1
|
Kim CH, Kim Y, Karna S, Yoo SM, Lee JH, Kim YJ, Lee JH, Jo WM, Park SH, Kim TH. Three-dimensional customized artificial grafts functionalized with biomimetic softness and anticoagulant heparin-dopamine surface modification: Preclinical study for practical applications. Int J Biol Macromol 2025; 299:140002. [PMID: 39828176 DOI: 10.1016/j.ijbiomac.2025.140002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/14/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Artificial vascular grafts, as blood vessel substitutes, are a prime challenge in tissue engineering and biomaterial research. An ideal artificial graft must have physiological and mechanical properties similar to those of a natural blood vessel, and hemocompatibility on its surface. We designed and fabricated artificial grafts by applying 3D printing and templated technology, which is endowed with morphologically patient-specific vascular reconstruction. To optimize mechanical properties, the graft wall was engineered with a controllable hybrid porous structure through a multilayer combination of porous and nonporous coatings, thereby achieving biomimetic mechanical flexibility with reduced stiffness. Further, we successfully synthesized dopamine-conjugated heparin (Hep-DA) utilizing carbodiimide chemistry, and coated it on a 3D porous graft to improve both surface adhesion and anticoagulant ability. The Hep-DA-coated 3D graft did not show significant cytotoxic effects with a long-term sustained heparin release. We performed a preclinical study in swine using the developed graft along with commercially available graft ePTFE and Dacron as a reference. They were implanted in the swine aorta for 28 days and the implanted grafts were harvested for further analysis. Histopathology study results showed the feasibility of the developed artificial vascular grafts that have less calcification, fibrosis, and collagen deposition than commercially available grafts.
Collapse
Affiliation(s)
- Chae Hwa Kim
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Yuseok Kim
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sandeep Karna
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Sung Mook Yoo
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Ju Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yun Ju Kim
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Jun Hyuk Lee
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Won-Min Jo
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea.
| | - Suk-Hee Park
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Tae Hee Kim
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Celikkin N, Presutti D, Maiullari F, Volpi M, Promovych Y, Gizynski K, Dolinska J, Wiśniewska A, Opałło M, Paradiso A, Rinoldi C, Fuoco C, Swieszkowski W, Bearzi C, Rizzi R, Gargioli C, Costantini M. Combining rotary wet-spinning biofabrication and electro-mechanical stimulation for the in vitroproduction of functional myo-substitutes. Biofabrication 2023; 15:045012. [PMID: 37473749 DOI: 10.1088/1758-5090/ace934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Yurii Promovych
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Gizynski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dolinska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Opałło
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Chiara Rinoldi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Fuoco
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Rome, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Rome, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm 2023; 640:123020. [PMID: 37149110 DOI: 10.1016/j.ijpharm.2023.123020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Three dimensional (3D) bioprinting is an emerging biofabrication technique that shows great potential in the field of tissue engineering, regenerative medicine and advanced drug delivery. Despite the current advancement of bioprinting technology, it faces several obstacles such as the challenge of optimizing the printing resolution of 3D constructs while retaining cell viability before, during, and after bioprinting. Therefore, it is of great significance to fully understand factors that influence the shape fidelity of printed structures and the performance of cells encapsulated in bioinks. This review presents a comprehensive analysis of bioprinting process parameters that influence bioink printability and cell performance, including bioink properties (composition, concentration, and component ratio), printing speed and pressure, nozzle charateristics (size, length, and geometry), and crosslinking parameters (crosslinker types, concentration, and crosslinking time). Key examples are provided to analyze how these parameters could be tailored to achieve the optimal printing resolution as well as cell performance. Finally, future prospects of bioprinting technology, including correlating process parameters to particular cell types with predefined applications, applying statistical analysis and artificial intelligence (AI)/machine learning (ML) technique in parameter screening, and optimizing 4D bioprinting process parameters, are highlighted.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Pushparaj K, Balasubramanian B, Pappuswamy M, Anand Arumugam V, Durairaj K, Liu WC, Meyyazhagan A, Park S. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel) 2023; 13:954. [PMID: 37109483 PMCID: PMC10145662 DOI: 10.3390/life13040954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | | | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kaliannan Durairaj
- Department of Infection Biology, School of Medicine, Wonkwang University, lksan 54538, Republic of Korea
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
10
|
Improving the protective ability of lignin against vascular and neurological development in BPAF-induced zebrafish by high-pressure homogenization technology. Int J Biol Macromol 2023; 231:123356. [PMID: 36682655 DOI: 10.1016/j.ijbiomac.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The lack of a sufficient amount of functional groups in the lignin structure limits its bioapplication. In this work, high-pressure homogenization was performed on original kraft lignin (L-ORI) to prepare lignin nanoparticles (L-NANO), which aimed to improve its functional group contents for further vascular and neurological applications. The results showed that the prepared L-NANO possessed spherical structures with diameters of 40.3-160.4 nm and increased amount of hydroxyl groups. Compared to L-ORI, L-NANO possessed better in vivo and in vitro antioxidant capacity, which could endow it with enhanced protective effects for the vascular and neural development of bisphenol AF (BPAF)-induced zebrafish. In addition, L-NANO reduced the neurotoxicity and cardiovascular toxicity of BPAF in zebrafish by upregulating the expression levels of oxidative stress-related genes (Cu/Zn-Sod and cat), which could further significantly upregulate the expression levels of neurogenesis genes (elavl3, gap43, mbp, and syn2a) and protect the contraction of the cardinal vein (CCV) and early central nervous system development by upregulating the expression levels of vascular genes (flk1 and flt4). The excellent cardiovascular and neurodevelopmental protective ability of L-NANO indicated that high-pressure homogenization is a promising technology for improving the bioactivity of lignin.
Collapse
|