1
|
Rybak D, Du J, Nakielski P, Rinoldi C, Kosik‐Kozioł A, Zakrzewska A, Wu H, Li J, Li X, Yu Y, Ding B, Pierini F. NIR-Light Activable 3D Printed Platform Nanoarchitectured with Electrospun Plasmonic Filaments for On Demand Treatment of Infected Wounds. Adv Healthc Mater 2025; 14:e2404274. [PMID: 39722151 PMCID: PMC11874648 DOI: 10.1002/adhm.202404274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Bacterial infections can lead to severe complications that adversely affect wound healing. Thus, the development of effective wound dressings has become a major focus in the biomedical field, as current solutions remain insufficient for treating complex, particularly chronic wounds. Designing an optimal environment for healing and tissue regeneration is essential. This study aims to optimize a multi-functional 3D printed hydrogel for infected wounds. A dexamethasone (DMX)-loaded electrospun mat, incorporated with gold nanorods (AuNRs), is structured into short filaments (SFs). The SFs are 3D printed into gelatine methacrylate (GelMA) and sodium alginate (SA) scaffold. The photo-responsive AuNRs within SFs significantly enhanced DXM release when exposed to near-infrared (NIR) light. The material exhibits excellent photothermal properties, biocompatibility, and antibacterial activity under NIR irradiation, effectively eliminating Staphylococcus aureus and Escherichia coli in vitro. In vivo, material combined with NIR light treatment facilitate infectes wound healing, killing S. aureus bacteria, reduced inflammation, and induced vascularization. The final materials' shape can be adjusted to the skin defect, release the anti-inflammatory DXM on-demand, provide antimicrobial protection, and accelerate the healing of chronic wounds.
Collapse
Affiliation(s)
- Daniel Rybak
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of SciencesWarsaw02‐106Poland
| | - Jingtao Du
- Innovation Center for Textile Science and TechnologyCollege of TextilesDonghua UniversityShanghai201620P. R. China
| | - Paweł Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of SciencesWarsaw02‐106Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of SciencesWarsaw02‐106Poland
| | - Alicja Kosik‐Kozioł
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of SciencesWarsaw02‐106Poland
| | - Anna Zakrzewska
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of SciencesWarsaw02‐106Poland
| | - Haoyang Wu
- Institute of Burn ResearchSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Jing Li
- Institute of Burn ResearchSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyCollege of TextilesDonghua UniversityShanghai201620P. R. China
| | - Yunlong Yu
- Institute of Burn ResearchSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyCollege of TextilesDonghua UniversityShanghai201620P. R. China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of SciencesWarsaw02‐106Poland
| |
Collapse
|
2
|
Loscertales E, Mateo J, España S. A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. J Liposome Res 2025; 35:64-75. [PMID: 39258993 DOI: 10.1080/08982104.2024.2401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
This study investigates drug-loaded liposomes designed for controlled release under ionizing radiation to refine cancer treatment precision. Liposomes as carriers enable targeted chemotherapy delivery, reducing healthy tissue damage risk. Liposomes containing poly- or mono-unsaturated fatty acids and various sensitizing agents were assessed for responsiveness to UV light and γ photon irradiation including rose bengal (RB), protoporphyrin IX (PPIX), verteporfin (VP), cercosporin (CERC) and hypericin (HYP). Carboxyfluorescein (CF) was used as a surrogate for drug release measurements. VP and PPIX induced rapid drug release and lipid peroxidation under UV light, while RB prompted quick drug release under UV light and a modest immediate release under γ irradiation, eventually reaching full release a few hours after irradiation, demonstrating dose-dependent effects. Smaller liposomes displayed accelerated release, emphasizing size-dependent kinetics. In vitro analyses evaluated radiosensitizing effects of RB-loaded liposomes. Clonogenic assays indicated that RB-filled liposomes had minimal direct radiobiological effects but increased indirect radiation damage, as shown by the curvature of the cell survival curve. Our study sheds light on factors influencing liposomal drug release under ionizing radiation, spotlighting RB as a promising radiosensitizer requiring further investigation for cancer therapy potential.
Collapse
Affiliation(s)
- E Loscertales
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - J Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - S España
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Institute for Physical and Information Technologies "Leonardo Torres Quevedo", ITEFI, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kim KJ, Hwang MJ, Choe SW, Jeong KC, Yoon SD. Drug release profile of phenytoin-loaded starch-based biomaterials incorporating hierarchical microparticles with photothermal effects. Int J Biol Macromol 2024; 282:136803. [PMID: 39461633 DOI: 10.1016/j.ijbiomac.2024.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
This study aimed to synthesize phenytoin (PHT)-loaded water chestnut starch-based biomaterials and evaluate their drug release kinetics for use in transdermal drug delivery systems for antiepileptic therapy. Hierarchical microparticles (HMPs) extracted from human hair were also used to improve the PHT release efficiency. The physicochemical characteristics of PHT, HMPs, and the prepared biomaterials were evaluated by physical properties, antimicrobial activities, FE-SEM, FT-IR, XRD, 1H NMR, and 13C CPMAS solid-state NMR. The photothermal effect and the PHT release profile were confirmed through 808 nm NIR laser irradiation. After 30 min of the laser exposure, the temperature of the HMP-added biomaterials increased by 1.50-1.59 times compared to that of without the HMPs. PHT release in buffers and artificial skin test under NIR laser irradiation enhanced by 1.20-1.85 times owing to the photothermal effect. The release kinetics in pH buffer and artificial skin were determined using the Fickian diffusion and Korsmeyer-Peppas models. Additionally, to verify the transdermal penetration of PHT, drug-release simulations were conducted using rhodamine B in agar blocks and pig ears. The results implied that the photothermal effect of the HMPs enhanced the penetration of the drug.
Collapse
Affiliation(s)
- Kyeong-Jung Kim
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jin Hwang
- Department of Environmental System Engineering, Chonnam National University, Jeonnam 59626, Republic of Korea
| | - Se-Woon Choe
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea; Emerging Pathogens Institute, Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States.
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea; Emerging Pathogens Institute, Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
5
|
Alrbyawi H. Stimuli-Responsive Liposomes of 5-Fluorouracil: Progressive Steps for Safe and Effective Treatment of Colorectal Cancer. Pharmaceutics 2024; 16:966. [PMID: 39065663 PMCID: PMC11280302 DOI: 10.3390/pharmaceutics16070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades to treat various types of cancer. It is considered the standard first-line treatment for patients with metastatic colorectal cancer. Unfortunately, traditional chemotherapy with 5-FU presents many limitations, such as a short half-life, a low bioavailability, and a high cytotoxicity, affecting both tumor tissue and healthy tissue. In order to overcome the drawbacks of 5-FU and enhance its therapeutic effectiveness against colorectal cancer, many studies have focused on designing new delivery systems to successfully deliver 5-FU to tumor sites. Liposomes have gained attention as a well-accepted nanocarrier for several chemotherapeutic agents. These amphipathic spherical vesicles consist of one or more phospholipid bilayers, showing promise for the drug delivery of both hydrophobic and hydrophilic components in addition to distinctive properties, such as biodegradability, biocompatibility, a low toxicity, and non-immunogenicity. Recent progress in liposomes has mainly focused on chemical and structural modifications to specifically target and activate therapeutic actions against cancer within the proximity of tumors. This review provides a comprehensive overview of both internal-stimuli-responsive liposomes, such as those activated by enzymes or pH, and external-stimuli-responsive liposomes, such as those activated by the application of a magnetic field, light, or temperature variations, for the site-specific delivery of 5-FU in colorectal cancer therapy, along with the future perspectives of these smart-delivery liposomes in colorectal cancer. In addition, this review critically highlights recent innovations in the literature on various types of stimuli-responsive liposomal formulations designed to be applied either exogenously or endogenously and that have great potential in delivering 5-FU to colorectal cancer sites.
Collapse
Affiliation(s)
- Hamad Alrbyawi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| |
Collapse
|
6
|
Peplow PV. Animal models in medical translation: the grand challenge of developing new treatments for human diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1367521. [PMID: 38435848 PMCID: PMC10904654 DOI: 10.3389/fmedt.2024.1367521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Lacroce E, Bianchi L, Polito L, Korganbayev S, Molinelli A, Sacchetti A, Saccomandi P, Rossi F. On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation. NANOSCALE ADVANCES 2023; 5:6870-6879. [PMID: 38059037 PMCID: PMC10696932 DOI: 10.1039/d3na00353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 12/08/2023]
Abstract
Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes very quick and uncontrolled, being forced by the high in vivo clearance of body fluids. In this direction, the development of novel responsive nanomaterials promises to overcome the drawbacks of common hydrogels, inducing responsive properties in three-dimensional polymeric devices. In this study, we synthesized and then loaded gold nanorods (Au NRs) within an agarose-carbomer (AC)-based hydrogel obtained from a microwave-assisted polycondensation reaction between carbomer 974P and agarose. The photothermal effect of the composite device was quantified in terms of maximum temperature and spatial-temporal temperature distribution, also during consecutive laser irradiations. This work shows that composite Au NRs loaded within AC hydrogels can serve as a stable photothermal treatment agent with enhanced photothermal efficiency and good thermal stability after consecutive laser irradiations. These results confirm that the composite system produced can exhibit an enhanced thermal effect under NIR laser irradiation, which is expected to lead to great therapeutic advantages for the localized treatment of different diseases.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Laura Polito
- Consiglio Nazionale delle Ricerche, CNR-SCITEC via Gaudenzio Fantoli 16/15 20138 Milan Italy
| | - Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Alessandro Molinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| |
Collapse
|
8
|
Yang S, Chen Z, Zhuang P, Tang Y, Chen Z, Wang F, Cai Z, Wei J, Cui W. Seamlessly Adhesive Bionic Periosteum Patches Via Filling Microcracks for Defective Bone Healing. SMALL METHODS 2023; 7:e2300370. [PMID: 37356079 DOI: 10.1002/smtd.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Indexed: 06/27/2023]
Abstract
Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis. Furthermore, in a rat cranial defect model, HABP/Sr-PLA was demonstrated to significantly promote the formation of blood vessels and new bone under mild 808 nm photothermal stimulation (42.8 °C), and the highest protein expression of CD31 and OPN was five times higher than that of the control group and other groups. Therefore, the proposed seamless microcrack-filled bionic periosteum patch is a promising clinical strategy for promoting bone repair.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Pengzhen Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zehao Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
9
|
Jiang H, Tian H, Wang Z, Li B, Chen R, Luo K, Lu S, Nice EC, Zhang W, Huang C, Zhou Y, Zheng S, Gao F. Laser-activatable oxygen self-supplying nanoplatform for efficiently overcoming colorectal cancer resistance by enhanced ferroptosis and alleviated hypoxic microenvironment. Biomater Res 2023; 27:92. [PMID: 37742011 PMCID: PMC10518107 DOI: 10.1186/s40824-023-00427-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most deadly cancer worldwide, with chemo-resistance remaining a major obstacle in CRC treatment. Notably, the imbalance of redox homeostasis-mediated ferroptosis and the modulation of hypoxic tumor microenvironment are regarded as new entry points for overcoming the chemo-resistance of CRC. METHODS Inspired by this, we rationally designed a light-activatable oxygen self-supplying chemo-photothermal nanoplatform by co-assembling cisplatin (CDDP) and linoleic acid (LA)-tailored IR820 via enhanced ferroptosis against colorectal cancer chemo-resistance. In this nanoplatform, CDDP can produce hydrogen peroxide in CRC cells through a series of enzymatic reactions and subsequently release oxygen under laser-triggered photothermal to alleviate hypoxia. Additionally, the introduced LA can add exogenous unsaturated fatty acids into CRC cells, triggering ferroptosis via oxidative stress-related peroxidized lipid accumulation. Meanwhile, photothermal can efficiently boost the rate of enzymatic response and local blood flow, hence increasing the oxygen supply and oxidizing LA for enhanced ferroptosis. RESULTS This nanoplatform exhibited excellent anti-tumor efficacy in chemo-resistant cell lines and showed potent inhibitory capability in nude mice xenograft models. CONCLUSIONS Taken together, this nanoplatform provides a promising paradigm via enhanced ferroptosis and alleviated hypoxia tumor microenvironment against CRC chemo-resistance.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- The First Hospital of Ningbo University, Ningbo, 315020, China
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuping Zhou
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| | - Shaojiang Zheng
- Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
10
|
Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol 2023; 11:1115254. [PMID: 37600314 PMCID: PMC10436007 DOI: 10.3389/fbioe.2023.1115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Perfluorocarbon (PFC) are biocompatible compounds, chemically and biologically inert, and lacks toxicity as oxygen carriers. PFCs nanoemulsions and nanoparticles (NPs) are highly used in diagnostic imaging and enable novel imaging technology in clinical imaging modalities to notice and image pathological and physiological alterations. Therapeutics with PFCs such as the innovative approach to preventing thrombus formation, PFC nanodroplets utilized in ultrasonic medication delivery in arthritis, or PFC-based NPs such as Perfluortributylamine (PFTBA), Pentafluorophenyl (PFP), Perfluorohexan (PFH), Perfluorooctyl bromide (PFOB), and others, recently become renowned for oxygenating tumors and enhancing the effects of anticancer treatments as oxygen carriers for tumor hypoxia. In this review, we will discuss the recent advancements that have been made in PFC's applications in theranostic (therapeutics and diagnostics) as well as assess the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Nasrin Kakaei
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Lee H, Shin DY, Na Y, Han G, Kim J, Kim N, Bang SJ, Kang HS, Oh S, Yoon CB, Park J, Kim HE, Jung HD, Kang MH. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. BIOMATERIALS ADVANCES 2023; 152:213523. [PMID: 37336010 DOI: 10.1016/j.bioadv.2023.213523] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Da-Young Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuhyun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ginam Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo-Jun Bang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyeong Seok Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - SeKwon Oh
- Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Chang-Bun Yoon
- Department of Advanced Materials Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si 16229, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
12
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|