1
|
Bouadid I, Bouymajane A, Laganà Vinci R, Altemimi AB, Cacciola F, Eddouks M. First study on polyphenolic profile, antioxidant, acute oral toxicity, and antidiabetic effects of an aqueous extract from edible parts of Mesembryanthemum cryptanthum Hook.f. grown in Morocco. Nat Prod Res 2025:1-6. [PMID: 40396922 DOI: 10.1080/14786419.2025.2508828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
This work aims to evaluate the phenolic compounds, and assess the antioxidant, acute oral toxicity, and the antidiabetic effects of an aqueous extract from the edible parts of Mesembryanthemum cryptanthum Hook.f. (MCHAE) collected in Dakhla-Oued Ed-Dahab region of Morocco. Nine polyphenolic compounds, analysed by HPLC-PDA/ESI-MS, were positively identified. MCHAE revealed an inhibitory concentration (IC50) of 547.63 µg/mL, compared to butylhydroxytoluene (IC50 = 13.63 µg/mL). According to the acute oral toxicity study, an LD50 value was between 2000 and 5000 mg/kg b.w. Further, the MCHAE, at a dose of 80 mg/kg, resulted to possess an antidiabetic effect in STZ-treated diabetic rats and hypoglycaemic effect in normal rats. Therefore, the edible parts of Mesembryanthemum cryptanthum Hook.f. can be employed as natural alternative medicine to treat diabetes mellitus.
Collapse
Affiliation(s)
- Ismail Bouadid
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Boutalamine, Errachidia, Morocco
| | - Aziz Bouymajane
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, Zitoune Meknes, Morocco
| | - Roberto Laganà Vinci
- Messina Institute of Technology (MeIT), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Messina, Italy
| | - Ammar B Altemimi
- Department of Food Sciences, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Francesco Cacciola
- Messina Institute of Technology (MeIT), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Messina, Italy
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Boutalamine, Errachidia, Morocco
| |
Collapse
|
2
|
Boutaj H. A Comprehensive Review of Moroccan Medicinal Plants for Diabetes Management. Diseases 2024; 12:246. [PMID: 39452489 PMCID: PMC11507334 DOI: 10.3390/diseases12100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Moroccan flora, renowned for its diverse medicinal plant species, has long been used in traditional medicine to manage diabetes. This review synthesizes ethnobotanical surveys conducted during the last two decades. Among these plants, 10 prominent Moroccan medicinal plants are evaluated for their phytochemical composition and antidiabetic properties through both in vitro and in vivo studies. The review encompasses a comprehensive analysis of the bioactive compounds identified in these plants, including flavonoids, phenolic acids, terpenoids, and alkaloids. Phytochemical investigations revealed a broad spectrum of secondary metabolites contributing to their therapeutic efficacy. In vitro assays demonstrated the significant inhibition of key enzymes α-amylase and α-glucosidase, while in vivo studies highlighted their potential in reducing blood glucose levels and enhancing insulin secretion. Among the ten plants, notable examples include Trigonella foenum-graecum, Nigella Sativa, and Artemisia herba-alba, each showcasing distinct mechanisms of action, such as enzymatic inhibition and the modulation of glucose metabolism pathways. This review underscores the necessity for further chemical, pharmacological, and clinical research to validate the antidiabetic efficacy of these plants and their active compounds, with a view toward their potential integration into therapeutic practices.
Collapse
Affiliation(s)
- Hanane Boutaj
- Laboratory of Life and Health Sciences, FMP, Abdelmalek Essaadi University, Tetouan 93000, Morocco;
- Centre d’Agrobiotechnologie et de Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Équipe “Physiologie des Stress Abiotiques”, Faculté de Sciences et Tecchniques, Université Cadi Ayyad, Marrakesh 40000, Morocco
| |
Collapse
|
3
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Khatib S, Mahdi I, Drissi B, Fahsi N, Bouissane L, Sobeh M. Tetraclinis articulata (Vahl) Mast.: Volatile constituents, antioxidant, antidiabetic and wound healing activities of its essential oil. Heliyon 2024; 10:e24563. [PMID: 38317922 PMCID: PMC10839871 DOI: 10.1016/j.heliyon.2024.e24563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 μg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 μg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Badreddine Drissi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
5
|
Chiribagula Valentin B, Ndjolo Philippe O, Mboni Henry M, Mushagalusa Kasali F. Ethnomedicinal Knowledge of Plants Used in Nonconventional Medicine in the Management of Diabetes Mellitus in Kinshasa (Democratic Republic of the Congo). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4621883. [PMID: 37771953 PMCID: PMC10533323 DOI: 10.1155/2023/4621883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Background People with diabetes, herbalists, and traditional medicine practitioners (TMPs) from Kinshasa use plants to treat diabetes, but no study has inventoried the plants used by these populations. The present study was conducted to identify the plants used in Kinshasa to treat diabetes mellitus. Methods The survey conducted in the form of a semistructured interview between March 2005 and August 2006 made it possible to collect ethnobotanical information from people with diabetes (n = 126), herbalists (n = 80), and TMPs (n = 120). Results The 326 subjects consulted (sex ratio M/F = 0.6, age 51 ± 7 years, and experience: 17 ± 5 years) provided information on 71 plants, most of which are trees (35%), belonging to 38 families dominated by Fabaceae (19.7%) and indicated in 51 other cases of consultation dominated by malaria (12%). From these 71 plants derived, 86 antidiabetic recipes were administered orally, where the leaf is the most used part (>50%) and the decoction (>46%) is the most common mode of preparation. This study reports for the first time the antidiabetic use of 11 species, among which Tephrosia vogeliiX (0.08), Chromolaena corymbosaX (0.06), and Baphia capparidifoliaX (0.06) present the highest consensus indexes (CI) and Marsdenia latifoliaW (UVp = 0.08) and Rauvolfia manniiX (UVp = 0.06) present the highest UVs. Conclusion The results show that Kinshasa people treat diabetes using several plants. Some are specific to the ecological environment; others are used in other regions. Pharmacological studies are underway to assess the therapeutic efficacy of these plants.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacy, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (Université de Lubumbashi), 27 Avenue Kato, Commune Kampemba, Lubumbashi, Congo
| | - Okusa Ndjolo Philippe
- Department of Pharmacy, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (Université de Lubumbashi), 27 Avenue Kato, Commune Kampemba, Lubumbashi, Congo
| | - Manya Mboni Henry
- Department of Pharmacy, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (Université de Lubumbashi), 27 Avenue Kato, Commune Kampemba, Lubumbashi, Congo
| | - Félicien Mushagalusa Kasali
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Université Officielle de Bukavu (UOB), P.O. Box: 570, Bukavu, Commune of Kadutu, Av. Karhale, Congo
| |
Collapse
|
6
|
Shegebayev Z, Turgumbayeva A, Datkhayev U, Zhakipbekov K, Kalykova A, Kartbayeva E, Beyatli A, Tastambek K, Altynbayeva G, Dilbarkhanov B, Akhelova A, Anarbayeva R, Orynbassarova K. Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae. Molecules 2023; 28:molecules28114454. [PMID: 37298930 DOI: 10.3390/molecules28114454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Anabasis is a member of the family Amaranthaceae (former name: Chenopodiaceae) and includes approximately 102 genera and 1400 species. The genus Anabasis is one of the most significant families in salt marshes, semi-deserts, and other harsh environments. They are also renowned for their abundance in bioactive compounds, including sesquiterpenes, diterpenes, triterpenes, saponins, phenolic acids, flavonoids, and betalain pigments. Since ancient times, these plants have been used to treat various diseases of the gastrointestinal tract, diabetes, hypertension, and cardiovascular diseases and are used as an antirheumatic and diuretic. At the same time, the genus Anabasis is very rich in biologically active secondary metabolites that exhibit great pharmacological properties such as antioxidant, antibacterial, antiangiogenic, antiulcer, hypoglycemic, hepatoprotective, antidiabetic, etc. All of the listed pharmacological activities have been studied in practice by scientists from different countries and are presented in this review article to familiarize the entire scientific community with the results of these studies, as well as to explore the possibilities of using four plant species of the genus Anabasis as medicinal raw materials and developing medicines based on them.
Collapse
Affiliation(s)
- Zhanybek Shegebayev
- School of Pharmacy, JSC "S.D. Asfendiyarov Kazakh National Medical University", Almaty 050000, Kazakhstan
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Ubaidilla Datkhayev
- School of Pharmacy, JSC "S.D. Asfendiyarov Kazakh National Medical University", Almaty 050000, Kazakhstan
| | - Kairat Zhakipbekov
- School of Pharmacy, JSC "S.D. Asfendiyarov Kazakh National Medical University", Almaty 050000, Kazakhstan
| | - Assem Kalykova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Elmira Kartbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- Departament of Medicinal and Aromatic Plants, University of Health Sciences, Istanbul 34668, Turkey
| | - Kuanysh Tastambek
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
- Department of Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan
| | - Gulmira Altynbayeva
- Neonatology and Neonatal Surgery Department, JSC "Scientific Center of Pediatrics and Pediatric Surgery", Almaty 050060, Kazakhstan
| | - Bassymbek Dilbarkhanov
- School of Pharmacy, JSC "S.D. Asfendiyarov Kazakh National Medical University", Almaty 050000, Kazakhstan
| | - Aiman Akhelova
- School of Pharmacy, JSC "S.D. Asfendiyarov Kazakh National Medical University", Almaty 050000, Kazakhstan
| | | | | |
Collapse
|
7
|
Samiry I, Pinon A, Limami Y, Rais S, Zaid Y, Oudghiri M, Liagre B, Mtairag EM. Antitumoral activity of Caralluma europaea on colorectal and prostate cancer cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:230-240. [PMID: 36879544 DOI: 10.1080/15287394.2023.2181898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Caralluma europaea is a medicinal plant used in Moroccan popular medicine, which has been employed as a remedy attributed to its anti-inflammatory, antipyretic, antinociceptive, antidiabetic, neuroprotective, and antiparasitic properties. The aim of the present study was to investigate the antitumor activity of both the methanolic and aqueous extract of C. europaea. The effects of increasing concentrations of aqueous and methanolic extracts on human colorectal cancer HT-29 and HCT116 cell lines and human prostate cancer PC3 and DU145 cell lines were examined on cell proliferation using MTT assay and cell cycle analysis. The induction of apoptosis was also assessed by determining protein expression of caspase-3 and poly-ADP-ribose polymerase (PARP) cleavage by western blot. The methanolic extract of C. europaea exerted significant antiproliferative effects on HT-29 (IC50 values 73 µg/ml), HCT116 (IC50 values 67 µg/ml), PC3 (IC50 values 63 µg/ml) and DU145 cells (IC50 values 65 µg/ml) after 48 hr treatment. Further, incubation with methanolic extract of C. europaea induced cell cycle arrest in G1 phase and an apoptotic process for all treated cell lines. In conclusion, the present results suggest that C. europaea, exhibited that these natural compounds are significant apoptosis inducers which may have considerable potential for development of effective natural product anticancer agents.
Collapse
Affiliation(s)
- Inass Samiry
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Samira Rais
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Younes Zaid
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - El Mostafa Mtairag
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
8
|
Sharma R, Singh S, Tewari N, Dey P. A toxic shrub turned therapeutic: The dichotomy of Nerium oleander bioactivities. Toxicon 2023; 224:107047. [PMID: 36706925 DOI: 10.1016/j.toxicon.2023.107047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Nerium oleander L. is a medicinal plant, used for the treatment of cancers and hyperglycemia across the world, especially in Indian sub-continent, Turkey, Morocco, and China. Although clinical studies supporting its pharmacological effects remain critically underexplored, accidental and intentional consumption of any part of the plant causes fatal toxicity in animals and humans. While the polyphenolic fraction of oleander leaves has been attributed to its pre-clinical pharmacological activities, the presence of diverse cardiac glycosides (especially oleandrin) causes apoptosis to cancer cells in vitro and results in clinical signs of oleander poisoning. Thus, the dual pharmacological and toxicological role of oleander is a perplexing dichotomy in phytotherapy. The current investigative review, therefore, intended to analyze the intrinsic and extrinsic factors that likely contribute to this conundrum. Especially by focusing on gut microbial diversity, abundance, and metabolic functions, oleander-associated pharmacological and toxicological studies have been critically analyzed to define the dual effects of oleander. Electronic databases were extensively screened for relevant research articles (including pre-clinical and clinical) related to oleander bioactivities and toxicity. Taxonomic preference was given to the plant N. oleander L. and synonymous plants as per 'The World Flora Online' database (WCSP record #135196). Discussion on yellow oleander (Cascabela thevetia (L.) Lippold) has intentionally been avoided since it is a different plant. The review indicates that the gut microbiota likely plays a key role in differentially modulating the pharmacological and toxicological effects of oleander. Other factors identified influencing the oleander bioactivities include dose and mode of treatment, cardiac glycoside pharmacokinetics, host-endogenous glycosides, plant material processing and phytochemical extraction methods, plant genotypic variations, environmental effects on the phytochemical quality and quantity, gene expression variations, host dietary patterns and co-morbidity, etc. The arguments proposed are also relevant to other medicinal plants containing toxic cardiac glycosides.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Swati Singh
- Department of Zoology, University of North Bengal, Siliguri, West Bengal, India.
| | - Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
9
|
In Vitro Antimitotic and Hypoglycemic Effect Study and Acute Toxicity Assessment of the Aqueous and Organic Extracts of Chamaerops humilis L. var. argentea Andre. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4303506. [PMID: 36277886 PMCID: PMC9586795 DOI: 10.1155/2022/4303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Background. Chamaerops humilis L. var. argentea Andre is a plant widely spread in the region of Taza (North-East of Morocco); it is used in traditional phytotherapy against cancer, diabetes, inflammations, cardiovascular and respiratory diseases, and for the treatment of digestive disorders. Objective and Methods. The objective of our work is to contribute firstly, to the study of the in vitro antimitotic potential by the phytotest of Lepidium sativum and the evaluation of the in vitro antidiabetic activity of three enzymes (α-amylase, α-glucosidase, and β-galactosidase) on nine aqueous and organic extracts prepared from the leaves of Chamaerops humilis. In addition, a correlation study was carried out on the chemical composition and the antimitotic and antidiabetic activities of Chamaerops humilis leaves. Then, we tested the acute toxicity of the decocted extract and the ethanolic extract. Results. The results of the antimitotic activity showed that the decocted extract showed a higher inhibitory activity than the other aqueous extracts (IC50 = 9.624 × 103 ± 95.97 μg/mL); for the organic extracts, the ethanolic extract and ethanolic macerated expressed the highest values for the cell growth inhibition test with an IC50 of 5.638 × 103 ± 22.61 and 5.599 × 103 ± 45.51 μg/mL with statistically nonsignificant difference. Regarding the antidiabetic activity, the decocted showed a higher inhibitory activity than the other aqueous extracts for α-amylase (IC50 = 1.781 · 105 ± 358.30 μg/mL), α-glucosidase (2.540 × 102 ± 3.14 μg/mL), and β-galactosidase (7.118 × 102 ± 16.13 μg/mL); the ethanolic extract also revealed the highest inhibitory activity for α-amylase (IC50 = 8.902 × 103 ± 57.81 μg/mL), α-glucosidase (2.216 × 102 ± 1.39 μg/mL), and β-galactosidase (2.003 × 102 ± 7.41 μg/mL). A strong correlation was recorded between the antimitic activity and the inhibitory capacity of β-galactosidase and between these two activities and the chemical composition of Chamaerops humilis leaves. The acute toxicity study showed that the decocted and the ethanolic extract are weakly toxic with an LD50 greater than or equal to 5000 mg/kg. Conclusion. Chamaerops humilis could become a good source in traditional herbal medicine.
Collapse
|
10
|
Awan AM, Majeed W, Muhammad F, Faisal MN. Acacia jacquemontii ethyl acetate extract reduces hyperglycemia and pro-inflammatory markers while increasing endogenous antioxidant potential in alloxan-induced diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52605-52617. [PMID: 35262888 DOI: 10.1007/s11356-022-19493-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Acacia jacquemontii possess has numerous traditional therapeutic uses. The rationale of this study was to investigate the role of Acacia jacquemontii ethyl acetate extract (AJEAE) in the downregulation of hyperglycemia. The current study was performed in two parts, in vitro, through characterization (high-performance liquid chromatography), estimation of total phenolic content, total flavonoid content, antioxidant (2,2-diphenyl-1-picrylhydrazylassay), and α-amylase inhibitory activities of the studied extract, and in vivo using Wistar rats in which animals were divided into five groups NC, DC, GL, AJEAE 250 mg/kg, and AJEAE 500 mg/kg. The effects of AJEAE on fasting plasma glucose, plasma insulin, HOMA-IR, oral glucose tolerance test, glycated hemoglobin (HBA1c), lipid profile, inflammatory cytokines (Interleukin-6, tumor necrosis factor-alpha), and oxidative stress markers (lipid peroxidation, nitic oxide, superoxide dismutase, catalase, glutathione peroxidase) were evaluated. Our findings confirmed the presence of quercetin, kaempferol, gallic acid, vanillic acid, syringic acid, M-coumaric acid, sinapic acid, chlorogenic acid, cinnamic acid, and ferulic acid in AJEAE. Total flavonoid and phenolic contents in AJEAE were 83.83 mg GAE/g and 77.06 mg QE/g, respectively. Significant inhibition of DPPH (69.470%/1 mg/ml) and α-amylase (71.8%/1 mg/ml) activities were exhibited by AJEAE. Alloxan-injected rats showed marked hyperglycemia and hypoinsulinemia, and increased inflammatory marker levels as compared to normal control (p < 0.001). Additionally, raised levels of triglyceride (139.7 ± 2.771), total cholesterol (198.7 ± 1.856), very low-density lipoprotein (33.43 ± 0.2728), low-density lipoprotein (155.5 ± 2.754), lipid peroxidation, and nitric oxide (p < 0.001) and decreased levels of high-density lipoprotein (17.20 ± 0.1732), superoxide dismutase, catalase, and glutathione peroxidase were observed in diabetic rats (p < 0.001). AJEAE significantly (p < 0.05) improved the aforementioned parameters and the protective efficacy was comparable to glibenclamide. Histopathological findings also evidenced the anti-hyperglycemic properties of AJEAE through regeneration of pancreatic β cells. Conclusively, our findings demonstrated the antihyperglycemic, antihyperlipidemic, antioxidant, anti-inflammatory, and pancreatic beta β cell regenerative properties of AJEAE against alloxan-induced diabetes.
Collapse
Affiliation(s)
- Ambreen Mehmood Awan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Wafa Majeed
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
Profile of Medicinal Plants Traditionally Used for the Treatment of Skin Burns. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3436665. [PMID: 35707468 PMCID: PMC9192321 DOI: 10.1155/2022/3436665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023]
Abstract
Moroccan folk healers use medicinal plants to treat several diseases including skin burns. The traditional knowledge of wound healing is not common among the general population. Only one ethnobotanical survey was carried out in Rabat, Morocco, to track the traditional use of medicinal plants in wound healing. Therefore, our report aimed to study the medicinal plants used in Taza region to treat wound healing. In total, 218 individuals participated in this survey. More than 40 medicinal plants belonging to 30 botanical families were cited as anti-burn remedies. The most commonly used medicinal plants were Agave sisalana L., Nerium oleander L., Tetraclinis articulata Benth., Lawsonia inermis L., Artemisia herba-alba Asso., and Trigonella foenum-graecum L. Most of the used medicinal plants belong to Asteraceae family. Comparing our results with the previous survey, we noted that twelve plants were reported for the first time as wound healing agents. The ethnomedicinal use showed that plants leaves are the most commonly used parts. Pulverization was the selected method of preparation. The direct application of powder to the burns was the most common way of treatment. Our study revealed, for the first time, the importance of medicinal plants to treat skin burns in Taza region. Our results could be considered as the stepping stone for creating a database of wound healing medicinal plants to promote scientific studies on these plants revealing their constituents and side effects.
Collapse
|
12
|
Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7990508. [PMID: 35463088 PMCID: PMC9019422 DOI: 10.1155/2022/7990508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022]
Abstract
Mentha spicata, also called Mentha viridis, is a medicinal plant of the Lamiaceae family characterized by its potency to synthesize and secret secondary metabolites, essentially essential oils. Different populations use the aerial parts of this plant for tea preparation, and this tisane has shown several effects, according to ethnopharmacological surveys carried out in different areas around the world. These effects are attributed to different compounds of M. spicata, in which their biological effects were recently proved experimentally. Pharmacological properties of M. spicata extracts and essential oils were investigated for different health benefits such as antioxidant, anticancer, antiparasitic, antimicrobial, and antidiabetic effects. In vitro and in vivo studies showed positives effects that could be certainly related to different bioactive compounds identified in M. spicata. Indeed, volatile compounds seem to be efficient in inhibiting different microbial agents such as bacteria, fungi, and parasites through several mechanisms. Moreover, M. spicata exhibited, according to some studies, promising antioxidant, antidiabetic, anti-inflammatory, and anticancer effects, which show its potential to be used as a source for identifying natural drugs against cellular oxidative stress and its related diseases. Importantly, toxicological investigations of M. spicata show the safety of this species at different doses and several periods of use which justify its use in traditional medicines as tisane with tea. Here, we report, explore, and highlight the data published on M. spicata concerning its botanical description and geographical distribution, its phytochemical compounds, its pharmacological properties, and its toxicological investigations of M. spicata.
Collapse
|
13
|
Chetoui A, Kaoutar K, Boutahar K, El Kardoudi A, BenChaoucha-Chekir R, Chigr F, Najimi M. Herbal medicine use among Moroccan type 2 diabetes patients in the Beni Mellal-Khenifra region. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Schreck K, Melzig MF. Traditionally Used Plants in the Treatment of Diabetes Mellitus: Screening for Uptake Inhibition of Glucose and Fructose in the Caco2-Cell Model. Front Pharmacol 2021; 12:692566. [PMID: 34489694 PMCID: PMC8417609 DOI: 10.3389/fphar.2021.692566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The traditional use of plants and their preparations in the treatment of diseases as a first medication in the past centuries indicates the presence of active components for specific targets in the natural material. Many of the tested plants in this study have been traditionally used in the treatment of Diabetes mellitus type 2 and associated symptoms in different cultural areas. Additionally, hypoglycemic effects, such as a decrease in blood glucose concentration, have been demonstrated in vivo for these plants. In order to determine the mode of action, the plants were prepared as methanolic and aqueous extracts and tested for their effects on intestinal glucose and fructose absorption in Caco2 cells. The results of this screening showed significant and reproducible inhibition of glucose uptake between 40 and 80% by methanolic extracts made from the fruits of Aronia melanocarpa, Cornus officinalis, Crataegus pinnatifida, Lycium chinense, and Vaccinium myrtillus; the leaves of Brassica oleracea, Juglans regia, and Peumus boldus; and the roots of Adenophora triphylla. Furthermore, glucose uptake was inhibited between 50 and 70% by aqueous extracts made from the bark of Eucommia ulmoides and the fruit skin of Malus domestica. The methanolic extracts of Juglans regia and Peumus boldus inhibited the fructose transport between 30 and 40% in Caco2 cells as well. These findings can be considered as fundamental work for further research regarding the treatment of obesity-correlated diseases, such as Diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Matthias F. Melzig
- Pharmaceutical Biology, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
15
|
El Menyiy N, Guaouguaou FE, El Baaboua A, El Omari N, Taha D, Salhi N, Shariati MA, Aanniz T, Benali T, Zengin G, El-Shazly M, Chamkhi I, Bouyahya A. Phytochemical properties, biological activities and medicinal use of Centaurium erythraea Rafn. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114171. [PMID: 33940085 DOI: 10.1016/j.jep.2021.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centaurium erythraea is an important medicinal plant in many countries, e.g. Morocco, Algeria, Italy, Spain, Portugal, and countries of Balkan Peninsula. It is used in folk medicine to treat various illnesses. It is also used as an antiapoplectic, anticoagulant, anticholagogue, antipneumonic, hematocathartic, and as a hypotensive agent. AIM OF THE REVIEW In this review, previous reports on the taxonomy, botanical description, geographic distribution, ethnomedicinal applications, phytochemistry, pharmacological properties, and toxicity of Centaurium erythraea were critically summarized. MATERIALS AND METHODS Scientific search engines including PubMed, ScienceDirect, SpringerLink, Web of Science, Scopus, Wiley Online, SciFinder, and Google Scholar were consulted to collect data on C. erythraea. The data presented in this work summarized the main reports on C. erythraea phytochemical compounds, ethnomedicinal uses, and pharmacological activities. RESULTS C. erythraea is used in traditional medicine to treat various diseases such as diabetes, fever, rhinitis, stomach ailments, urinary tract infections, dyspeptic complaints, loss of appetite, and hemorrhoids, and as diuretic. The essential oils and extracts of C. erythraea exhibited numerous biological properties such as antibacterial, antioxidant, antifungal, antileishmanial, anticancer, antidiabetic, anti-inflammatory, insecticidal, diuretic, gastroprotective, hepatoprotective, dermatoprotective, neuroprotective, and inhibitory agent for larval development. Phytochemical characterization of C. erythraea revealed the presence of several classes of secondary metabolites such as xanthonoids, terpenoids, flavonoids, phenolic acids, and fatty acids. CONCLUSIONS Ethnomedicinal studies demonstrated the use of C. erythraea for the treatment of various disorders. Pharmacological reports showed that C. erythraea especially its aerial parts and roots exhibited potent, and beneficial activities. These findings confirmed the link between the traditional medicinal use and the results of the scientific biological experiments. Considering these results, further investigation using diverse in vivo pharmacological assays are strongly recommended to validate the results of its traditional use. Toxicological tests and pharmacokinetic studies are also required to validate the safety and efficacy of C. erythraea and its bioactive contents.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco.
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Mohammad Ali Shariati
- Departement of Technology of Food Production, K.G. Razumoysky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation.
| | - Tarik Aanniz
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, Morocco.
| | - Taoufiq Benali
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Rabat, Morocco.
| | - Gokhan Zengin
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Imane Chamkhi
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco; Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de, Institut Scientifique Rabat, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
16
|
Amrani-Allalou H, Boulekbache-Makhlouf L, Izzo L, Arkoub-Djermoune L, Freidja ML, Mouhoubi K, Madani K, Tenore GC. Phenolic compounds from an Algerian medicinal plant ( Pallenis spinosa): simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct 2021; 12:1291-1304. [PMID: 33439206 DOI: 10.1039/d0fo01764g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.
Collapse
Affiliation(s)
- Hanane Amrani-Allalou
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Lila Boulekbache-Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lynda Arkoub-Djermoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Université Mouloud Mammeri de Tizi Ouzou, Faculté des Sciences Biologiques et des Sciences Agronomiques, Algeria
| | - Mohamed Lamine Freidja
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Département de Biochimie et de Microbiologie, Faculté des Sciences, Université Mohamed Boudiaf, 28000 M'sila, Algeria
| | - Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Centre de Recherche en Technologie Agro-Alimentaire, Route de Tergua-Ouzemour, 06000, Bejaia, Algeria
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
17
|
Ethnobotanical Survey of Medicinal Plants Used by Traditional Healers to Treat Diabetes in the Taza Region of Morocco. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5515634. [PMID: 33986815 PMCID: PMC8093047 DOI: 10.1155/2021/5515634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
Type 2 diabetes is one of the noncommunicable diseases that is becoming a pandemic in Africa. In Morocco, traditional healers have started to use herbal medicines for the treatment of diabetes either individually or in combination with food. The current study aimed to perform an ethnobiological survey of antidiabetic plants use in the Taza region of Morocco. A total of 193 traditional healers were interviewed using a semistructured questionnaire. Data collected were analyzed utilizing the use value (UV), fidelity level (FL), and relative frequency citation (RFC) indices. Forty-six plant species belonging to 28 families were recorded for the treatment of diabetes in the Taza region of Morocco. The most frequently cited plant species are Salvia officinalis, Marrubium vulgare, and Ajuga iva. Lamiaceae, Asteraceae, and Fabaceae were the most reported families. Leaves are the most used part of plants to prepare drugs, the decoction is the preferred mode of preparation, and remedies are often administered orally. Interestingly, Cytisus battandieri, Urginea maritima, Plantago ovata, and Ziziphus jujuba were reported as new medicinal plants used to treat diabetes in the Taza region of Morocco. People in the Taza region still rely on indigenous plants for their basic healthcare needs. Further research should be carried out to validate the antidiabetic effect of the newly reported plant species. This validation can be investigated by the determination of bioactive compounds and evaluation of their in vitro and in vivo antidiabetic effects.
Collapse
|
18
|
Jaber H, Oubihi A, Ouryemchi I, Boulamtat R, Oubayoucef A, Bourkhiss B, Ouhssine M. Chemical Composition and Antibacterial Activities of Eight Plant Essential Oils from Morocco against Escherichia coli Strains Isolated from Different Turkey Organs. Biochem Res Int 2021; 2021:6685800. [PMID: 33859844 PMCID: PMC8009720 DOI: 10.1155/2021/6685800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to determine the chemical composition of eight plant essential oils and evaluate their antibacterial activity against Escherichia coli strains isolated from different turkey organs. The essential oils were extracted by hydrodistillation and analyzed using gas chromatography-mass spectroscopy. All essential oil yielded high in a range between 2.2 and 3.12%. Gas chromatography-mass spectroscopy (GC-MS) revealed that the major constituents of Thymus vulgaris, Ocimum basilicum, Artemisia herba-alba, and Syzygium aromaticum oils were thymol (41.39%), linalool (37.16%), camphor (63.69%), and eugenol (80.83%), respectively. Results of the E. coli sensitivity evaluated by the standard antimicrobial sensitivity method varied depending on the organ of isolation. Similarly, the essential oils antimicrobial activity determined by the disc diffusion method varied all along within the organs of isolation. T. vulgaris essential oil showed the highest effective antibacterial activity against E. coli isolated from the throat with an inhibition zone diameter value of up to 23.33 mm. However, all the essential oils showed antibacterial activity and the MIC and MBC values were in the range of 1/3000 to 1/100 (v/v) and the ratios MBC/MIC were equal to 1. In conclusion, this study showed that the essential oils could be promising alternatives to overcome E. coli multiresistance in turkey.
Collapse
Affiliation(s)
- Hassna Jaber
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Asmaa Oubihi
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Imane Ouryemchi
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Rachid Boulamtat
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences Ibn Tofail University, Kenitra, Morocco
| | - Ali Oubayoucef
- Laboratory of Biochemistry and Immunology, Department of Biology, Faculty of Sciences Mohamed V University, Rabat, Morocco
| | - Brahim Bourkhiss
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohammed Ouhssine
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
19
|
Etsassala NG, Hussein AA, Nchu F. Potential Application of Some Lamiaceae Species in the Management of Diabetes. PLANTS (BASEL, SWITZERLAND) 2021; 10:279. [PMID: 33535455 PMCID: PMC7912742 DOI: 10.3390/plants10020279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Diabetes is one of the most dangerous metabolic disorders, with high rates of mortality worldwide. Since ancient times, medicinal plants have been used in traditional medicine to treat many diseases, including diabetes and its related complications. Plants are widely accepted, affordable, and perceived to have minimal adverse side effects. The Lamiaceae family is a potential source of therapeutic agents for the management of metabolic disorders, including diabetes. Hence, this review paper summarizes the antidiabetic use of Lamiaceae species in folk medicine globally. Furthermore, we present the antidiabetic activities and phytochemical constituents of twenty-three (23) Lamiaceae species and the antidiabetic activity of some notable chemical constituents isolated from some of these Lamiaceae species.
Collapse
Affiliation(s)
- Ninon G.E.R. Etsassala
- Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, Bellville 7535, South Africa;
| | - Felix Nchu
- Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| |
Collapse
|
20
|
Sayah K, Mrabti HN, Belarj B, Kichou F, Cherrah Y, El Abbes Faouzi M. Evaluation of antidiabetic effect of Cistus salviifolius L. (Cistaceae) in streptozotocin-nicotinamide induced diabetic mice. J Basic Clin Physiol Pharmacol 2020; 32:121-127. [PMID: 33011692 DOI: 10.1515/jbcpp-2020-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Objectives Cistus salviifoluis L. is a shrub from Cistaceae family used in many traditional medicines for the treatment of various diseases including diabetes mellitus. The aim of this study was to evaluate the in vivo antidiabetic potential of the aerial parts aqueous extract of Cistus salviifolius L. (CSA). Methods Experimental diabetes was induced in adult male mice by intra-peritoneal injection of Streptozotocin-nicotinamide (STZ-NC). CSA at a dose of 500 mg/kg was administered daily to the diabetic mice for four weeks. The effect of the extract on hyperglycemia, body weight, serum total cholesterol, triglycerides, hepatic and renal functional markers were determined. Histopathological examination of the mice pancreas was also performed. The diabetic animals treated with CSA were compared with animals treated by the standard drug metformin. Results Treatment with CSA showed a significant reduction in blood glucose, total triglycerides and creatinine levels and prevented the reduction of body weight caused by diabetes. Furthermore, histopathological analysis of the mice pancreas showed that the group treated with CSA reduced damage induced by STZ-NC on islets of Langerhans cells when compared to the diabetic control. Conclusions The results suggest that the aqueous extract of Moroccan C. salviifolius L. possesses beneficial effect on treatment of diabetes.
Collapse
Affiliation(s)
- Karima Sayah
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Biopharmaceutical and Toxicological Analysis Research Team, Mohammed V University in Rabat, Rabat Institute, Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Biopharmaceutical and Toxicological Analysis Research Team, Mohammed V University in Rabat, Rabat Institute, Rabat, Morocco
| | - Badia Belarj
- Department Biochemistry, Military Hospital Mohammed V, Rabat, Morocco
| | - Faouzi Kichou
- Department of Veterinary Pathology and Public Health, Hassan 2 Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Biopharmaceutical and Toxicological Analysis Research Team, Mohammed V University in Rabat, Rabat Institute, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Biopharmaceutical and Toxicological Analysis Research Team, Mohammed V University in Rabat, Rabat Institute, Rabat, Morocco
| |
Collapse
|
21
|
In Vitro Antioxidant and Antidiabetic Potentials of Syzygium caryophyllatum L. Alston. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9529042. [PMID: 32774434 PMCID: PMC7407018 DOI: 10.1155/2020/9529042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022]
Abstract
Syzygium caryophyllatum L. Alston (Family: Myrtaceae, Sinhala: Heendan) is a red-listed plant that has been used in traditional medicine in Sri Lanka for the treatment of diabetes, but it is yet to be exploited for its potential uses as a functional food or a source of supplements. The present study focused on the evaluation of antidiabetic property of S. caryophyllatum fruits and leaves assessing antioxidant, antiglycation, and antiamylase activities and functional mineral element composition. The crude extracts (CR) of leaves and fruits were fractionated into hexane (Hex) ethyl acetate (EA) and aqueous (AQ) and evaluated for bioactivities along with the crude extracts. The isolated fraction (C3) of Hex fraction of fruit showed significantly high (p < 0.05) antiamylase activity with IC50 value 2.27 ± 1.81 μg/mL where the Hex fraction of fruits exhibited the IC50 value as 47.20 ± 0.3 μg/mL which was higher than acarbose (IC50: 87.96 ± 1.43 μg/mL). The EA fraction of leaves showed highest values for DPPH radical scavenging activity, ferric reducing antioxidant power, and oxygen radical absorbance capacity. Significantly high (p < 0.05) ABTS radical scavenging activity and iron chelating activity were observed in Hex fraction of fruit. The composition of volatiles in leaf oil was studied with GC-MS, and 58 compounds were identified. Inductively coupled plasma-mass spectrometry data revealed the presence of biologically significant trace elements such as Fe, Zn, Mg, Cu, Se, and Sr in leaves and fruits. It is concluded that the Hex fraction of S. caryophyllatum fruits will be a good source for the formulation of supplements for diabetic management with further evaluation of potency and efficacy.
Collapse
|
22
|
Benali T, Habbadi K, Khabbach A, Marmouzi I, Zengin G, Bouyahya A, Chamkhi I, Chtibi H, Aanniz T, Achbani EH, Hammani K. GC-MS Analysis, Antioxidant and Antimicrobial Activities of Achillea Odorata Subsp. Pectinata and Ruta Montana Essential Oils and Their Potential Use as Food Preservatives. Foods 2020; 9:foods9050668. [PMID: 32455872 PMCID: PMC7278837 DOI: 10.3390/foods9050668] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
In order to discover new natural resources with biological properties, the chemical composition, the antioxidant and antimicrobial activities, and the potential use as food preservative of essential oils of Moroccan Achillea odorata subsp. pectinata (AOpEO) and Ruta montana (RMEO) were studied. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of 21 and 25 compounds in AOpEO and RMEO, respectively. The results showed that the major compounds of AOpEO are camphor (45.01%), bornyl acetate (15.07%), borneol (11.33%), β-eudesmol (4.74%), camphene (3.58%), and 1.8-cineole (eucalyptol) (2.96%), whereas 2-undecanone (63.97%), camphor (3.82%) and cyclopropanecarboxylic acid (3.66%) were the main components of RMEO. The antioxidant activities were evaluated by diphenylpicrylhydraziyl radical (DPPH) and reducing power assays. The antimicrobial activities of essential oils were tested against bacterial strains and food contaminant yeast using agar disc diffusion and microdilution methods. A significant antimicrobial activity of AOpEO was observed against Bacillus subtilis, Proteus mirabilis and Candida albicans, compared to RMEO. The efficacy of AOpEO was also evaluated in model food systems (cabbage and barley) artificially inoculated during storage. The results found that the adding of a minimal inhibitory concentration (MIC) and 4× MIC were potent in decreasing the Proteus mirabilis growth in food model systems. Our findings suggested that AOpEO may be potentially used as an alternative food preservative.
Collapse
Affiliation(s)
- Taoufiq Benali
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco; (H.C.); (K.H.)
- Correspondence: ; Tel.: +212-660-719-519
| | - Khaoula Habbadi
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, 50000 Meknès, Morocco; (K.H.); (E.H.A.)
| | - Abdelmajid Khabbach
- Laboratory of materials, natural substances, Environment and Modeling (LMSNEM), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco;
| | - Ilias Marmouzi
- Laboratory of de Pharmacology et Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat, 6203 Rabat, Morocco;
| | - Gokhan Zengin
- Biochemistry and Physiology Laboratory, Faculty of Science, Department of Biology, Selcuk University, 42130 Konya, Turkey;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Department of Biology, Mohammed V University in Rabat, 1014 Rabat, Morocco;
| | - Imane Chamkhi
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, 1014 Rabat, Morocco;
| | - Houda Chtibi
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco; (H.C.); (K.H.)
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco;
| | - El Hassan Achbani
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, 50000 Meknès, Morocco; (K.H.); (E.H.A.)
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco; (H.C.); (K.H.)
| |
Collapse
|