1
|
Birczyńska-Zych M, Czepiel J, Łabanowska M, Kucharska M, Kurdziel M, Biesiada G, Garlicki A, Wesełucha-Birczyńska A. Course of Plasmodium infection studied using 2D-COS on human erythrocytes. Malar J 2023; 22:188. [PMID: 37340440 DOI: 10.1186/s12936-023-04611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The threat of malaria is still present in the world. Recognizing the type of parasite is important in determining a treatment plan. The golden routine involves microscopic diagnostics of Giemsa-stained thin blood smears, however, alternative methods are also constantly being sought, in order to gain an additional insight into the course of the disease. Spectroscopic methods, e.g., Raman spectroscopy, are becoming increasingly popular, due to the non-destructive nature of these techniques. METHODS The study included patients hospitalized for malaria caused by Plasmodium falciparum or Plasmodium vivax, in the Department of Infectious Diseases at the University Hospital in Krakow, Poland, as well as healthy volunteers. The aim of this study was to assess the possibility of using Raman spectroscopy and 2D correlation (2D-COS) spectroscopy in understanding the structural changes in erythrocytes depending on the type of attacking parasite. EPR spectroscopy and two-trace two-dimensional (2T2D) correlation was also used to examine the specificity of paramagnetic centres found in the infected human blood. RESULTS Two-dimensional (2D) correlation spectroscopy facilitates the identification of the hidden relationship, allowing for the discrimination of Raman spectra obtained during the course of disease in human red blood cells, infected by P. falciparum or P. vivax. Synchronous cross-peaks indicate the processes taking place inside the erythrocyte during the export of the parasite protein towards the cell membrane. In contrast, moieties that generate asynchronous 2D cross-peaks are characteristic of the respective ligand-receptor domains. These changes observed during the course of the infection, have different dynamics for P. falciparum and P. vivax, as indicated by the asynchronous correlation cross-peaks. Two-trace two-dimensional (2T2D) spectroscopy, applied to EPR spectra of blood at the beginning of the infection, showed differences between P. falciparum and P. vivax. CONCLUSIONS A unique feature of 2D-COS is the ability to discriminate the collected Raman and EPR spectra. The changes observed during the course of a malaria infection have different dynamics for P. falciparum and P. vivax, indicated by the reverse sequence of events. For each type of parasite, a specific recycling process for iron was observed in the infected blood.
Collapse
Affiliation(s)
- Malwina Birczyńska-Zych
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Jacek Czepiel
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Maria Łabanowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Martyna Kucharska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Magdalena Kurdziel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Grażyna Biesiada
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Aleksander Garlicki
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | | |
Collapse
|
2
|
Abstract
IMPORTANCE Malaria is caused by protozoa parasites of the genus Plasmodium and is diagnosed in approximately 2000 people in the US each year who have returned from visiting regions with endemic malaria. The mortality rate from malaria is approximately 0.3% in the US and 0.26% worldwide. OBSERVATIONS In the US, most malaria is diagnosed in people who traveled to an endemic region. More than 80% of people diagnosed with malaria in the US acquired the infection in Africa. Of the approximately 2000 people diagnosed with malaria in the US in 2017, an estimated 82.4% were adults and about 78.6% were Black or African American. Among US residents diagnosed with malaria, 71.7% had not taken malaria chemoprophylaxis during travel. In 2017 in the US, P falciparum was the species diagnosed in approximately 79% of patients, whereas P vivax was diagnosed in an estimated 11.2% of patients. In 2017 in the US, severe malaria, defined as vital organ involvement including shock, pulmonary edema, significant bleeding, seizures, impaired consciousness, and laboratory abnormalities such as kidney impairment, acidosis, anemia, or high parasitemia, occurred in approximately 14% of patients, and an estimated 0.3% of those receiving a diagnosis of malaria in the US died. P falciparum has developed resistance to chloroquine in most regions of the world, including Africa. First-line therapy for P falciparum malaria in the US is combination therapy that includes artemisinin. If P falciparum was acquired in a known chloroquine-sensitive region such as Haiti, chloroquine remains an alternative option. When artemisinin-based combination therapies are not available, atovaquone-proguanil or quinine plus clindamycin is used for chloroquine-resistant malaria. P vivax, P ovale, P malariae, and P knowlesi are typically chloroquine sensitive, and treatment with either artemisinin-based combination therapy or chloroquine for regions with chloroquine-susceptible infections for uncomplicated malaria is recommended. For severe malaria, intravenous artesunate is first-line therapy. Treatment of mild malaria due to a chloroquine-resistant parasite consists of a combination therapy that includes artemisinin or chloroquine for chloroquine-sensitive malaria. P vivax and P ovale require additional therapy with an 8-aminoquinoline to eradicate the liver stage. Several options exist for chemoprophylaxis and selection should be based on patient characteristics and preferences. CONCLUSIONS AND RELEVANCE Approximately 2000 cases of malaria are diagnosed each year in the US, most commonly in travelers returning from visiting endemic areas. Prevention and treatment of malaria depend on the species and the drug sensitivity of parasites from the region of acquisition. Intravenous artesunate is first-line therapy for severe malaria.
Collapse
Affiliation(s)
- Johanna P Daily
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| | - Aurelia Minuti
- D. Samuel Gottesman Library, Albert Einstein College of Medicine, Bronx, New York
| | - Nazia Khan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
3
|
Antimalarial Activity of Crude Extract and Solvent Fractions of Leaves of Solanum nigrum L. (Solanaceae) against Plasmodium berghei in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/3426175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Current malaria treatment is associated with continued development of drug resistance. Thus, there is a need to develop safe and effective new treatments from different sources. Solanum nigrum L. (Solanaceae) is a plant used for the treatment of malaria in Ethiopian traditional medicine. This study was aimed at evaluating of antimalarial activity of the crude extract and fractions of S. nigrum L. (Solanaceae) leaves against P. berghei infection in mice. Method. Both prophylactic and suppressive models were used in evaluating antimalarial activity using the ANKA Plasmodium strain. In these models, male mice were randomly grouped into eleven groups (n = 5). Mice in group I were given 4% Tween-80, mice from group II up to X were given 100, 200, and 400 mg/kg of plant extract, and the last group (XI) was treated with chloroquine (25 mg/kg). Data were analyzed using one-way ANOVA followed by post hoc Tukey’s multiple comparison test. Results. Crude extract of leaves of S. nigrum showed chemosuppression of 30.68 (
), 42.42 (
), and 50.75% (
) at 100, 200, and 400 mg/kg doses of the extract, respectively. At doses of 100, 200, and 400 mg/kg, the chloroform fraction produced a chemosuppressive effect of 40.15% (
), 53.78% (
), and 65.15% (
) and a chemoprophylactic effect of 42.7% (
), 51.84% (
), and 67.17% (
) when compared with negative control. In the suppressive model, the ethyl acetate fraction demonstrated a mean chemosuppression of 56.81% (
), 65.9% (
), and 70.83% (
). Similarly, in the prophylactic model, the fraction showed suppression of 42.70% (
), 53.11% (
), and 71.03% (
) at 100, 200, and 400 mg/kg doses. On the acute oral toxicity test, the extracts were safe at 2 g/kg dose. Conclusion. S. nigrum L. has antimalarial activity and supports the traditional medical practice.
Collapse
|
4
|
Yang H, Wang J, Liu H, Zhao Y, Lakshmi S, Li X, Nie R, Li C, Wang H, Cao Y, Menezes L, Cui L. Efficacy and Safety of a Naphthoquine-Azithromycin Coformulation for Malaria Prophylaxis in Southeast Asia: A Phase 3, Double-blind, Randomized, Placebo-controlled Trial. Clin Infect Dis 2021; 73:e2470-e2476. [PMID: 32687174 DOI: 10.1093/cid/ciaa1018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A prophylactic antimalarial drug that is both effective for protection and improves compliance is in high demand. METHODS We conducted a randomized, placebo-controlled, double-blinded phase 3 trial to evaluate the 1:1 fixed-dose combination of naphthoquine-azithromycin (NQAZ) for safety and protection against Plasmodium infections in villages along the China-Myanmar border. A total of 631 residents, 5-65 years of age, were randomized into the drug group (n = 319) and the placebo group (n = 312) to receive NZAQ and placebo, respectively, as a single-dose monthly treatment. Follow-ups were conducted weekly to monitor for adverse events and malaria infections. RESULTS Of the 531 subjects completing the trial, there were 46 and 3 blood smear-positive Plasmodium infections in the placebo and treatment groups, respectively. For the intent-to-treat analysis, the single-dose monthly NQAZ treatment had 93.62% protective efficacy (95% confidence interval [CI]: 91.72%-95.52%). For the per-protocol analysis, NQAZ treatment provided a 93.04% protective efficacy (95% CI: 90.98%-95.1%). Three smear-positive cases in the NQAZ group were all due to acute falciparum malaria. In comparison, NQAZ treatment provided 100% protection against the relapsing malaria Plasmodium vivax and Plasmodium ovale. The treatment group had 5.6% of participants experiencing transient elevation of liver aminotransferases compared with 2.2% in the placebo group (P > .05). CONCLUSIONS Monthly prophylaxis with NQAZ tablets was well tolerated and highly effective for preventing Plasmodium infections. It may prove useful for eliminating P. vivax in areas with a high prevalence of glucose-6-phosphate dehydrogenase deficiency in the population. CLINICAL TRIALS REGISTRATION ChiCTR1800020140.
Collapse
Affiliation(s)
- Henglin Yang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Pu'er, Yunnan, China
| | - Jingyan Wang
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing, China
| | - Hui Liu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Pu'er, Yunnan, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Seetha Lakshmi
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xingliang Li
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Pu'er, Yunnan, China
| | - Renhua Nie
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Pu'er, Yunnan, China
| | - Chunfu Li
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Pu'er, Yunnan, China
| | - Hengye Wang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Pu'er, Yunnan, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Wångdahl A, Sondén K, Wyss K, Stenström C, Björklund D, Zhang J, Hervius Askling H, Carlander C, Hellgren U, Färnert A. Relapse of Plasmodium vivax and Plasmodium ovale malaria with and without primaquine treatment in a non-endemic area. Clin Infect Dis 2021; 74:1199-1207. [PMID: 34216464 PMCID: PMC8994585 DOI: 10.1093/cid/ciab610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 01/14/2023] Open
Abstract
Background The effect of primaquine in preventing Plasmodium vivax relapses from dormant stages is well established. For Plasmodium ovale, the relapse characteristics and the use of primaquine is not as well studied. We set to evaluate the relapsing properties of these 2 species, in relation to primaquine use among imported malaria cases in a nonendemic setting. Methods We performed a nationwide retrospective study of malaria diagnosed in Sweden 1995–2019, by reviewing medical records of 3254 cases. All episodes of P. vivax (n = 972) and P. ovale (n = 251) were selected for analysis. Results First time relapses were reported in 80/857 (9.3%) P. vivax and 9/220 (4.1%) P. ovale episodes, respectively (P < .01). Without primaquine, the risk for relapse was higher in P. vivax, 20/60 (33.3%), compared to 3/30 (10.0%) in P. ovale (hazard ratio [HR] 3.5, 95% confidence interval [CI] 1.0–12.0). In P. vivax, patients prescribed primaquine had a reduced risk of relapse compared to episodes without relapse preventing treatment, 7.1% vs 33.3% (HR 0.2, 95% CI .1–.3). In P. ovale, the effect of primaquine on the risk of relapse did not reach statistical significance, with relapses seen in 2.8% of the episodes compared to 10.0% in patients not receiving relapse preventing treatment (HR 0.3, 95% CI .1–1.1). Conclusions The risk of relapse was considerably lower in P. ovale than in P. vivax infections indicating different relapsing features between the two species. Primaquine was effective in preventing P. vivax relapse. In P. ovale, relapse episodes were few, and the supportive evidence for primaquine remains limited.
Collapse
Affiliation(s)
- Andreas Wångdahl
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Västerås Hospital, Västerås, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Wyss
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christine Stenström
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - David Björklund
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Zhang
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helena Hervius Askling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Carlander
- Department of Infectious Diseases, Västerås Hospital, Västerås, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Urban Hellgren
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Imported Malaria in Countries where Malaria Is Not Endemic: a Comparison of Semi-immune and Nonimmune Travelers. Clin Microbiol Rev 2020; 33:33/2/e00104-19. [PMID: 32161068 DOI: 10.1128/cmr.00104-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The continuous increase in long-distance travel and recent large migratory movements have changed the epidemiological characteristics of imported malaria in countries where malaria is not endemic (here termed non-malaria-endemic countries). While malaria was primarily imported to nonendemic countries by returning travelers, the proportion of immigrants from malaria-endemic regions and travelers visiting friends and relatives (VFRs) in malaria-endemic countries has continued to increase. VFRs and immigrants from malaria-endemic countries now make up the majority of malaria patients in many nonendemic countries. Importantly, this group is characterized by various degrees of semi-immunity to malaria, resulting from repeated exposure to infection and a gradual decline of protection as a result of prolonged residence in non-malaria-endemic regions. Most studies indicate an effect of naturally acquired immunity in VFRs, leading to differences in the parasitological features, clinical manifestation, and odds for severe malaria and clinical complications between immune VFRs and nonimmune returning travelers. There are no valid data indicating evidence for differing algorithms for chemoprophylaxis or antimalarial treatment in semi-immune versus nonimmune malaria patients. So far, no robust biomarkers exist that properly reflect anti-parasite or clinical immunity. Until they are found, researchers should rigorously stratify their study results using surrogate markers, such as duration of time spent outside a malaria-endemic country.
Collapse
|
7
|
Guerra RI, Ore M, Valdivia HO, Bishop DK, Ramos M, Mores CN, Campbell WR. A cluster of the first reported Plasmodium ovale spp. infections in Peru occuring among returning UN peace-keepers, a review of epidemiology, prevention and diagnostic challenges in nonendemic regions. Malar J 2019; 18:176. [PMID: 31113437 PMCID: PMC6530030 DOI: 10.1186/s12936-019-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium ovale curtisi and Plasmodium ovale wallikeri are regarded as less virulent forms of malaria with a geographic distribution including Southeast Asia, Central and West Africa, and is increasingly reported as an infection in returning travellers. A species of malaria that may have delayed or relapsing presentations similar to Plasmodium vivax, the clinical presentation of P. ovale spp. has been described to have prepatent periods of 2 weeks or slightly longer with reports of relapse following primary infection out to 8-9 months. This presentation may be obscured further in the setting of anti-malarial exposure, with report of delayed primary infection out to 4 years. Presented is a cluster of 4 imported P. ovale spp. cases in returning Peruvian military personnel assigned to United Nations peace-keeping operations in the Central African Republic. CASE PRESENTATION From January to December 2016, Peruvian peace-keepers were deployed in support of United Nations (UN) operations in the Central African Republic (CAR). While serving abroad, Navy, Army, and Air Force members experienced 223 episodes of Plasmodium falciparum malaria following interruption of prophylaxis with mefloquine. Diagnosis was made using rapid diagnostics tests (RDTs) and/or smear with no coinfections identified. Cases of malaria were treated with locally-procured artemether-lumefantrine. Returning to Peru in January 2017, 200 peace-keepers were screened via thick and thin smear while on weekly mefloquine prophylaxis with only 1 showing nucleic acid within red blood cells consistent with Plasmodium spp. and 11 reporting syndromes of ill-defined somatic complaints. Between a period of 5 days to 11 months post return, 4 cases of P. ovale spp. were diagnosed using smear and polymerase chain reaction (PCR) following febrile complaints. All cases were subsequently treated with chloroquine and primaquine, with cure of clinical disease and documented clearance of parasitaemia. CONCLUSION These patients represent the first imported cases in Peru of this species of malaria as well as highlight the challenges in implementing population level prophylaxis in a deployed environment, and the steps for timely diagnosis and management in a non-endemic region where risk of introduction for local transmission exists.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher N Mores
- U.S. Naval Medical Research Unit No. 6, Lima, Peru
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Wesley R Campbell
- U.S. Naval Medical Research Unit No. 6, Lima, Peru.
- Division of Infectious Diseases, Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
8
|
Kariyawasam R, Lecce C, Tan K, Boggild AK. Don't forget co-infections! A case of intercurrent Plasmodium vivax and dengue infection in a traveler to India and the Caribbean. Travel Med Infect Dis 2019; 32:101414. [PMID: 31051263 DOI: 10.1016/j.tmaid.2019.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Ruwandi Kariyawasam
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Celine Lecce
- Medical Sciences, University of Western, London, Ontario, Canada
| | - Katherine Tan
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea K Boggild
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Tropical Disease Unit, Toronto General Hospital, Toronto, Ontario, Canada; Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Makhani L, Khatib A, Corbeil A, Kariyawasam R, Raheel H, Clarke S, Challa P, Hagopian E, Chakrabarti S, Schwartz KL, Boggild AK. 2018 in review: five hot topics in tropical medicine. Trop Dis Travel Med Vaccines 2019; 5:5. [PMID: 31016025 PMCID: PMC6466725 DOI: 10.1186/s40794-019-0082-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
The year 2018 heralded many new developments in the field of tropical medicine, including licensure of novel drugs for novel indications, licensure of existing drugs for existing indications but in novel settings, and globalized outbreaks of both vector-borne and zoonotic diseases. We herein describe five top stories in tropical medicine that occurred during 2018, and illuminate the practice-changing development within each story.
Collapse
Affiliation(s)
- Leila Makhani
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
| | - Aisha Khatib
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
| | - Antoine Corbeil
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Hira Raheel
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shareese Clarke
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
| | - Priyanka Challa
- Department of Life Science, University of Toronto, Toronto, Canada
| | - Emma Hagopian
- Department of Arts and Science, University of Toronto, Toronto, Canada
| | - Sumontra Chakrabarti
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Division of Infectious Diseases, Trillium Health Partners, Mississauga, Canada
| | - Kevin L. Schwartz
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
- Division of Infectious Diseases, St. Joseph’s Health Centre, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | - Andrea K. Boggild
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| |
Collapse
|
10
|
Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, Kaba SA, Vantaux A, Bakowski MA, Thomson-Luque R, Adapa SR, Singh N, Barnes SJ, Cooper CA, Rouillier M, McNamara CW, Mikolajczak SA, Sather N, Witkowski B, Campo B, Kappe SHI, Lanar DE, Nosten F, Davidson S, Jiang RHY, Kyle DE, Adams JH. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun 2018; 9:1837. [PMID: 29743474 PMCID: PMC5943321 DOI: 10.1038/s41467-018-04221-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro pre-erythrocytic (PE) models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites. Herein we report the development of a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes. Hepatocyte physiology is maintained for at least 30 days and supports development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts. Our multimodal analysis in antimalarial therapeutic research identifies important PE inhibition mechanisms: immune antibodies against sporozoite surface proteins functionally inhibit liver stage development and ion homeostasis is essential for schizont and hypnozoite viability. This model can be implemented in laboratories in disease-endemic areas to accelerate vaccine and drug discovery research.
Collapse
Affiliation(s)
- Alison Roth
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Steven P Maher
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Amy J Conway
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Rd, Bangkok, 10400, Thailand
| | - Victor Chaumeau
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Chiara Andolina
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Stephen A Kaba
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong-PO Box 983, Phnom Penh, 12 201, Cambodia
| | - Malina A Bakowski
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Richard Thomson-Luque
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Naresh Singh
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Samantha J Barnes
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Mélanie Rouillier
- Medicines for Malaria Venture, Pré-Bois Rd 20, Meyrin, 1215, Switzerland
| | - Case W McNamara
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Sebastian A Mikolajczak
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Noah Sather
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Benoît Witkowski
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Brice Campo
- Medicines for Malaria Venture, Pré-Bois Rd 20, Meyrin, 1215, Switzerland
| | - Stefan H I Kappe
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Rd, Bangkok, 10400, Thailand
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Dennis E Kyle
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - John H Adams
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA.
| |
Collapse
|
11
|
Baird JK. Tafenoquine for travelers' malaria: evidence, rationale and recommendations. J Travel Med 2018; 25:5150129. [PMID: 30380095 PMCID: PMC6243017 DOI: 10.1093/jtm/tay110] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Background Endemic malaria occurring across much of the globe threatens millions of exposed travelers. While unknown numbers of them suffer acute attacks while traveling, each year thousands return from travel and become stricken in the weeks and months following exposure. This represents perhaps the most serious, prevalent and complex problem faced by providers of travel medicine services. Since before World War II, travel medicine practice has relied on synthetic suppressive blood schizontocidal drugs to prevent malaria during exposure, and has applied primaquine for presumptive anti-relapse therapy (post-travel or post-diagnosis of Plasmodium vivax) since 1952. In 2018, the US Food and Drug Administration approved the uses of a new hepatic schizontocidal and hypnozoitocidal 8-aminoquinoline called tafenoquine for the respective prevention of all malarias and for the treatment of those that relapse (P. vivax and Plasmodium ovale). Methods The evidence and rationale for tafenoquine for the prevention and treatment of malaria was gathered by means of a standard search of the medical literature along with the package inserts for the tafenoquine products Arakoda™ and Krintafel™ for the prevention of all malarias and the treatment of relapsing malarias, respectively. Results The development of tafenoquine-an endeavor of 40 years-at last brings two powerful advantages to travel medicine practice against the malaria threat: (i) a weekly regimen of causal prophylaxis; and (ii) a single-dose radical cure for patients infected by vivax or ovale malarias. Conclusions Although broad clinical experience remains to be gathered, tafenoquine appears to promise more practical and effective prevention and treatment of malaria. Tafenoquine thus applied includes important biological and clinical complexities explained in this review, with particular regard to the problem of hemolytic toxicity in G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia; and Nuffield Department of Medicine, the Centre for Tropical Medicine and Global Health, University of Oxford, UK
| |
Collapse
|
12
|
Baird JK. Rational malaria chemoprophylaxis - The position of primaquine. Travel Med Infect Dis 2017; 17:3-4. [PMID: 28450186 PMCID: PMC5507189 DOI: 10.1016/j.tmaid.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022]
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jalan Diponegoro No.69, Jakarta 10430, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|