1
|
Ejder ZB, Sanlier N. The relationship between loneliness, psychological resilience, quality of life and taste change in cancer patients receiving chemotherapy. Support Care Cancer 2023; 31:683. [PMID: 37946054 DOI: 10.1007/s00520-023-08156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE This study aimed to determine the correlation between taste change, nutritional intake and quality of life in cancer patients receiving chemotherapy. A total of 610 (F = 314, M = 296) volunteers aged 19 and 65 who received outpatient chemotherapy treatment participated in the study. METHODS Individuals' general information was obtained, anthropometric measurements were carried out, malnutrition status (Patient-Generated Subjective Global Assessment PG-SGA), loneliness (Cancer Loneliness Scale), psychological resilience (Psychological Resilience Scale), quality of life (Quality of Life Scale (EORT QLQ-C30) and taste changes were scrutinized [Chemotherapy-Induced Taste Alteration Scale (CiTAS)]. RESULTS There was a negative correlation between the Cancer Loneliness Scale and PG-SGA and General Health Status (r = -0.494, p = 0.000; r = -0.406, p = 0.000) and a positive correlation with Symptom Scales (r = 0.484, p = 0.000; r = 0.506, p = 0.000) (p < 0.05). There was a positive correlation between the Psychological Resilience Scale and General Health Status (r = 0.393, P = 0.000), Functional Scales (r = 0.349, P = 0.000), and a negative correlation between Symptom Scales (r = -0.302, p = 0.000) (p < 0.05). 70.9% of men and 70.7% of women had severe malnutrition. General Taste Changes, General Health and Symptom Scale values were significant predictors of severe malnutrition status (p < 0.05). CONCLUSION The symptoms that develop during the treatment process cause many psychological problems. Before starting treatment, patients should be evaluated comprehensively, depression anxiety levels and quality of life levels should be determined, and precautions should be taken accordingly.
Collapse
Affiliation(s)
- Zeynep Bengisu Ejder
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, 06050, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, 06050, Ankara, Turkey.
| |
Collapse
|
2
|
Binișor I, Baniță IM, Alexandru D, Mehedinți MC, Jurja S, Andrei AM, Pisoschi CG. Progranulin: A proangiogenic factor in visceral adipose tissue in tumoral and non-tumoral visceral pathology. Exp Ther Med 2021; 22:1337. [PMID: 34630691 PMCID: PMC8495564 DOI: 10.3892/etm.2021.10772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
The connection between central obesity and the development and metastasis of various visceral tumors is largely accepted and one of the main causes seems to be the local synthesis of proangiogenic molecules. Progranulin (PRG), recently identified as an adipokine, is a novel pleiotropic growth factor acting on the proliferation and development of fast-growing epithelial cells, cancer cells, and also a proangiogenic factor whose expression is induced in activated endothelial cells. One of the molecules that seems to trigger the angiogenic activity of PRG is vascular endothelial growth factor (VEGF). Two groups of human subjects were considered and adipose tissue was processed for an immunohistochemical and morphometric study after surgery for abdominal tumoral or non-tumoral pathology. The presence of PRG in adipose pads of the omentum was analyzed and its association with VEGF, CD34 and collagen IV in tumoral and non-tumoral visceral pathology was examined. The results showed that PRG but not VEGF expression was upregulated in adipose tissue in tumoral visceral pathology. In conclusion, the involvement of the proangiogenic activity of PRG and VEGF in adipose tissue under tumor conditions may be dependent on the visceral tumor type.
Collapse
Affiliation(s)
- Ioana Binișor
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Monica Baniță
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoș Alexandru
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Sanda Jurja
- Department of Ophthalmology, ‘Ovidius’ University of Constanta, 900470 Constanta, Romania
| | - Ana-Marina Andrei
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | |
Collapse
|
3
|
Venniyoor A, Al Farsi AA, Al Bahrani B. The Troubling Link Between Non-alcoholic Fatty Liver Disease (NAFLD) and Extrahepatic Cancers (EHC). Cureus 2021; 13:e17320. [PMID: 34557366 PMCID: PMC8449927 DOI: 10.7759/cureus.17320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a fast-spreading epidemic across the globe and has serious implications far beyond that of a "benign" liver condition. It is usually an outcome of ectopic fat storage due to chronic positive energy balance leading to obesity and is associated with multiple health problems. While association with cardiovascular disease and hepatocellular cancer is well recognized, it is becoming clear the NAFLD carries with it an increased risk of cancers of extrahepatic tissues. Studies have reported a higher risk for cancers of the colon, breast, prostate, lung, and pancreas. Fatty liver is associated with increased mortality; there is an urgent need to understand that fatty liver is not always benign, and not always associated with obesity. It is, however, a reversible condition and early recognition and intervention can alter its natural history and associated complications.
Collapse
Affiliation(s)
- Ajit Venniyoor
- Medical Oncology, National Oncology Center, The Royal Hospital, Muscat, OMN
| | | | | |
Collapse
|
4
|
Abstract
AbstractThe world is in the grip of an obesity pandemic, with tripling of obesity rates since 1975; it is predicted that one-third of people on Earth will be obese by 2025. The health consequences of obesity are primarily thought to be related to cardiometabolic disorders such as diabetes and cardiovascular diseases. It is less well appreciated that obesity has been related to at least 13 different cancers and in future, (with increasing control over tobacco misuse and infections), obesity will be the main cause of cancers. While this is an area of active research, there are large gaps in the definition of what is an obesity related cancer (JRC) and more importantly, what are the underlying mechanisms. To an extent, this is due to the controversy on what constitutes “unhealthy obesity” which is further related to the causes of obesity. This narrative review examines the causes and measurement of obesity, the types of obesity-related cancers and possible mechanisms. The information has wide implications ranging from prevention, screening, prognosis and therapeutic strategies. Obesity related cancers should be an area of high-priority research. Oncologists can contribute by spreading awareness and instituting management measures for individual patients in their care.
Collapse
Affiliation(s)
- Ajit Venniyoor
- National Oncology Centre, The Royal Hospital, Muscat, Sultanate of Oman
| |
Collapse
|
5
|
Pleiotropic genomic variants at 17q21.31 associated with bone mineral density and body fat mass: a bivariate genome-wide association analysis. Eur J Hum Genet 2020; 29:553-563. [PMID: 32963334 DOI: 10.1038/s41431-020-00727-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and obesity are two severe complex diseases threatening public health worldwide. Both diseases are under strong genetic determinants as well as genetically correlated. Aiming to identify pleiotropic genes underlying obesity and osteoporosis, we performed a bivariate genome-wide association (GWA) meta-analysis of hip bone mineral density (BMD) and total body fat mass (TBFM) in 12,981 participants from seven samples, and followed by in silico replication in the UK biobank (UKB) cohort sample (N = 217,822). Combining the results from discovery meta-analysis and replication sample, we identified one novel locus, 17q21.31 (lead SNP rs12150327, NC_000017.11:g.44956910G > A, discovery bivariate P = 4.83 × 10-9, replication P = 5.75 × 10-5) at the genome-wide significance level (ɑ = 5.0 × 10-8), which may have pleiotropic effects to both hip BMD and TBFM. Functional annotations highlighted several candidate genes, including KIF18B, C1QL1, and PRPF19 that may exert pleiotropic effects to the development of both body mass and bone mass. Our findings can improve our understanding of the etiology of osteoporosis and obesity, as well as shed light on potential new therapies.
Collapse
|
6
|
Comiran PK, Ribeiro MC, Silva JHG, Martins KO, Santos IA, Chiaradia AEF, Silva AZ, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF. Botryosphaeran Attenuates Tumor Development and the Cancer Cachexia Syndrome in Walker-256 Tumor-Bearing Obese Rats and Improves the Metabolic and Hematological Profiles of These Rats. Nutr Cancer 2020; 73:1175-1192. [DOI: 10.1080/01635581.2020.1789681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Patrícia K. Comiran
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Mariana C. Ribeiro
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - John H. G. Silva
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Kamila O. Martins
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Izabella A. Santos
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Ana Emilia F. Chiaradia
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Amadeu Z. Silva
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Robert F. H. Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Londrina, PR, Brazil
| | | | - Pâmela Alegranci
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Eveline A. I. F. Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| |
Collapse
|
7
|
Zhu J, Kamara S, Cen D, Tang W, Gu M, Ci X, Chen J, Wang L, Zhu S, Jiang P, Chen S, Xue X, Zhang L. Generation of novel affibody molecules targeting the EBV LMP2A N-terminal domain with inhibiting effects on the proliferation of nasopharyngeal carcinoma cells. Cell Death Dis 2020; 11:213. [PMID: 32238802 PMCID: PMC7113277 DOI: 10.1038/s41419-020-2410-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Nasopharyngeal carcinoma (NPC) induced by latent infection with Epstein-Barr virus (EBV) remains the most common head and neck cancer in Southeast Asia, especially in the southern part of China. It is well known that persistent expression of two EBV latent membrane proteins (LMP1/LMP2A) plays a key role in nasopharyngeal carcinogenesis. Therefore, the therapeutic approach of targeting the LMP1/LMP2A protein and subsequently blocking the LMP1/LMP2A-mediated signalling pathway has been considered for treating patients with NPC. Recently, affibody molecules, a new class of small (~6.5 kDa) affinity proteins, have been confirmed to be powerful generalisable tools for developing imaging or therapeutic agents by targeting specific molecules. In this study, three EBV LMP2A N-terminal domain-binding affibody molecules (ZLMP2A-N85, ZLMP2A-N110 and ZLMP2A-N252) were identified by screening a phage-displayed peptide library, and their high affinity and specificity for the EBV LMP2A N-terminal domain were confirmed by surface plasmon resonance (SPR), indirect immunofluorescence, co-immunoprecipitation and near-infrared small animal fluorescence imaging in vitro and in vivo. Moreover, affibody molecules targeting the EBV LMP2A N-terminal domain significantly reduced the viability of the EBV-positive cell lines C666-1, CNE-2Z and B95-8. Further investigations showed that affibody ZLMP2A-N110 could inhibit the phosphorylation of AKT, GSK-3β and β-catenin signalling proteins, leading to suppression of β-catenin nuclear translocation and subsequent inhibition of c-Myc oncogene expression, which may be responsible for the reduced viability of NPC-derived cell lines. In conclusion, our findings provide a strong evidence that three novel EBV LMP2A N-terminal domain-binding affibody molecules have great potential for utilisation and development as agents for both molecular imaging and targeted therapy of EBV-related NPC.
Collapse
Affiliation(s)
- Jinshun Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Danwei Cen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Wanlin Tang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Meiping Gu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Xingyuan Ci
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Lude Wang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Shao Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Zhejiang, Wenzhou, China.
| |
Collapse
|
8
|
Wang YX, Zhu N, Zhang CJ, Wang YK, Wu HT, Li Q, Du K, Liao DF, Qin L. Friend or foe: Multiple roles of adipose tissue in cancer formation and progression. J Cell Physiol 2019; 234:21436-21449. [PMID: 31054175 DOI: 10.1002/jcp.28776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Obesity is well-known as the second factor for tumorigenesis after smoking and is bound up with the malignant progression of several kinds of cancers, including esophageal cancer, liver cancer, colorectal cancer, kidney cancer, and ovarian cancer. The increased morbidity and mortality of obesity-related cancer are mostly attributed to dysfunctional adipose tissue. The possible mechanisms connecting dysfunctional adipose tissue to high cancer risk mainly focus on chronic inflammation, obesity-related microenvironment, adipokine secretion disorder, and browning of adipose tissue, and so forth. The stromal vascular cells in adipose tissue trigger chronic inflammation through secreting inflammatory factors and promote cancer cell proliferation. Hypertrophic adipose tissues lead to metabolic disorders of adipocytes, such as abnormal levels of adipokines that mediate cancer progression and metastasis. Cancer patients often show adipose tissue browning and cancerous cachexia in an advanced stage, which lead to unsatisfied chemotherapy effect and poor prognosis. However, increasing evidence has shown that adipose tissue may display quite opposite effects in cancer development. Therefore, the interaction between cancers and adipose tissue exert a vital role in mediates adipose tissue dysfunction and further leads to cancer progression. In conclusion, targeting the dysfunction of adipose tissue provides a promising strategy for cancer prevention and therapy.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chan-Juan Zhang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi-Kai Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Hong-Tao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qun Li
- Outpatient Department of Hanpu Campus, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Du
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Lab for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
The 150 most important questions in cancer research and clinical oncology series: questions 94-101 : Edited by Cancer Communications. Cancer Commun (Lond) 2018; 38:69. [PMID: 30477575 PMCID: PMC6257962 DOI: 10.1186/s40880-018-0341-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Since the beginning of 2017, Cancer Communications (former title: Chinese Journal of Cancer) has published a series of important questions regarding cancer research and clinical oncology, to provide an enhanced stimulus for cancer research, and to accelerate collaborations between institutions and investigators. In this edition, the following 8 valuable questions are presented. Question 94. The origin of tumors: time for a new paradigm? Question 95. How can we accelerate the identification of biomarkers for the early detection of pancreatic ductal adenocarcinoma? Question 96. Can we improve the treatment outcomes of metastatic pancreatic ductal adenocarcinoma through precision medicine guided by a combination of the genetic and proteomic information of the tumor? Question 97. What are the parameters that determine a competent immune system that gives a complete response to cancers after immune induction? Question 98. Is high local concentration of metformin essential for its anti-cancer activity? Question 99. How can we monitor the emergence of cancer cells anywhere in the body through plasma testing? Question 100. Can phytochemicals be more specific and efficient at targeting P-glycoproteins to overcome multi-drug resistance in cancer cells? Question 101. Is cell migration a selectable trait in the natural evolution of carcinoma?
Collapse
|
10
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
The 150 most important questions in cancer research and clinical oncology series: questions 86-93 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2018; 37:1. [PMID: 29357949 PMCID: PMC5778741 DOI: 10.1186/s40880-018-0266-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which spark diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 8 more questions are presented as follows. Question 86. In which circumstances is good supportive care associated with a survival advantage in patients with cancer? Question 87. Can we develop animal models to mimic immunotherapy response of cancer patients? Question 88. What are the mechanisms underlying hepatitis B virus-associated non-hepatocellular cancers? Question 89. Can we more precisely target tumor metabolism by identifying individual patients who would benefit from the treatment? Question 90. What type of cranial irradiation-based prophylactic therapy combination can dramatically improve the survival of patients with extensive small-cell lung cancer? Question 91. How can postoperative radiotherapy prolong overall survival of the patients with resected pIIIA-N2 non-small cell lung cancer? Question 92. What are the key molecular events that drive oral leukoplakia or erythroplakia into oral cancer? Question 93. How could we track the chemotherapeutics-driven evolution of tumor genome in non-small cell lung cancer for more effective treatment?
Collapse
|
12
|
The 150 most important questions in cancer research and clinical oncology series: questions 76-85 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:91. [PMID: 29151366 PMCID: PMC5694899 DOI: 10.1186/s40880-017-0259-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology to promote cancer research and accelerate collaborations. In this article, 10 questions are presented as followed. Question 76. How to develop effective therapeutics for cancer cachexia? Question 77. How can we develop preclinical animal models to recapitulate clinical situations of cancer patients for more effective anti-cancer drug development? Question 78. How can we develop novel effective therapeutics for pancreatic cancer and hepatocellular carcinoma? Question 79. What are the true beneficial mechanisms of antiangiogenic therapy in cancer patients? Question 80. How to approach the complex mechanisms of interplay among various cellular and molecular components in the tumor microenvironment? Question 81. Can tissue oxygenation improve the efficacy of conventional chemotherapy on cancer? Question 82. Can tissue oxygenation improve the efficacy of radiotherapy on digestive system tumors including liver cancer? Question 83. Can we integrate metabolic priming into multimodal management of liver cancer? Question 84. Has the limit of anti-androgen strategy in prostate cancer treatment been reached by the new generation of anti-androgen drugs? Question 85. Can we identify individuals with early-stage cancers via analyzing their clinical and non-clinical information collected from social media, shopping history, and clinical, pathological, and molecular traces?
Collapse
|
13
|
The 150 most important questions in cancer research and clinical oncology series: questions 67-75 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:86. [PMID: 29092716 PMCID: PMC5664810 DOI: 10.1186/s40880-017-0254-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which sparkle diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 9 more questions are presented as followed. Question 67. How could we overcome the resistance of hepatocellular carcinoma against chemotherapeutics? Question 68. Is pursuit of non-covalent small-molecule binders of RAS proteins viable as a strategy of cancer drug discovery? Question 69. In what oligomeric structures do RAS proteins signal? Question 70. How can we achieve non-invasive early detection and diagnosis of lung cancer? Question 71. Does genetic information influence the volatolome enabling diagnosis of lung cancer with genetic mutations via cell headspace or breath analysis? Question 72. Is heavy ion beam radiotherapy effective to kill cancer stem cells? Question 73. Is there any diversity among different types of cancer in terms of sensitivity to heavy ion beam radiotherapy? Question 74. Can targeted alpha-particle therapy augment the effect of carbon ion radiotherapy on malignancies? Question 75. How does chromosomal instability drive tumor progression?
Collapse
|
14
|
The 150 most important questions in cancer research and clinical oncology series: questions 57-66 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:79. [PMID: 28974261 PMCID: PMC5627450 DOI: 10.1186/s40880-017-0249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which sparkle diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 10 more questions are presented as followed. Question 57. What are the major stresses that drive the formation, progression, and metastasis of a cancer? Question 58. What is the mechanism responsible for altering an acidic intracellular pH and a basic extracellular pH in normal tissue cells to a basic intracellular pH and an acidic extracellular pH in cancer cells, a fundamental and yet largely ignored phenomenon? Question 59. Where are the tumor-associated plasma microRNAs from in cancer patients? Question 60. Can we identify mechanisms employed by tumor subpopulations to evade standard therapies and seed relapse/metastatic tumors before treatment? Question 61. Why are mutation rates in epidermal growth factor receptor (EGFR) and erb-b2 receptor tyrosine kinase 2 (ERBB2) higher in lung cancer from never smokers than that from smokers? Question 62. Does tumor vasculogenic mimicry contribute to the resistance against antiangiogenic therapy in renal cancer? Question 63. What molecular targeted drugs would be effective for non-clear cell renal cell carcinoma (RCC), especially metastatic papillary RCC and chromophobe RCC? Question 64. Can it be more effective by targeting both the vascular endothelial growth factor receptor (VEGFR) and MET signaling pathways in sporadic metastatic papillary renal cell carcinoma (RCC)? Question 65. What are the predictive biomarkers that may be used to identify the renal cell carcinoma (RCC) patients who can benefit from immune checkpoint inhibitor treatment? Question 66. How do we identify predictive molecular biomarkers to stratify clear cell renal cell carcinoma patients for targeted therapies?
Collapse
|
15
|
The 150 most important questions in cancer research and clinical oncology series: questions 50-56. CHINESE JOURNAL OF CANCER 2017; 36:69. [PMID: 28847311 PMCID: PMC5574233 DOI: 10.1186/s40880-017-0236-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/27/2023]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which sparkle diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, seven more questions are presented as followed. Question 50. When tumor cells spread from primary site to distant sites, are they required to be “trained” or “armed” in the bone marrow niche prior to colonizing soft tissues? Question 51. Are there tipping points during cancer progression which can be identified for manipulation? Question 52. Can we replace molecular biomarkers by network biomarkers? Question 53. Are conventional inhibitors of key cellular processes such as cell proliferation and differentiation more effective than targeted chemotherapeutics that antagonize the downstream cell signaling network via cell-surface receptors such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR) and c-Met, or intracellular receptors such as androgen receptor (AR) and estrogen receptor (ER), by drugs like erlotinib, sunitinib and cabozantinib, or enzalutamide and tomoxifen? Question 54. How can we robustly identify the candidate causal event of somatic genome alteration (SGA) by using computational approach? Question 55. How can we systematically reveal the immune evasion mechanism exploited by each tumor and utilize such information to guide targeted therapy to restore immune sensitivity? Question 56. Can the nasopharyngeal carcinoma (NPC) patients with sarcomatoid carcinoma (SC) subtype benefit from more specific targeted therapy?
Collapse
|
16
|
The 150 most important questions in cancer research and clinical oncology series: questions 40-49. CHINESE JOURNAL OF CANCER 2017; 36:55. [PMID: 28701224 PMCID: PMC5508686 DOI: 10.1186/s40880-017-0222-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which sparkle diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 10 more questions are presented as followed. Question 40. Why do mice being used as tumorigenesis models raised in different places or different conditions possess different tumor formation rate? Question 41. How could we generate more effective anti-metastasis drugs? Question 42. What is the molecular mechanism underlying heterogeneity of cancer cachexia in patients with the same pathologic type? Question 43. Will patients with oligo-metastatic disease be curable by immunotherapy plus stereotactic body radiotherapy? Question 44. Can the Warburg effect regulation be targeted for cancer treatment? Question 45. Why do adenocarcinomas seldom occur in the small intestine? Question 46. Is Epstein–Barr virus infection a causal factor for nasal natural killer/T cell lymphoma formation? Question 47. Why will not all but very few human papillomavirus-infected patients eventually develop cervical cancer? Question 48. Why do cervical carcinomas induced by human papilloma virus have a low mutation rate in tumor suppressor genes? Question 49. Can viral infection trigger lung cancer relapse?
Collapse
|
17
|
Chinese Journal of Cancer. The 150 most important questions in cancer research and clinical oncology series: questions 31-39 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:48. [PMID: 28571582 PMCID: PMC5455093 DOI: 10.1186/s40880-017-0215-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology. In this article, 9 more questions are presented as follows. Question 31: How does aging process inhibit the formation of sarcoma? Question 32: Is intratumoral morphological heterogeneity the consequence of tumor genomic instability or the cause of aggressive tumor behavior? Can we identify more aggressive tumors by computationally analyzing the morphological heterogeneity of the tumor tissues? Question 33: How to pre-surgically differentiate irradiation-induced ulceration from cancerous ulceration? Question 34: Why is epidermal growth factor receptor (EGFR) 19 Del-positive tumor more sensitive to targeted therapy than EGFR 21 L858R-positive tumor in patients with non-small cell lung cancer? Question 35: Can an Epstein-Barr virus vaccine be developed to reduce the incidence of EBV-related malignancies? Question 36: What is the unique feature in sarcoma vasculature that causes the intrinsic resistance of sarcoma against anti-angiogenic therapy? Question 37: How many ways can sarcoma cells protect themselves from the attacks of cytotoxic drugs? Question 38: How stable does the tumor heterogeneity remain along with cytotoxic chemotherapy? Question 39: How to generate a prognostic classifier for diffuse low-grade gliomas by integrating genetic and epigenetic signatures with histological features?
Collapse
|
18
|
The 150 most important questions in cancer research and clinical oncology series: Questions 25-30 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:42. [PMID: 28472999 PMCID: PMC5418677 DOI: 10.1186/s40880-017-0210-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology. In this article, 6 more questions are presented as followed. Question 25: Does imprinting of immune responses to infections early in life predict future risk of childhood and adult cancers? Question 26: How to induce homogeneous tumor antigen expression in a heterogeneous tumor mass to enhance the efficacy of cancer immunotherapy? Question 27: Could we enhance the therapeutic effects of immunotherapy by targeting multiple tumor antigens simultaneously or sequentially? Question 28: Can immuno-targeting to cytokines halt cancer metastasis? Question 29: How can we dynamically and less-invasively monitor the activity of CD8+ T killer cells at tumor sites and draining lymph nodes? Question 30: How can the immune system destroy the niches for cancer initiation?
Collapse
|
19
|
The 150 most important questions in cancer research and clinical oncology series: questions 6-14 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:33. [PMID: 28347321 PMCID: PMC5368928 DOI: 10.1186/s40880-017-0200-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Abstract
To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology. In this article, nine more questions are presented as followed. Question 6. Why do nasopharyngeal carcinomas rarely metastasize to the brain? Question 7. Can distant spread of cancer cells be blocked by inhibiting the remodeling of high endothelial venules in the sentinel lymph node? Question 8. What sort of live-imaging techniques can be developed to directly observe the dynamic processes of metastasis? Question 9. How does chronic hepatitis prevent liver metastasis from colorectal cancer? Question 10. How many types of host cells contribute to forming the pre-metastatic niche in the lung favorable for metastasis? Question 11. Why do cancers rarely metastasize to the small bowel? Question 12. Why do glioblastomas rarely metastasize outside the central nervous system? Question 13. Despite increased understanding of the molecular genetic events leading to the development and progression of high-grade gliomas, these tumors are the most therapeutically refractory among all human cancers. What then would be the most effective therapeutic approaches to treat what in essence can be regarded as a whole brain malignancy, since even a surgical resection of greater than 99% of tumor tissues is invariably associated with recurrence? Question 14. The blood-brain barrier (BBB) effectively limits a wide variety of potential therapeutic agents from reaching glioma cells widely dispersed in the brain. What therapeutic approaches can be used to breach the BBB and allow therapeutic agents to seek out and kill these tumor cells?
Collapse
|