1
|
DeConne TM, Buzkova P, Pewowaruk R, Delaney JA, Psaty BM, Tracy RP, Doyle MF, Sitlani CM, Landay AL, Huber SA, Hughes TM, Bertoni AG, Gepner AD, Ding J, Olson NC. Associations of circulating T-cell subsets with carotid artery stiffness: the multiethnic study of atherosclerosis. Am J Physiol Heart Circ Physiol 2025; 328:H113-H119. [PMID: 39589781 PMCID: PMC11901338 DOI: 10.1152/ajpheart.00649.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Arterial stiffness measured by total pulse wave velocity (T-PWV) is associated with an increased risk of multiple age-related diseases. T-PWV can be described by structural (S-PWV) and load-dependent (LD-PWV) arterial stiffening. T-cells have been implicated in arterial remodeling, arterial stiffness, and hypertension in humans and animals; however, it is unknown whether T-cells are risk factors for T-PWV or its components. Therefore, we evaluated the cross-sectional associations of peripheral T-cell subpopulations with T-PWV, S-PWV, and LD-PWV. Peripheral blood T-cells were characterized using flow cytometry, and carotid artery stiffness was measured using B-mode ultrasound to calculate T-PWV at the baseline examination in a participant subset of the Multi-Ethnic Study of Atherosclerosis (MESA, n = 1,984). A participant-specific exponential model was used to calculate S-PWV and LD-PWV based on elastic modulus and blood pressure gradients. The associations between five primary (P-significance < 0.01) and 25 exploratory (P-significance < 0.05) immune cell subpopulations, per 1-SD increment, and arterial stiffness measures were assessed using adjusted linear regression models. For the primary analysis, higher CD4+CD28-CD57+, but not CD8+CD28-CD57+, T-cells were associated with higher LD-PWV (β = 0.04 m/s, P < 0.01) after adjusting for covariates. None of the remaining T-cell subpopulations in the primary analysis were associated with T-PWV or S-PWV. For the exploratory analysis, several memory and differentiated/senescence-associated CD4+ and CD8+ T-cell subpopulations were associated with greater T-PWV, S-PWV, and LD-PWV after adjusting for covariates. In conclusion, we highlight novel associations in humans between CD4+ and CD8+ memory and differentiated/senescence-associated T-cell subpopulations and measures of arterial stiffness in MESA. These results warrant longitudinal, prospective studies that examine changes in T-cell subpopulations and arterial stiffness in humans.NEW & NOTEWORTHY We investigated associations between T-cells and novel measures of structural and load-dependent arterial stiffness in a large multiethnic cohort. The primary analysis revealed that pro-inflammatory, senescence-associated CD4+CD28-CD57+ T-cells were associated with higher load-dependent arterial stiffness. An exploratory analysis revealed that multiple pro-inflammatory CD4+ and CD8+ T-cell subpopulations were associated with both higher structural and load-dependent arterial stiffness. These results suggest that pro-inflammatory T-cells may contribute to arterial stiffness through both arterial remodeling and elevated blood pressure.
Collapse
Grants
- N01-HC-95168 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95163 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- R00 HL129045 NHLBI NIH HHS
- N01-HC-95166 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95165 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- R01HL135625 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95164 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32AG033534 HHS | NIH | National Institute on Aging (NIA)
- 75N92020D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- R00HL129045 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95161 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00005 NHLBI NIH HHS
- N01-HC-95160 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95160 NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- UL1-TR-001079 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- N01-HC-95167 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00001 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- T32 AG033534 NIA NIH HHS
- UL1-TR-000040 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- N01HC95164 NHLBI NIH HHS
- R01 HL120854 NHLBI NIH HHS
- R01 HL135625 NHLBI NIH HHS
- N01-HC-95169 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95162 NHLBI NIH HHS
- N01-HC-95162 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00003 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1-TR-001420 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- N01-HC-95159 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201500003I NHLBI NIH HHS
- N01-HC-95165 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95163 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95167 NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- R01HL120854 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
Collapse
Affiliation(s)
- Theodore M DeConne
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Ryan Pewowaruk
- Ryan Pewowaruk Research Consulting, Madison, Wisconsin, United States
| | - Joseph A Delaney
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Department of Epidemiology, University of Washington, Seattle, Washington, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, United States
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Alan L Landay
- Division of Geriatrics, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, United States
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - Timothy M Hughes
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Alain G Bertoni
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Adam D Gepner
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
- William S. Middleton Memorial Veterans Hospital and Clinics, Madison, Wisconsin, United States
| | - Jingzhong Ding
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
2
|
DeConne TM, Buckley DJ, Trott DW, Martens CR. The role of T cells in vascular aging, hypertension, and atherosclerosis. Am J Physiol Heart Circ Physiol 2024; 327:H1345-H1360. [PMID: 39423035 DOI: 10.1152/ajpheart.00570.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Vascular dysfunction has emerged as a significant risk factor for the development of cardio- and cerebrovascular diseases (CVDs), which are currently the leading cause of morbidity and mortality worldwide. T lymphocytes (T cells) have been shown to be important modulators of vascular function in primary aging and CVDs, likely by producing inflammatory cytokines and reactive oxygen species that influence vasoprotective molecules. This review summarizes the role of T cells on vascular function in aging, hypertension, and atherosclerosis in animals and humans, and discusses potential T-cell targeted therapeutics to prevent, delay, or reverse vascular dysfunction.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - David J Buckley
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
3
|
Nga HT, Nguyen TL, Yi HS. T-Cell Senescence in Human Metabolic Diseases. Diabetes Metab J 2024; 48:864-881. [PMID: 39192822 PMCID: PMC11449820 DOI: 10.4093/dmj.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.
Collapse
Affiliation(s)
- Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
4
|
Ma X, Zhuo Y, Zhang Z, Yang Y, He P, Zeng Y, Huang Y, Wen X. Association of T-cell receptor repertoires and arterial stiffness in patients with essential hypertension. J Hypertens 2024; 42:1440-1448. [PMID: 38934191 DOI: 10.1097/hjh.0000000000003757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND Abnormal immune responses, particularly T-cell activity, are linked to vascular complications in hypertension, but mechanisms remain unknown. Our study aims to explore the association between arterial stiffness, assessed by brachial-ankle pulse wave velocity (baPWV), and T-cell receptor (TCR) repertoires in essential hypertension patients, focusing on understanding the role of T cells in the development of arterial stiffness in this population. METHODS The study included 301 essential hypertension patients and 48 age-matched normotensive controls. Essential hypertension patients were stratified into high (baPWV ≥1400 cm/s, n = 213) and low (baPWV <1400 cm/s, n = 88) baPWV groups. High-throughput sequencing analyzed peripheral TCRβ repertoires. RESULTS Significant TCRβ repertoire differences were observed between essential hypertension and normotensive groups, as well as between high and low baPWV essential hypertension subgroups. Specifically, patients in the high baPWV group exhibited notable variations in the utilization of specific TCR beta joining (TRBJ) and variable (TRBV) genes compared to the low baPWV group. These alterations were accompanied by reduced TCRβ diversity (represented by diversity 50 s), increased percentages of the largest TCRβ clones, and a higher number of TCRβ clones exceeding 0.1%. The presence of specific TCRβ clones was detected in both groups. Furthermore, reduced diversity 50s and elevated percentages of the largest TCRβ clones were independently correlated with baPWV, emerging as potential risk factors for increased baPWV in essential hypertension patients. CONCLUSION TCR repertoires were independently associated with arterial stiffness in patients with essential hypertension, implicating a potential role for dysregulated T-cell responses in the pathogenesis of arterial stiffness in this patient population.Trial registration: ChiCTR2100054414.
Collapse
Affiliation(s)
- Xiaoxiang Ma
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Yue Zhuo
- Department of Laboratory Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China
| | | | - Yanhua Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Pengming He
- Chengdu ExAb Biotechnology LTD, Chengdu, China
| | - Yi Zeng
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Yan Huang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Xueping Wen
- Chengdu ExAb Biotechnology LTD, Chengdu, China
| |
Collapse
|
5
|
DeConne TM, Buzkova P, Pewowaruk R, Delaney JA, Psaty BM, Tracy RP, Doyle MF, Sitlani CM, Landay AL, Huber SA, Hughes TM, Bertoni AG, Gepner AD, Olson NC, Ding J. Associations of circulating T-cell subsets in carotid artery stiffness: the Multi-Ethnic Study of Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311196. [PMID: 39132475 PMCID: PMC11312665 DOI: 10.1101/2024.07.29.24311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Arterial stiffness measured by total pulse wave velocity (T-PWV) is associated with increased risk of multiple age-related diseases. T-PWV can be described by structural (S-PWV) and load-dependent (LD-PWV) arterial stiffening. T-cells have been associated with arterial remodeling, blood pressure, and arterial stiffness in humans and animals; however, it is unknown whether T-cells are related to S-PWV or LD-PWV. Therefore, we evaluated the cross-sectional associations of peripheral T-cell subpopulations with T-PWV, S-PWV, and LD-PWV stiffness. Methods Peripheral blood T-cells were characterized using flow cytometry and the carotid artery was measured using B-mode ultrasound to calculate T-PWV at the baseline examination in a subset of the Multi-Ethnic Study of Atherosclerosis (MESA, n=1,984). A participant-specific exponential model was used to calculate S-PWV and LD-PWV based on elastic modulus and blood pressure gradients. The associations between five primary (p-significance<0.01) and twenty-five exploratory (p-significance<0.05) immune cell subpopulations, per 1-SD increment, and arterial stiffness measures were assessed using adjusted, linear regressions. Results For the primary analysis, higher CD4+CD28-CD57+ T-cells were associated with higher LD-PWV (β=0.04 m/s, p<0.01) after adjusting for co-variates. For the exploratory analysis, T-cell subpopulations that commonly shift with aging towards memory and differentiated/immunosenescent phenotypes were associated with greater T-PWV, S-PWV, and LD-PWV after adjusting for co-variates. Conclusions In this cross-sectional study, several T-cell subpopulations commonly associated with aging were related with measures of arterial stiffness. Longitudinal studies that examine changes in T-cell subpopulations and measures of arterial stiffness are warranted.
Collapse
Affiliation(s)
- Theodore M DeConne
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Joseph A. Delaney
- Departments of Medicine and Epidemiology, University of Washington, Seattle, WA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | | | - Alan L. Landay
- Geriatrics Department of Internal Medicine, University of Texas Medical Brach at Galveston, Galveston, TX
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Timothy M. Hughes
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alain G. Bertoni
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Adam D. Gepner
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- William S. Middleton Memorial Veterans Hospital and Clinics, Madison, WI
| | - Nels C. Olson
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
6
|
DeConne TM, Fancher IS, Edwards DG, Trott DW, Martens CR. CD8 + T-cell metabolism is related to cerebrovascular reactivity in middle-aged adults. Am J Physiol Regul Integr Comp Physiol 2024; 326:R416-R426. [PMID: 38406845 PMCID: PMC11687960 DOI: 10.1152/ajpregu.00267.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Cerebrovascular reactivity (CVR) decreases with advancing age, contributing to increased risk of cognitive impairment; however, the mechanisms underlying the age-related decrease in CVR are incompletely understood. Age-related changes to T cells, such as impaired mitochondrial respiration, increased inflammation, likely contribute to peripheral and cerebrovascular dysfunction in animals. However, whether T-cell mitochondrial respiration is related to cerebrovascular function in humans is not known. Therefore, we hypothesized that peripheral T-cell mitochondrial respiration would be positively associated with CVR and that T-cell glycolytic metabolism would be negatively associated with CVR. Twenty middle-aged adults (58 ± 5 yr) were recruited for this study. T cells were separated from peripheral blood mononuclear cells. Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR, a marker of glycolytic activity) were measured using extracellular flux analysis. CVR was quantified using the breath-hold index (BHI), which reflects the change in blood velocity in the middle-cerebral artery (MCAv) during a 30-s breath-hold. In contrast to our hypothesis, we found that basal OCR in CD8+ T cells (β = -0.59, R2 = 0.27, P = 0.019) was negatively associated with BHI. However, in accordance with our hypothesis, we found that basal ECAR (β = -2.20, R2 = 0.29, P = 0.015) and maximum ECAR (β = -50, R2 = 0.24, P = 0.029) were negatively associated with BHI in CD8+ T cells. There were no associations observed in CD4+ T cells. These associations appeared to be primarily mediated by an association with the pressor response to the breath-hold test. Overall, our findings suggest that CD8+ T-cell respiration and glycolytic activity may influence CVR in humans.NEW & NOTEWORTHY Peripheral T-cell metabolism is related to in vivo cerebrovascular reactivity in humans. Higher glycolytic metabolism in CD8+ T cells was associated with lower cerebrovascular reactivity to a breath-hold in middle-aged adults, which is possibly reflective of a more proinflammatory state in midlife.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
7
|
Waerlop G, Leroux-Roels G, Pagnon A, Begue S, Salaun B, Janssens M, Medaglini D, Pettini E, Montomoli E, Gianchecchi E, Lambe T, Godfrey L, Bull M, Bellamy D, Amdam H, Bredholt G, Cox RJ, Clement F. Proficiency tests to evaluate the impact on assay outcomes of harmonized influenza-specific Intracellular Cytokine Staining (ICS) and IFN-ɣ Enzyme-Linked ImmunoSpot (ELISpot) protocols. J Immunol Methods 2023; 523:113584. [PMID: 37918618 DOI: 10.1016/j.jim.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-ɣ (IFN-ɣ) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-ɣ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-ɣ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-ɣ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-ɣ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium.
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Anke Pagnon
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | - Sarah Begue
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | | | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; VisMederi srl, 53100 Siena, Italy
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK
| | - Maireid Bull
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Håkon Amdam
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Lee S, Affandi J, Waters S, Price P. Human Cytomegalovirus Infection and Cardiovascular Disease: Current Perspectives. Viral Immunol 2023; 36:13-24. [PMID: 36622943 DOI: 10.1089/vim.2022.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections with human cytomegalovirus (HCMV) are often asymptomatic in healthy adults but can be severe in people with a compromised immune system. While several studies have demonstrated associations between cardiovascular disease in older adults and HCMV seropositivity, the underlying mechanisms are unclear. We review evidence published within the last 5 years establishing how HCMV can contribute directly and indirectly to the development and progression of atherosclerotic plaques. We also discuss associations between HCMV infection and cardiovascular outcomes in populations with a high or very high burden of HCMV, including patients with renal or autoimmune disease, transplant recipients, and people living with HIV.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Jacquita Affandi
- Curtin School of Population Health; Curtin University, Bentley, Western Australia, Australia
| | - Shelley Waters
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| |
Collapse
|
9
|
Ballegaard V, Pedersen KK, Brændstrup P, Kirkby N, Stryhn A, Ryder LP, Gerstoft J, Nielsen SD. Cytomegalovirus-specific CD8+ T-cell responses are associated with arterial blood pressure in people living with HIV. PLoS One 2020; 15:e0226182. [PMID: 31929537 PMCID: PMC6957152 DOI: 10.1371/journal.pone.0226182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
People living with HIV (PLHIV) are at increased risk for cardiovascular disease (CVD), and immunity against cytomegalovirus (CMV) may be a contributing factor. We hypothesized that enhanced T-cell responses against CMV and CMV-IgG antibody-levels are associated with higher arterial blood pressure in PLHIV. We assessed serum CMV-IgG, systolic- (SBP) and diastolic- (DBP) blood pressure, pulse pressure (PP), traditional risk factors, activated CD8+ T-cells (CD38+HLA-DR+), senescent CD8+ T-cells (CD28-CD57+) and interleukin-6 (IL-6) in 60 PLHIV and 31 HIV-uninfected controls matched on age, gender, education and comorbidity. In PLHIV, expression of interleukin-2, tumor necrosis factor-α and interferon-γ was measured by intracellular-cytokine-staining after stimulation of T-cells with CMV-pp65 and CMV-gB. Associations between CMV-specific immune responses and hypertension, SBP, DBP or PP were assessed by multivariate logistic and linear regression models adjusted for appropriate confounders. The median age of PLHIV was 47 years and 90% were male. Prevalence of hypertension in PLHIV was 37% compared to 55% of HIV-uninfected controls. CMV-specific CD8+ T-cell responses were independently associated with higher PP (CMV-pp65; β = 2.29, p = 0.001, CMV-gB; β = 2.42, p = 0.001) in PLHIV. No significant differences were found with regard to individual measures of SBP and DBP. A possible weak association was found between CMV-IgG and hypertension (β = 1.33, p = 0.049) after adjustment for age, smoking and LDL-cholesterol. HIV-related factors, IL-6, CD8+ T-cell activation or CD8+ T-cell senescence did not mediate the associations, and no associations were found between CMV-specific CD4+ T-cell responses and blood pressure in PLHIV. In conclusion, increased arterial blood pressure in PLHIV may be affected by heightened CMV-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Vibe Ballegaard
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Karin Kaereby Pedersen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Peter Brændstrup
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars P Ryder
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Dworzański J, Drop B, Kliszczewska E, Strycharz-Dudziak M, Polz-Dacewicz M. Prevalence of Epstein-Barr virus, human papillomavirus, cytomegalovirus and herpes simplex virus type 1 in patients with diabetes mellitus type 2 in south-eastern Poland. PLoS One 2019; 14:e0222607. [PMID: 31550259 PMCID: PMC6759159 DOI: 10.1371/journal.pone.0222607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
A microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi living in different niches of the human body, which plays an essential role in many metabolic functions. Modifications in the microbiota composition can lead to several diseases, including metabolic disorders. The aim of this study was to analyze the prevalence of four viruses which can cause persistent infections-Epstein-Barr virus (EBV), human papillomavirus (HPV), cytomegalovirus (CMV), and herpes simplex virus type 1 (HSV-1) in patients with diabetes mellitus type 2 (DM2). Blood, saliva and oral swabs were collected from all the study participants. The nested-PCR technique was used to detect the viral DNA. DNA of at least one virus was detected in 71.1% of diabetic patients and in 30% of individuals without diabetes. In patients with diabetes EBV DNA was detected the most frequently (25.4%), followed by HPV- 19.1%, HSV- 10.4% and CMV- 5.2%. A higher percentage of EBV+HPV co-infection was found among men (30.8%). EBV DNA was statistically more often detected in patients living in rural areas (53.7%), while HPV (91.5%) and EBV+HPV co-infection (22.2%) prevailed among patients from urban areas. In patients with a DM2 history longer than 10 years viral infection was detected more frequently. The prevalence of EBV, HPV and the EBV+HPV co-infection was significantly higher in diabetic patients than in individuals without diabetes. The frequency of these infections depended on the duration of the disease (DM2).
Collapse
Affiliation(s)
| | - Bartłomiej Drop
- Department of Information Technology and Medical Statistics, Medical University of Lublin, Lublin, Poland
| | - Ewa Kliszczewska
- Department of Virology, Medical University of Lublin, Lublin, Poland
| | | | | |
Collapse
|
11
|
Increased frequency of CD4 +CD57 + senescent T cells in patients with newly diagnosed acute heart failure: exploring new pathogenic mechanisms with clinical relevance. Sci Rep 2019; 9:12887. [PMID: 31501486 PMCID: PMC6733929 DOI: 10.1038/s41598-019-49332-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
Recent animal studies showed T cells have a direct pathogenic role in the development of heart failure (HF). However, which subsets of T cells contribute to human HF pathogenesis and progression remains unclear. We characterized immunologic properties of various subsets of T cells and their clinical implications in human HF. Thirty-eight consecutive patients with newly diagnosed acute HF (21 males, mean age 66 ± 16 years) and 38 healthy control subjects (21 males, mean age 62 ± 12 years) were enrolled. We found that pro-inflammatory mediators, including CRP, IL-6 and IP-10 and the frequencies of CD57+ T cells in the CD4+ T cell population were significantly elevated in patients with acute HF compared to control subjects. A functional analysis of T cells from patients with acute HF revealed that the CD4+CD57+ T cell population exhibited a higher frequency of IFN-γ- and TNF-α- producing cells compared to the CD4+CD57− T cell population. Furthermore, the frequency of CD4+CD57+ T cells at baseline and its elevation at the six-month follow-up were significantly related with the development of cardiovascular (CV) events, which were defined as CV mortality, cardiac transplantation, or rehospitalization due to HF exacerbation. In conclusion, CD4+CD57+ senescent T cells showed more inflammatory features and polyfunctionality and were associated with clinical outcome in patients with acute HF. More detailed study for senescent T cells might offer new opportunities for the prevention and treatment of human HF.
Collapse
|
12
|
Park MS, Youn JC. A New Era of Targeting Pathogenic Immune Mechanisms in Cardiovascular Disease. Korean Circ J 2018; 48:944-946. [PMID: 30238712 PMCID: PMC6158452 DOI: 10.4070/kcj.2018.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Myung Soo Park
- Division of Cardiology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jong Chan Youn
- Division of Cardiology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea.
| |
Collapse
|