arsenate. A series of transcriptomic experiments were conducted to discern which genes were upregulated during growth on arsenate, as opposed to those on fumarate or oxygen. For As(V), upregulation was noted for 1 of the 2 annotated arsC genes, while there was no clear upregulation for tetrathionate reductase (ttr), suggesting that this enzyme is not an alternative to arrAB as occurs in certain hyperthermophilic archaea. A gene-deletion mutant strain of TSA-1 deficient in arsC could not achieve anaerobic respiratory growth on As(V). Our results suggest that Citrobacter sp. strain TSA-1 has an unusual and as yet undefined means of achieving arsenate respiration, perhaps involving its ArsC as a respiratory reductase as well as a detoxifying agent.
Collapse
Affiliation(s)
- Jodi Switzer Blum
- a National Research Program-Western Branch, Water Mission Area, US Geological Survey, Menlo Park, California, USA
| | - Jaime Hernandez-Maldonado
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Kaitlyn Redford
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Caitlyn Sing
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Stacy C Bennett
- a National Research Program-Western Branch, Water Mission Area, US Geological Survey, Menlo Park, California, USA
| | - Chad W Saltikov
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Ronald S Oremland
- a National Research Program-Western Branch, Water Mission Area, US Geological Survey, Menlo Park, California, USA.,b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|