1
|
Rawlinson D, Zhou C, Kaforou M, Cao KAL, Coin LJM. A flexible framework for minimal biomarker signature discovery from clinical omics studies without library size normalisation. PLOS DIGITAL HEALTH 2025; 4:e0000780. [PMID: 40138621 PMCID: PMC11942414 DOI: 10.1371/journal.pdig.0000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
Application of transcriptomics, proteomics and metabolomics technologies to clinical cohorts has uncovered a variety of signatures for predicting disease. Many of these signatures require the full 'omics data for evaluation on unseen samples, either explicitly or implicitly through library size normalisation. Translation to low-cost point-of-care tests requires development of signatures which measure as few analytes as possible without relying on direct measurement of library size. To achieve this, we have developed a feature selection method (Forward Selection-Partial Least Squares) which generates minimal disease signatures from high-dimensional omics datasets with applicability to continuous, binary or multi-class outcomes. Through extensive benchmarking, we show that FS-PLS has comparable performance to commonly used signature discovery methods while delivering signatures which are an order of magnitude smaller. We show that FS-PLS can be used to select features predictive of library size, and that these features can be used to normalize unseen samples, meaning that the features in the complete model can be measured in isolation for making new predictions. By enabling discovery of small, high-performance signatures, FS-PLS addresses an important impediment for the further development of precision medical care.
Collapse
Affiliation(s)
- Daniel Rawlinson
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Myrsini Kaforou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Lachlan J. M. Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
2
|
Hosch S, Wagner P, Giger JN, Dubach N, Saavedra E, Perno CF, Gody JC, Pagonendji MS, Ngoagouni C, Ndoua C, Nsanzabana C, Vickos U, Daubenberger C, Schindler T. PHARE: a bioinformatics pipeline for compositional profiling of multiclonal Plasmodium falciparum infections from long-read Nanopore sequencing data. J Antimicrob Chemother 2024; 79:987-996. [PMID: 38502783 PMCID: PMC11062946 DOI: 10.1093/jac/dkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The emergence of drug-resistant clones of Plasmodium falciparum is a major public health concern, and the ability to detect and track the spread of these clones is crucial for effective malaria control and treatment. However, in endemic settings, malaria infected people often carry multiple P. falciparum clones simultaneously making it likely to miss drug-resistant clones using traditional molecular typing methods. OBJECTIVES Our goal was to develop a bioinformatics pipeline for compositional profiling in multiclonal P. falciparum samples, sequenced using the Oxford Nanopore Technologies MinION platform. METHODS We developed the 'Finding P. falciparum haplotypes with resistance mutations in polyclonal infections' (PHARE) pipeline using existing bioinformatics tools and custom scripts written in python. PHARE was validated on three control datasets containing P. falciparum DNA of four laboratory strains at varying mixing ratios. Additionally, the pipeline was tested on clinical samples from children admitted to a paediatric hospital in the Central African Republic. RESULTS The PHARE pipeline achieved high recall and accuracy rates in all control datasets. The pipeline can be used on any gene and was tested with amplicons of the P. falciparum drug resistance marker genes pfdhps, pfdhfr and pfK13. CONCLUSIONS The PHARE pipeline helps to provide a more complete picture of drug resistance in the circulating P. falciparum population and can help to guide treatment recommendations. PHARE is freely available under the GNU Lesser General Public License v.3.0 on GitHub: https://github.com/Fippu/PHARE.
Collapse
Affiliation(s)
- Salome Hosch
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Philipp Wagner
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Johanna Nouria Giger
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Nina Dubach
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Elis Saavedra
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Carlo Federico Perno
- Department of Microbiology, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’Onofrio, 4, 00165 Roma, Italy
| | - Jean-Chrysostome Gody
- Department of Intensive Care, Pediatric University Hospital Centre of Bangui, Bangui, Central African Republic
| | | | - Carine Ngoagouni
- Medical Entomology Unit, Institut Pasteur of Bangui, Bangui, Central African Republic
| | - Christophe Ndoua
- National Malaria Control Program, Ministry of Health, Bangui, Central African Republic
| | - Christian Nsanzabana
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Ulrich Vickos
- Department of Microbiology, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’Onofrio, 4, 00165 Roma, Italy
| | - Claudia Daubenberger
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Tobias Schindler
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| |
Collapse
|
3
|
Gurgul A, Jasielczuk I, Szmatoła T, Sawicki S, Semik-Gurgul E, Długosz B, Bugno-Poniewierska M. Application of Nanopore Sequencing for High Throughput Genotyping in Horses. Animals (Basel) 2023; 13:2227. [PMID: 37444025 DOI: 10.3390/ani13132227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nanopore sequencing is a third-generation biopolymer sequencing technique that relies on monitoring the changes in an electrical current that occur as nucleic acids are passed through a protein nanopore. Increasing quality of reads generated by nanopore sequencing systems encourages their application in genome-wide polymorphism detection and genotyping. In this study, we employed nanopore sequencing to identify genome-wide polymorphisms in the horse genome. To reduce the size and complexity of genome fragments for sequencing in a simple and cost-efficient manner, we amplified random DNA fragments using a modified DOP-PCR and sequenced the resulting products using the MinION system. After initial filtering, this generated 28,426 polymorphisms, which were validated at a 3% error rate. Upon further filtering for polymorphism and reproducibility, we identified 9495 SNPs that reflected the horse population structure. To conclude, the use of nanopore sequencing, in conjunction with a genome enrichment step, is a promising tool that can be practical in a variety of applications, including genotyping, population genomics, association studies, linkage mapping, and potentially genomic selection.
Collapse
Affiliation(s)
- Artur Gurgul
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Igor Jasielczuk
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Tomasz Szmatoła
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Sebastian Sawicki
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Bogusława Długosz
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Șoldănescu I, Lobiuc A, Covașă M, Dimian M. Detection of Biological Molecules Using Nanopore Sensing Techniques. Biomedicines 2023; 11:1625. [PMID: 37371721 PMCID: PMC10295350 DOI: 10.3390/biomedicines11061625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Modern biomedical sensing techniques have significantly increased in precision and accuracy due to new technologies that enable speed and that can be tailored to be highly specific for markers of a particular disease. Diagnosing early-stage conditions is paramount to treating serious diseases. Usually, in the early stages of the disease, the number of specific biomarkers is very low and sometimes difficult to detect using classical diagnostic methods. Among detection methods, biosensors are currently attracting significant interest in medicine, for advantages such as easy operation, speed, and portability, with additional benefits of low costs and repeated reliable results. Single-molecule sensors such as nanopores that can detect biomolecules at low concentrations have the potential to become clinically relevant. As such, several applications have been introduced in this field for the detection of blood markers, nucleic acids, or proteins. The use of nanopores has yet to reach maturity for standardization as diagnostic techniques, however, they promise enormous potential, as progress is made into stabilizing nanopore structures, enhancing chemistries, and improving data collection and bioinformatic analysis. This review offers a new perspective on current biomolecule sensing techniques, based on various types of nanopores, challenges, and approaches toward implementation in clinical settings.
Collapse
Affiliation(s)
- Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (I.Ș.); (M.D.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covașă
- Department of Biomedical Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (I.Ș.); (M.D.)
- Department of Computer, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
5
|
Brown SD, Dreolini L, Wilson JF, Balasundaram M, Holt RA. Complete sequence verification of plasmid DNA using the Oxford Nanopore Technologies' MinION device. BMC Bioinformatics 2023; 24:116. [PMID: 36964503 PMCID: PMC10039527 DOI: 10.1186/s12859-023-05226-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Sequence verification is essential for plasmids used as critical reagents or therapeutic products. Typically, high-quality plasmid sequence is achieved through capillary-based Sanger sequencing, requiring customized sets of primers for each plasmid. This process can become expensive, particularly for applications where the validated sequence needs to be produced within a regulated and quality-controlled environment for downstream clinical research applications. RESULTS Here, we describe a cost-effective and accurate plasmid sequencing and consensus generation procedure using the Oxford Nanopore Technologies' MinION device as an alternative to capillary-based plasmid sequencing options. This procedure can verify the identity of a pure population of plasmid, either confirming it matches the known and expected sequence, or identifying mutations present in the plasmid if any exist. We use a full MinION flow cell per plasmid, maximizing available data and allowing for stringent quality filters. Pseudopairing reads for consensus base calling reduces read error rates from 5.3 to 0.53%, and our pileup consensus approach provides per-base counts and confidence scores, allowing for interpretation of the certainty of the resulting consensus sequences. For pure plasmid samples, we demonstrate 100% accuracy in the resulting consensus sequence, and the sensitivity to detect small mutations such as insertions, deletions, and single nucleotide variants. In test cases where the sequenced pool of plasmids contains subclonal templates, detection sensitivity is similar to that of traditional capillary sequencing. CONCLUSIONS Our pipeline can provide significant cost savings compared to outsourcing clinical-grade sequencing of plasmids, making generation of high-quality plasmid sequence for clinical sequence verification more accessible. While other long-read-based methods offer higher-throughput and less cost, our pipeline produces complete and accurate sequence verification for cases where absolute sequence accuracy is required.
Collapse
Affiliation(s)
- Scott D Brown
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Lisa Dreolini
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Jessica F Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Miruna Balasundaram
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Robert A Holt
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, SSB8166 - 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Department of Medical Genetics, University of British Columbia, C201 - 4500 Oak Street, 675 W 10th Ave, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
6
|
Full-Length 16S rRNA Gene Analysis Using Long-Read Nanopore Sequencing for Rapid Identification of Bacteria from Clinical Specimens. Methods Mol Biol 2023; 2632:193-213. [PMID: 36781730 DOI: 10.1007/978-1-0716-2996-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene is a practical and reliable measure for taxonomic profiling of bacterial communities. This chapter describes the detailed workflow for full-length 16S rRNA gene amplicon analysis using nanopore sequencing and bioinformatics pipelines to analyze nanopore sequencing data for taxonomic assignment. This approach offers a higher taxonomic resolution for bacterial identification from clinical specimens with a markedly reduced timeframe and improved versatility.
Collapse
|
7
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|