1
|
Aikman EL, Eccles LE, Stoppel WL. Native Silk Fibers: Protein Sequence and Structure Influences on Thermal and Mechanical Properties. Biomacromolecules 2025; 26:2043-2059. [PMID: 40052735 DOI: 10.1021/acs.biomac.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design.
Collapse
Affiliation(s)
- Elizabeth L Aikman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Whitney L Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Yoshioka T, Kameda T. Individual evaluation of attachment strength at each adhered point in the silk foothold constructed by bagworms for walking and dangling. Sci Rep 2025; 15:6120. [PMID: 39972030 PMCID: PMC11840072 DOI: 10.1038/s41598-025-89912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Silk use in survival strategies among silk-producing arthropods is versatile and ingenious. Bagworms employ silk for a variety of functions, including nest construction, anchoring, and dangling. We recently discovered a novel use of silk for locomotion. Bagworms create a ladder-like foothold, allowing them to walk without prolegs, by spinning a silk thread in a zigzag pattern and controlling the adhesive discharge to secure the folded parts to the substrate. While the bagworm silk thread's strength and toughness are known to be sufficient for supporting their weight during walking and dangling, the attachment strength of the foothold's glued parts has not been assessed. In this study, we evaluate the attachment strength of each glued part and unveil an energy-efficient design of the foothold that ensures safe walking and dangling. This safety design for bagworm locomotion could inspire novel designs for locomotion systems in soft robotics.
Collapse
Affiliation(s)
- Taiyo Yoshioka
- Silk Materials Research Group, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Tsunenori Kameda
- Silk Materials Research Group, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
3
|
Ishiwata C, Yamamoto PK, Nakamura H, Tanikawa A, Kono N. The complete mitochondrial genome of Heptathela kimurai (Araneae: Heptathelidae). Mitochondrial DNA B Resour 2024; 9:1020-1023. [PMID: 39119347 PMCID: PMC11308958 DOI: 10.1080/23802359.2024.2387261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Heptathela kimurai (Kishida, 1920) is a spider that belongs to the family Heptathelidae which is a basial lineage of spiders. The molecular information of ancestral species belonging to families like Heptathelidae is comparatively limited when compared to spider species from derived families. Here we present the complete mitochondrial genome sequence (mtDNA) of H. kimurai. The sequence was obtained using massively parallel sequencing technology. The circular genome was 14,224 bp in length, and the AT content was 69.53%. The H. kimurai mitochondrial genome contains 13 protein-coding genes (PCGs), 21 tRNA genes, and 2 rRNA genes. The majority of PCGs were found in the heavy strand.
Collapse
Affiliation(s)
- Chisato Ishiwata
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Phillip K. Yamamoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Hiroyuki Nakamura
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Spiber Inc., Tsuruoka, Yamagata, Japan
| | - Akio Tanikawa
- Laboratory of Biodiversity Science, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Kono
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
4
|
Wang X, Wu J, Wang J, Liu D, Bian Q, Zhong J. Total Synthesis of the Sex Pheromone of Clania variegata Snellen and Its Stereoisomers. Int J Mol Sci 2024; 25:4893. [PMID: 38732112 PMCID: PMC11084484 DOI: 10.3390/ijms25094893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The paulownia bagworm, Clania variegata Snell, is an economically important pest of agriculture and forests. The sex pheromone of this pest and its stereoisomers were synthesized, and two of the stereoisomers were prepared for the first time. Our strategy was efficient and mainly included the ring-opening reaction of (S)-2-methyloxirane, the coupling of chiral sulfonate, the oxidative cleavage of olefin, and Yamaguchi esterification. Moreover, the overall yields of our synthesis were 23-29%, with eight steps in the longest route.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangchun Zhong
- Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (X.W.); (J.W.); (J.W.); (D.L.); (Q.B.)
| |
Collapse
|
5
|
Yu Y, Chen K, Wang J, Zhang Z, Hu B, Liu X, Lin Z, Tan A. Custom-designed, mass silk production in genetically engineered silkworms. PNAS NEXUS 2024; 3:pgae128. [PMID: 38562581 PMCID: PMC10983830 DOI: 10.1093/pnasnexus/pgae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Genetically engineered silkworms have been widely used to obtain silk with modified characteristics especially by introducing spider silk genes. However, these attempts are still challenging due to limitations in transformation strategies and difficulties in integration of the large DNA fragments. Here, we describe three different transformation strategies in genetically engineered silkworms, including transcription-activator-like effector nuclease (TALEN)-mediated fibroin light chain (FibL) fusion (BmFibL-F), TALEN-mediated FibH replacement (BmFibH-R), and transposon-mediated genetic transformation with the silk gland-specific fibroin heavy chain (FibH) promoter (BmFibH-T). As the result, the yields of exogenous silk proteins, a 160 kDa major ampullate spidroin 2 (MaSp2) from the orb-weaving spider Nephila clavipes and a 226 kDa fibroin heavy chain protein (EvFibH) from the bagworm Eumeta variegate, reach 51.02 and 64.13% in BmFibH-R transformed cocoon shells, respectively. Moreover, the presence of MaSp2 or EvFibH significantly enhances the toughness of genetically engineered silk fibers by ∼86% in BmFibH-T and ∼80% in BmFibH-R silkworms, respectively. Structural analysis reveals a substantial ∼40% increase in fiber crystallinity, primarily attributed to the presence of unique polyalanines in the repetitive sequences of MaSp2 or EvFibH. In addition, RNA-seq analysis reveals that BmFibH-R system only causes minor impact on the expression of endogenous genes. Our study thus provides insights into developing custom-designed silk production using the genetically engineered silkworm as the bioreactor.
Collapse
Affiliation(s)
- Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jingxia Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
6
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
A Guide to Sequencing for Long Repetitive Regions. Methods Mol Biol 2023; 2632:131-146. [PMID: 36781726 DOI: 10.1007/978-1-0716-2996-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Full-length analysis of genes with highly repetitive sequences is challenging in two respects: assembly algorithm and sequencing accuracy. The de Bruijn graph often used in short-read assembly cannot distinguish adjacent repeat units. On the other hand, the accuracy of long reads is not yet high enough to identify each and every repeat unit. In this chapter, I present an example of a strategy to solve these problems and obtain the full length of long repeats by combining the extraction and assembly of repeat units based on overlap-layout-consensus and scaffolding by long reads.
Collapse
|
8
|
Arakawa K, Kono N, Malay AD, Tateishi A, Ifuku N, Masunaga H, Sato R, Tsuchiya K, Ohtoshi R, Pedrazzoli D, Shinohara A, Ito Y, Nakamura H, Tanikawa A, Suzuki Y, Ichikawa T, Fujita S, Fujiwara M, Tomita M, Blamires SJ, Chuah JA, Craig H, Foong CP, Greco G, Guan J, Holland C, Kaplan DL, Sudesh K, Mandal BB, Norma-Rashid Y, Oktaviani NA, Preda RC, Pugno NM, Rajkhowa R, Wang X, Yazawa K, Zheng Z, Numata K. 1000 spider silkomes: Linking sequences to silk physical properties. SCIENCE ADVANCES 2022; 8:eabo6043. [PMID: 36223455 PMCID: PMC9555773 DOI: 10.1126/sciadv.abo6043] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Ayaka Tateishi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Ryota Sato
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Rintaro Ohtoshi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | | | | | - Yusuke Ito
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Nakamura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Akio Tanikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuya Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Takeaki Ichikawa
- Kokugakuin Kugayama High School, Suginami, Tokyo 168-0082, Japan
| | - Shohei Fujita
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| | - Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Sean J. Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jo-Ann Chuah
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hamish Craig
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Choon P. Foong
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Gabriele Greco
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Juan Guan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Chris Holland
- Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781 039 Assam, India
- Center for Nanotechnology, IITG, Guwahati, 781 039 Assam, India
- School of Health Sciences and Technology, IITG, Guwahati, 781 039 Assam, India
| | - Y. Norma-Rashid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur A. Oktaviani
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rucsanda C. Preda
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicola M. Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Xiaoqin Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Kenjiro Yazawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zhaozhu Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Artificial and natural silk materials have high mechanical property variability regardless of sample size. Sci Rep 2022; 12:3507. [PMID: 35241705 PMCID: PMC8894418 DOI: 10.1038/s41598-022-07212-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Silk fibres attract great interest in materials science for their biological and mechanical properties. Hitherto, the mechanical properties of the silk fibres have been explored mainly by tensile tests, which provide information on their strength, Young’s modulus, strain at break and toughness modulus. Several hypotheses have been based on these data, but the intrinsic and often overlooked variability of natural and artificial silk fibres makes it challenging to identify trends and correlations. In this work, we determined the mechanical properties of Bombyx mori cocoon and degummed silk, native spider silk, and artificial spider silk, and compared them with classical commercial carbon fibres using large sample sizes (from 10 to 100 fibres, in total 200 specimens per fibre type). The results confirm a substantial variability of the mechanical properties of silk fibres compared to commercial carbon fibres, as the relative standard deviation for strength and strain at break is 10–50%. Moreover, the variability does not decrease significantly when the number of tested fibres is increased, which was surprising considering the low variability frequently reported for silk fibres in the literature. Based on this, we prove that tensile testing of 10 fibres per type is representative of a silk fibre population. Finally, we show that the ideal shape of the stress–strain curve for spider silk, characterized by a pronounced exponential stiffening regime, occurs in only 25% of all tested spider silk fibres.
Collapse
|
10
|
Kono N, Ohtoshi R, Malay AD, Mori M, Masunaga H, Yoshida Y, Nakamura H, Numata K, Arakawa K. Darwin's bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression. Open Biol 2021; 11:210242. [PMID: 34932907 PMCID: PMC8692038 DOI: 10.1098/rsob.210242] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider (Caerostris darwini) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ m-1 and over 50% extensibility, and can build river-bridging webs with a size of 2.8 m2. Recent studies have suggested that specific spidroins expressed in C. darwini are responsible for the mechanical properties of its silk. Therefore, a more comprehensive investigation of spidroin sequences, silk thread protein contents and phylogenetic conservation among closely related species is required. Here, we conducted genomic, transcriptomic and proteomic analyses of C. darwini and its close relative Caerostris extrusa. A variety of spidroins and low-molecular-weight proteins were found in the dragline silk of these species; all of the genes encoding these proteins were conserved in both genomes, but their genes were more expressed in C. darwini. The potential to produce very tough silk is common in the genus Caerostris, and our results may suggest the existence of plasticity allowing silk mechanical properties to be changed by optimizing related gene expression in response to the environment.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Rintaro Ohtoshi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ali D. Malay
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|