1
|
Liu L, Shi Y, He S, Yang J, Song S, Wang D, Wang Z, Zhou H, Deng X, Zou S, Zhu Y, Yu B, Zhu X. The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models. Eur J Nucl Med Mol Imaging 2025; 52:2198-2211. [PMID: 39797968 PMCID: PMC12014717 DOI: 10.1007/s00259-025-07071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
PURPOSE Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now. Therefore, this study aims to investigate the impacts of the molar dose of the administered FAPI on FAP-targeted PET imaging and radiotherapy in mouse syngeneic tumor models. METHODS [68Ga]Ga-FAPI-04 with various molar doses of FAPI-04 was administered to wild-type 4T1 tumor-bearing mice, followed by static PET imaging. Sigmoidal curves were generated to analyze the correlation between the standard uptake value (SUV) and the administered molar doses of FAPI-04. Similarly, [177Lu]Lu-DOTAGA.(SA.FAPi)2 with a consistent dose of radioactivity but containing different moles of DOTAGA.(SA.FAPi)2 were injected into 4T1 tumor-bearing mice to assess the therapeutic effect. [68Ga]Ga-FAPI-04 was also applied to different tumor models for PET/CT imaging. RESULTS A gradient blocking effect was observed with increasing FAPI molar dose in [68Ga]Ga-FAPI-04 PET imaging and [177Lu]Lu-DOTAGA.(SA.FAPi)2 treatment, with various imaging and therapeutic outcomes. [68Ga]Ga-FAPI-04 PET exhibit potentials to characterize murine derived FAP expression with low molar dose of administered FAPI-04 using various tumor models. CONCLUSION The molar dose of FAPI in [68Ga]Ga/[177Lu]Lu-FAPI had a substantial impact on FAP-targeted imaging and therapy in mouse syngeneic tumor models. To acquire enhanced reliability and reproducibility in preclinical situation, it is critical to carefully consider the molar dose of the radiotracer when applying radiolabeled FAP ligands to FAP-targeted imaging and radiotherapy.
Collapse
Affiliation(s)
- Luoxia Liu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yifan Shi
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shujie He
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jingfei Yang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Sijuan Zou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
2
|
Stehouwer JS, Huang G, Saturnino Guarino D, Debnath ML, Polu A, Geib SJ, Lopresti B, Ikonomovic MD, Mason N, Mach RH, Mathis CA. Structure-Activity Relationships and Evaluation of 2-(Heteroaryl-cycloalkyl)-1 H-indoles as Tauopathy Positron Emission Tomography Radiotracers. J Med Chem 2025; 68:6462-6492. [PMID: 40068019 PMCID: PMC11956013 DOI: 10.1021/acs.jmedchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Structure-activity relationship studies were performed on a library of synthesized compounds based on previously identified tau ligands. The top 13 new compounds had Ki values in the range of 5-14 nM in Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) post-mortem brain tissues. One of the more promising new compounds ([3H]75) bound with high affinity in AD, PSP, and CBD tissues (KD's = 1-1.5 nM) and Pick's disease tissue (KD = 3.8 nM). Autoradiography studies with [3H]75 demonstrated specific binding in AD, PSP, and CBD post-mortem tissues. Nonhuman primate brain PET imaging with [18F]75 demonstrated a peak standardized uptake value (SUV) of ∼5 in the cerebellum, ∼4.5 in the cortex, and ∼4 in whole brain with SUV 2-to-90 min ratios of 3.9 in whole brain, 4.9 in cortex, and 4.5 in cerebellum. Compound [18F]75 is a promising candidate for translation to human brain PET imaging studies.
Collapse
Affiliation(s)
- Jeffrey S. Stehouwer
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Guofeng Huang
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Dinahlee Saturnino Guarino
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Manik L. Debnath
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Ashok Polu
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- X-ray
Crystallography Laboratory, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Brian Lopresti
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Milos D. Ikonomovic
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Geriatric
Research and Clinical Education, VA Pittsburgh
Healthcare System, Pittsburgh, Pennsylvania 15240, United States
| | - Neale Mason
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Robert H. Mach
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Chester A. Mathis
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Kondo N, Yonezawa M, Hirano F, Temma T. Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes. Molecules 2025; 30:1011. [PMID: 40076236 PMCID: PMC11901735 DOI: 10.3390/molecules30051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is an emerging critical target for the diagnosis and treatment of various diseases. Radiolabeled exendin-4 (Ex-4), a GLP-1R agonist, has been widely used as an imaging probe. However, its potential to induce hypoglycemia, especially in patients with insulinoma, limits its applicability. This study evaluated whether Ex-D3, a Glu3Asp substitution of Ex-4 with a higher internalization rate, could enhance the imaging efficacy of Ex-4 while reducing its hypoglycemic effects. We synthesized derivatives with an additional C-terminal Cys (Ex-D3-C40) for site-specific 125I labeling. Surface plasmon resonance analysis revealed that C-terminus modification did not significantly alter the binding affinity of Ex-D3-C40 to GLP-1R. In vivo studies in mice demonstrated that Ex-D3-C40 induced weaker hypoglycemic effects than Ex-4-C40. Biodistribution studies showed that 125I-labeled Ex-D3 ([125I]I-Ex-D3) achieved significantly higher pancreatic accumulation and higher pancreas-to-blood and pancreas-to-muscle ratios than [125I]I-Ex-4. Ex vivo autoradiography confirmed the binding specificity of [125I]I-Ex-D3 to GLP-1R-expressing pancreatic β-cells. These findings indicate that Ex-D3 is a promising parent peptide for the development of superior GLP-1R imaging probes with reduced hypoglycemic risk, highlighting the importance of considering pharmacological effects in designing molecular imaging probes.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Institute, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
| | - Maiko Yonezawa
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
| | - Fuko Hirano
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
| |
Collapse
|
4
|
Brusa I, Cabitza VS, Emiliani S, Malizia C, Fortunati E, Zanoni L, Cuzzani G, Farolfi A, Castellucci P, Nanni C, Fanti S, Lodi F. Optimization and scale-up of [ 68Ga]Ga-FAPI-46 production on a Modular-Lab PharmTracer platform for clinical application. Nucl Med Biol 2025; 140-141:108974. [PMID: 39999572 DOI: 10.1016/j.nucmedbio.2024.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 02/27/2025]
Abstract
BACKGROUND Due to the increasing application of the fibroblast activation protein (FAP) targeting radiotracer [68Ga]Ga-FAPI-46 in cancer diagnostics by PET/CT, there is a need for a convenient way for routine production of high activities of this tracer. The aim of the current work is the optimization and scale-up of an automated method for [68Ga]Ga-FAPI-46 production on a PharmTracer module using two GalliaPharm generators. RESULTS Several labeling conditions were evaluated and the best results were obtained with 40 μg of precursor, 3 mg ascorbic acid as anti-radiolysis agent, 0.4 M sodium acetate buffer pH 4.5 and 15 min heating at 95 °C. Furthermore, Vitamin C was added to the final formulation as stabilizer to ensure product quality in a time frame of 3 h after the end of synthesis. The evaluation of 43 routine syntheses of [68Ga]Ga-FAPI-46 resulted in a decay-corrected yield of 91.1 ± 3.4 % and radiochemical purity of 99.8 ± 0.3 % as determined by radio-HPLC. All the quality control parameters were in accordance with specifications. CONCLUSIONS In conclusion, we developed an efficient and robust method able to provide multiple doses of [68Ga]Ga-FAPI-46, enabling a better response to the clinical need for this radiopharmaceutical.
Collapse
Affiliation(s)
- Irene Brusa
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Stefano Emiliani
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Malizia
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emilia Fortunati
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Cuzzani
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Filippo Lodi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
5
|
Li X, Xie L, Huang S, Guo X, Yang J, Zhao L, Yang D, Zhang G, He CY. Late-Stage Rapid [ 18F]Trifluoromethyl Radiolabeling of Terminal Alkenes at Room Temperature. Org Lett 2024; 26:10865-10869. [PMID: 39652244 DOI: 10.1021/acs.orglett.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
We report an efficient, metal-free method for late-stage rapid [18F]trifluoromethyl radiolabeling of terminal alkenes at room temperature. Utilizing 3,3-difluoroallyl sulfonium salts as precursors, the process achieves high radiochemical yields (up to 94 ± 2%) in just 30 s, with excellent functional group tolerance. This method offers a simplified and efficient pathway to produce [18F]trifluoromethylated terminal alkene compounds, enabling their application in PET imaging and expanding the chemical space for drug discovery.
Collapse
Affiliation(s)
- Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- AlphaGen Therapeutics, Shanghai 201203, China
| | - Lang Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Xin Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Jian Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Dezhi Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chun-Yang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
6
|
Sun Y, Ramos-Torres KM, Takahashi K, Tiss A, Zhang LL, Brugarolas P. Synthesis of K + channel radioligand [ 18F]5-methyl-3-fluoro-4-aminopyridine and PET imaging in mice. Bioorg Med Chem Lett 2024; 114:129991. [PMID: 39426429 DOI: 10.1016/j.bmcl.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
[18F]3-fluoro-4-aminopyridine ([18F]3F4AP) is the first positron emission tomography (PET) radioligand that targets voltage-gated potassium (K+) channels in the brain for imaging demyelination. [18F]3F4AP exhibits high brain penetration, favorable kinetics for PET imaging, and high sensitivity to demyelinating lesions. However, recent studies in awake human subjects indicate lower metabolic stability than in anesthetized animals, resulting in reduced brain uptake. Therefore, there is a need for novel radioligands for K+ channels with suitable pharmacological properties and enhanced metabolic stability. Recent in vitro studies demonstrate that 5-methyl-3-fluoro-4-aminopyridine (5Me3F4AP) exhibits comparable binding affinity to K+ channels, pKa, logD, and membrane permeability as 3F4AP, and a slower enzymatic metabolic rate, suggesting its potential as a K+ channel PET tracer. In this study, we describe the radiochemical synthesis of [18F]5Me3F4AP using an isotope exchange method from the corresponding 3-fluoro-5-methyl-4-nitropyridine N-oxide, followed by a palladium on carbon mediated hydrogenation of the nitro and N-oxide groups. This method yielded [18F]5Me3F4AP with high purity and acceptable molar activity. PET/CT studies using naïve mice demonstrate that [18F]5Me3F4AP effectively crosses the blood-brain barrier and has comparable kinetics to [18F]3F4AP. These findings strongly suggest that [18F]5Me3F4AP is a promising candidate for neuroimaging applications and warrant further studies to investigate its sensitivity to lesions and in vivo metabolic stability.
Collapse
Affiliation(s)
- Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Karla M Ramos-Torres
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazue Takahashi
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amal Tiss
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Kikuchi T, Okamura T, Zhang MR. Numerical simulation method for the assessment of the effect of molar activity on the pharmacokinetics of radioligands in small animals. EJNMMI Radiopharm Chem 2024; 9:78. [PMID: 39570519 PMCID: PMC11582259 DOI: 10.1186/s41181-024-00308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND It is well recognized that the molar activity of a radioligand is an important pharmacokinetic parameter, especially in positron emission tomography (PET) of small animals. Occupation of a significant number of binding sites by radioligand molecules results in low radioligand accumulation in a target region (mass effect). Nevertheless, small-animal PET studies have often been performed without consideration of the molar activity or molar dose of radioligands. A simulation study would therefore help to assess the importance of the mass effect in small-animal PET. Here, we introduce a new compartmental model-based numerical method, which runs on commonly used spreadsheet software, to simulate the effect of molar activity or molar dose on the pharmacokinetics of radioligands. RESULTS Assuming a two-tissue compartmental model, time-concentration curves of a radioligand were generated using four simulation methods and the well-known Runge-Kutta numerical method. The values were compared with theoretical values obtained under an ultra-high molar activity condition (pseudo-first-order binding kinetics), a steady-state condition and an equilibrium condition (second-order binding kinetics). For all conditions, the simulation method using the simplest calculation yielded values closest to the theoretical values and comparable with those obtained using the Runge-Kutta method. To satisfy a maximum occupancy less than 5%, simulations showed that a molar activity greater than 150 GBq/μmol is required for a model radioligand when 20 MBq is administered to a 250 g rat and when the concentration of binding sites in target regions is greater than 1.25 nM. CONCLUSIONS The simulation method used in this study is based on a very simple calculation and runs on widely used spreadsheet software. Therefore, simulation of radioligand pharmacokinetics using this method can be performed on a personal computer and help to assess the importance of the mass effect in small-animal PET. This simulation method also enables the generation of a model time-activity curve for the evaluation of kinetic analysis methods.
Collapse
Affiliation(s)
- Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
8
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:2955-2967. [PMID: 39466073 PMCID: PMC11562018 DOI: 10.1158/2767-9764.crc-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
SIGNIFICANCE Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
9
|
Migliari S, Bruno S, Bianchera A, De Nardis I, Scarano A, Lusardi M, Gaiani A, Guercio A, Scarlattei M, Baldari G, Bettini R, Ruffini L. Validation of a radiosynthesis method and a novel quality control system for [ 68 Ga]Ga-MAA: is TLC enough to assess radiopharmaceutical quality? EJNMMI Radiopharm Chem 2024; 9:70. [PMID: 39405010 PMCID: PMC11480274 DOI: 10.1186/s41181-024-00302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Technetium-99 m-labelled macroaggregated human serum albumin ([99mTc]Tc-MAA) is commonly used for lung perfusion scintigraphy. The European Pharmacopoeia (Eu.Ph.) specifies thin-layer chromatography (TLC) as the only method to assess its radiochemical purity (RCP). Similarly, TLC is the sole method reported in the literature to evaluate the RCP of Gallium-68-labelled MAA [68 Ga]Ga-MAA, recently introduced for lung perfusion PET/CT imaging. Since [68 Ga]Ga-MAA is prepared from commercial kits originally designed for the preparation of [99mTc]Tc-MAA, it is essential to optimize and validate the preparation methods for [68 Ga]Ga-MAA. RESULTS We tested a novel, simplified method for the preparation of [68 Ga]Ga-MAA that does not require organic solvents, prewash or final purification steps to remove radioactive impurities. We assessed the final product using radio-TLC, radio-UV-HPLC, and radio SDS-PAGE. Overall, our quality control (QC) method successfully detected [68 Ga]Ga-MAA along with all potential impurities, including free Ga-68, [68 Ga]Ga-HSA, unlabeled HSA, which may occur during labelling process and HEPES residual, a non-toxic but non-human-approved contaminant, used as buffer solution. We then applied our QC system to [68 Ga]Ga-MAA prepared under different conditions (25°-40°-75°-95 °C), thus defining the optimal temperature for labelling. Scanning Electron Microscopy (SEM) analysis of the products obtained through our novel method confirmed that most [68 Ga]Ga-MAA particles preserved the morphological structure and size distribution of unlabeled MAA, with a particle diameter range of 25-50 μm, assuring diagnostic efficacy. CONCLUSIONS We optimized a novel method to prepare [68 Ga]Ga-MAA through a QC system capable of monitoring all impurities of the final products.
Collapse
Affiliation(s)
- Silvia Migliari
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Stefano Bruno
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Ilaria De Nardis
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Antonio Scarano
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Monica Lusardi
- Chromatography and Mass Division, Orion Scientific, Via Giacomelli 16, 35010, Padua, Italy
| | - Anna Gaiani
- Chromatography and Mass Division, Orion Scientific, Via Giacomelli 16, 35010, Padua, Italy
| | - Alessandra Guercio
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Maura Scarlattei
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Giorgio Baldari
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Livia Ruffini
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
10
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Huclier-Markai S, Medvedev DG, Cutler CS. Improved titanium-44 purification process for establishing a high apparent molar activity titanium-44/scandium-44 generator. Appl Radiat Isot 2024; 212:111451. [PMID: 39084111 DOI: 10.1016/j.apradiso.2024.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
44Sc-radiopharmaceuticals are gaining more interest but still lack availability. The proof of principle of a44Ti/44Sc generator, which can produce 44Sc daily, has been established but with some limitations and drawbacks. Despite recent advances, separation of 44Ti from massive quantities of scandium target material is still cumbersome. In this work, the improved radiochemical separation of 44Ti from residual scandium target material was carried out by precipitation of Sc with fluoride ions. Furthermore, two approaches were used to set up a high apparent molar activity small-scale generator. The first method relied on extraction chromatography for fine purification using a DGA resin, followed by loading of the purified 44Ti onto a ZR resin column. In the second method, 44Ti was loaded on the ZR resin directly after the precipitation step. This second method was used to set up a generator of 370 kBq and evaluate by radiolabeling. An apparent molar activity of 2 MBq/nmol was obtained for the radiolabeling with DOTA, the most common and suitable chelate for scandium. This result is comparable with previously published data on 44 m/44Sc.
Collapse
Affiliation(s)
- S Huclier-Markai
- SUBATECH, UMR 6457, Nantes Université / IMT Atlantique / CNRS-IN2P3, 4 rue Alfred Kastler La Chantrerie, BP 20722, 44307 Nantes, France; ARRONAX, 1 Rue Aronnax - CS 10112, 44817 Saint-Herblain Cedex, France; Brookhaven National Laboratory, Isotope Research and Production Department, Upton, NY 11973, USA.
| | - D G Medvedev
- Brookhaven National Laboratory, Isotope Research and Production Department, Upton, NY 11973, USA
| | - C S Cutler
- Brookhaven National Laboratory, Isotope Research and Production Department, Upton, NY 11973, USA
| |
Collapse
|
12
|
van Leeuwen FWB, Buckle T, van Oosterom MN, Rietbergen DDD. The Rise of Molecular Image-Guided Robotic Surgery. J Nucl Med 2024; 65:1505-1511. [PMID: 38991755 DOI: 10.2967/jnumed.124.267783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Following early acceptance by urologists, the use of surgical robotic platforms is rapidly spreading to other surgical fields. This empowerment of surgical perception via robotic advances occurs in parallel to developments in intraoperative molecular imaging. Convergence of these efforts creates a logical incentive to advance the decades-old image-guided robotics paradigm. This yields new radioguided surgery strategies set to optimally exploit the symbiosis between the growing clinical translation of robotics and molecular imaging. These strategies intend to advance surgical precision by increasing dexterity and optimizing surgical decision-making. In this state-of-the-art review, topic-related developments in chemistry (tracer development) and engineering (medical device development) are discussed, and future scientific robotic growth markets for molecular imaging are presented.
Collapse
Affiliation(s)
- Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Sun J, Jaworski C, Schirrmacher R, Hall DG. Suppressing Protodeboronation in Cu-Mediated 19F/ 18F-Fluorination of Arylboronic Acids: A Mechanistically Guided Approach Towards Optimized PET Probe Development. Chemistry 2024; 30:e202400906. [PMID: 38959115 DOI: 10.1002/chem.202400906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fluorinated arenes play a crucial role in drug discovery, specialty materials, and medical imaging. Although several variants for Cu-mediated nucleophilic fluorination of arylboronic acids and derivatives have been developed, these protocols rarely address the occurrence and control of protodeboronation, which greatly complicates product separation and can compromise the effectiveness of a radiotracer for in vivo imaging. Consequently, simpler and more efficient procedures are needed to allow rapid 18F/19F-fluorination of both arylboronic acids and esters while minimizing protodeboronation. Mechanistic controls revealed that in addition to a high temperature, strong donor ligands such as acetonitrile and pyridine accentuate a Cu-mediated protodeboronation. This observation guided the optimization of a ligandless procedure, with t-BuOH as solvent, to activate fluoride under milder conditions at lower temperatures minimizing protodeboronation. Additionally, a new copper salt, Cu(ONf)2 was employed to further improve the fluorination efficiency. A large range of functional groups are tolerated under the new procedure, which is complete within 30 minutes at a temperature of 60 °C, and affords fluorinated arenes and heteroarenes in 39 % to 84 % yield. With minimal modifications, the protocol can also be applied in 18F-radiofluorination, affording radiochemical conversions (RCCs) between 17 and 54 % with minimal protodeboronation compared to previously established protocols.
Collapse
Affiliation(s)
- Jingkai Sun
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Dennis G Hall
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
14
|
Lu Y, Chao PH, Collins J, van Dam RM. Rapid Concentration of Ga-68 and Proof-of-Concept Microscale Labeling of [ 68Ga]Ga-PSMA-11 in a Droplet Reactor. Molecules 2024; 29:4572. [PMID: 39407503 PMCID: PMC11477945 DOI: 10.3390/molecules29194572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The radiometal gallium-68 (Ga-68) has garnered significant interest due to its convenient production via compact and widely available generators and the high performance of 68Ga-labeled compounds for positron-emission tomography (PET) imaging for cancer diagnosis and management of patients undergoing targeted radionuclide therapy. Given the short half life of Ga-68 (68 min), microfluidic-based radiosynthesis is a promising avenue to establish very rapid, efficient, and routine radiolabeling with Ga-68; however, the typical elution volume of Ga-68 from a generator (4-10 mL) is incompatible with the microliter reaction volumes of microfluidic devices. To bridge this gap, we developed a microscale cartridge-based approach to concentrate Ga-68. By optimizing cartridge design, resin type, resin mass, and eluent composition, Ga-68 was reliably concentrated from ~6 mL to ~80 µL with high recovery efficiency (>97%, n = 14). Furthermore, this method is suitable for both single- and dual-generator setups. To demonstrate suitability of the concentrated radiometal for radiolabeling, we performed microdroplet synthesis of [68Ga]Ga-PSMA-11, achieving high radiochemical yield (83 ± 11%, n = 3), excellent radiochemical purity (>99%), and high apparent specific activity (255-320 MBq/μg). The entire process, including Ga-68 concentration, radiosynthesis, purification, and formulation, was completed in 12 min. Starting with activity of 0.81-0.84 GBq, 0.51-0.64 GBq of product was produced, sufficient for multiple patient doses. This work paves the way to clinical-scale production of other 68Ga-labeled compounds using droplet microreactor methods, or high-throughput labeling optimization or compound screening of 68Ga-labeled probes using droplet reaction arrays.
Collapse
Affiliation(s)
- Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Philip H. Chao
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - R. Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Pairodsantikul P, Wongsa P, Wongkri C, Burasothikul P, Jantarato A, Chotipanich C. Diagnostic Reference Levels in PET Imaging at Chulabhorn Hospital, Thailand. J Nucl Med Technol 2024; 52:261-266. [PMID: 38901963 DOI: 10.2967/jnmt.124.267576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Diagnostic reference levels (DRLs) are an important tool for controlling radiation exposure and ensuring safety in medical applications. In Thailand, DRL data have been gathered and established for nuclear medicine diagnostics since 2021. However, there is a lack of information on PET imaging examinations. At the National Cyclotron and PET Scan Centre, Chulabhorn Hospital, radiopharmaceuticals are produced for medical imaging and research, and a wide range of PET/CT and PET/MRI examinations are performed. Our objective was to investigate the administered activity of radiopharmaceuticals in patients undergoing PET imaging, especially the existing data on DRLs in medical diagnostic imaging. Methods: This was a retrospective study on nuclear medicine patients at the National Cyclotron and PET Scan Centre in 2023. Statistical analysis, including the mean and the 75th percentile values, was conducted to determine DRLs according to the International Commission on Radiological Protection guidelines. Results: The center performed 8,711 PET/CT and PET/MRI studies with 13 protocols in 2023. The most commonly administered activity was 18F-FDG in oncology and neurology examinations, with DRLs of 186.11 and 136.16 MBq, respectively. These values were notably almost twice lower than several reports in other countries. Conclusion: There is a lack of comprehensive data on most DRLs for PET imaging at this center because of the nonwidespread use of several radiopharmaceuticals. However, the lower DRLs for 18F-FDG can highlight the need for ongoing investigation toward the establishment of local DRLs, as well as assurance on the safety and efficiency of radiation used in nuclear medicine.
Collapse
Affiliation(s)
- Phornpailin Pairodsantikul
- School of Radiological Technology, Faculty of Health Science Technology, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand; and
| | - Paramest Wongsa
- School of Radiological Technology, Faculty of Health Science Technology, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand; and
| | - Chaluntorn Wongkri
- School of Radiological Technology, Faculty of Health Science Technology, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand; and
| | - Paphawarin Burasothikul
- School of Radiological Technology, Faculty of Health Science Technology, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand; and
| | - Attapon Jantarato
- National Cyclotron and PET Centre, Chulabhorn Hospital, Bangkok, Thailand
| | | |
Collapse
|
16
|
Buckle T, Rietbergen DDD, de Wit-van der Veen L, Schottelius M. Lessons learned in application driven imaging agent design for image-guided surgery. Eur J Nucl Med Mol Imaging 2024; 51:3040-3054. [PMID: 38900308 PMCID: PMC11300579 DOI: 10.1007/s00259-024-06791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
- Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Wit-van der Veen
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland.
- Agora, pôle de recherche sur le cancer, Lausanne, Switzerland.
| |
Collapse
|
17
|
Volpe A, Lyashchenko SK, Ponomarev V. Nuclear-Based Labeling of Cellular Immunotherapies: A Simple Protocol for Preclinical Use. Mol Imaging Biol 2024; 26:555-568. [PMID: 38958882 PMCID: PMC11281953 DOI: 10.1007/s11307-024-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/04/2024]
Abstract
Labeling and tracking existing and emerging cell-based immunotherapies using nuclear imaging is widely used to guide the preclinical phases of development and testing of existing and new emerging off-the-shelf cell-based immunotherapies. In fact, advancing our knowledge about their mechanism of action and limitations could provide preclinical support and justification for moving towards clinical experimentation of newly generated products and expedite their approval by the Food and Drug Administration (FDA).Here we provide the reader with a ready to use protocol describing the labeling methodologies and practical procedures to render different candidate cell therapies in vivo traceable by nuclear-based imaging. The protocol includes sufficient practical details to aid researchers at all career stages and from different fields in familiarizing with the described concepts and incorporating them into their work.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Zhao Q, Telu S, Jana S, Morse CL, Pike VW. Isotopologues of potassium 2,2,2-trifluoroethoxide for applications in positron emission tomography and beyond. Nat Commun 2024; 15:5798. [PMID: 38987549 PMCID: PMC11237122 DOI: 10.1038/s41467-024-49975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
The 2,2,2-trifluoroethoxy group increasingly features in drugs and potential tracers for biomedical imaging with positron emission tomography (PET). Herein, we describe a rapid and transition metal-free conversion of fluoroform with paraformaldehyde into highly reactive potassium 2,2,2-trifluoroethoxide (CF3CH2OK) and demonstrate robust applications of this synthon in one-pot, two-stage 2,2,2-trifluoroethoxylations of both aromatic and aliphatic precursors. Moreover, we show that these transformations translate easily to fluoroform that has been labeled with either carbon-11 (t1/2 = 20.4 min) or fluorine-18 (t1/2 = 109.8 min), so allowing the appendage of complex molecules with a no-carrier-added 11C- or 18F- 2,2,2-trifluoroethoxy group. This provides scope to create candidate PET tracers with radioactive and metabolically stable 2,2,2-trifluoroethoxy moieties. We also exemplify syntheses of isotopologues of potassium 2,2,2-trifluoroethoxide and show their utility for stable isotopic labeling which can be of further benefit for drug discovery and development.
Collapse
Affiliation(s)
- Qunchao Zhao
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA.
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA.
| |
Collapse
|
19
|
Ford J, Ortalli S, Gouverneur V. The 18F-Difluoromethyl Group: Challenges, Impact and Outlook. Angew Chem Int Ed Engl 2024; 63:e202404957. [PMID: 38640422 DOI: 10.1002/anie.202404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.
Collapse
Affiliation(s)
- Joseph Ford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sebastiano Ortalli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
20
|
Fonseca ICF, Pais ML, Rodrigues FMS, Sereno J, Castelo-Branco M, Cavadas C, Pereira MM, Abrunhosa AJ. Improved Chemical and Radiochemical Synthesis of Neuropeptide Y Y 2 Receptor Antagonist N-Methyl-JNJ-31020028 and Preclinical Positron Emission Tomography Studies. Pharmaceuticals (Basel) 2024; 17:474. [PMID: 38675435 PMCID: PMC11053772 DOI: 10.3390/ph17040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammals and is involved in several physiological processes through NPY Y1, Y2, Y4 and Y5 receptors. Of those, the Y2 receptor has particular relevance for its autoreceptor role in inhibiting the release of NPY and other neurotransmitters and for its involvement in relevant mechanisms such as feeding behaviour, cognitive processes, emotion regulation, circadian rhythms and disorders such as epilepsy and cancer. PET imaging of the Y2 receptor can provide a valuable platform to understand this receptor's functional role and evaluate its potential as a therapeutic target. In this work, we set out to refine the chemical and radiochemical synthesis of the Y2 receptor antagonist N-[11C]Me-JNJ31020028 for in vivo PET imaging studies. The non-radioactive reference compound, N-Me-JNJ-31020028, was synthesised through batch synthesis and continuous flow methodology, with 43% and 92% yields, respectively. N-[11C]Me-JNJ-31020028 was obtained with a radiochemical purity > 99%, RCY of 31% and molar activity of 156 GBq/μmol. PET imaging clearly showed the tracer's biodistribution in several areas of the mouse brain and gut where Y2 receptors are known to be expressed.
Collapse
Affiliation(s)
- Inês C. F. Fonseca
- CIBIT/ICNAS, Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal; (I.C.F.F.); (M.L.P.); (J.S.); (M.C.-B.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Lapo Pais
- CIBIT/ICNAS, Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal; (I.C.F.F.); (M.L.P.); (J.S.); (M.C.-B.)
| | - Fábio M. S. Rodrigues
- Coimbra Chemistry Centre, University of Coimbra, 3000-548 Coimbra, Portugal; (F.M.S.R.); (M.M.P.)
| | - José Sereno
- CIBIT/ICNAS, Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal; (I.C.F.F.); (M.L.P.); (J.S.); (M.C.-B.)
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT/ICNAS, Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal; (I.C.F.F.); (M.L.P.); (J.S.); (M.C.-B.)
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Cavadas
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariette M. Pereira
- Coimbra Chemistry Centre, University of Coimbra, 3000-548 Coimbra, Portugal; (F.M.S.R.); (M.M.P.)
| | - Antero J. Abrunhosa
- CIBIT/ICNAS, Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal; (I.C.F.F.); (M.L.P.); (J.S.); (M.C.-B.)
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
21
|
Ashhar Z, Ahmad Fadzil MF, Md Safee Z, Aziz F, Ibarhim UH, Nik Afinde NMF, Mat Ail N, Jamal Harizan MAH, Halib D, Alek Amran A, Adawiyah R, Abd Hamid MHN, Mahamood M, Razali NI, Said MA. Performance evaluation of Gallium-68 radiopharmaceuticals production using liquid target PETtrace 800 cyclotron. Appl Radiat Isot 2024; 205:111161. [PMID: 38163386 DOI: 10.1016/j.apradiso.2023.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Due to increased demand, cyclotron has an expanding role in producing Gallium-68 (68Ga) radiopharmaceuticals using solid and liquid targets. Though the liquid target produces lower end-of-bombardment activity compared to the solid target, our study presents the performance of 68Ga radiopharmaceuticals production using the liquid target by evaluating the end-of-bombardment activity and the end-of-purification activity of [68Ga]GaCl3. We also present the effect of increasing irradiation time, which significantly improves the end-of-synthesis yield. From the result obtained, the end-of-bombardment activity produced was 4.48 GBq, and the [68Ga]GaCl3 end-of-purification activity produced was 2.51 GBq with below-limit metallic impurities. Increasing the irradiation time showed a significant increase in the end-of-synthesis activity from 1.33 GBq to 1.95 GBq for [68Ga]Ga-PSMA-11 and from 1.13 GBq to 1.74 GBq for [68Ga]Ga-DOTA-TATE. Based on the improvements made, the liquid target production of 68Ga radiopharmaceuticals is feasible and reproducible to accommodate up to 5 patients per production. In addition, this work also discusses the issues encountered, together with the possible corrective and preventative measures.
Collapse
Affiliation(s)
- Zarif Ashhar
- Pharmacy Department, National Cancer Institute, Putrajaya, 62250, Malaysia.
| | | | | | - Firdaus Aziz
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia; Chemistry Department, Faculty of Science, Universiti Putra Malaysia, Selangor, Serdang 43400, Malaysia
| | - Ummi Habibah Ibarhim
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Noratikah Mat Ail
- Pharmacy Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Dzulieza Halib
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Rabiatul Adawiyah
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Mazurin Mahamood
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | - Nor Idayu Razali
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | |
Collapse
|
22
|
Kirby A, Graf D, Suchý M, Calvert ND, Charlton TA, Ben RN, Addison CL, Shuhendler A. It's a Trap! Aldolase-Prescribed C 4 Deoxyradiofluorination Affords Intracellular Trapping and the Tracing of Fructose Metabolism by PET. J Nucl Med 2024; 65:475-480. [PMID: 38272705 DOI: 10.2967/jnumed.123.266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.
Collapse
Affiliation(s)
- Alexia Kirby
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominic Graf
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Mojmír Suchý
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D Calvert
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Robert N Ben
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina L Addison
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Adam Shuhendler
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
McErlain H, Andrews MJ, Watson AJB, Pimlott SL, Sutherland A. Ligand-Enabled Copper-Mediated Radioiodination of Arenes. Org Lett 2024; 26:1528-1532. [PMID: 38335124 PMCID: PMC10897930 DOI: 10.1021/acs.orglett.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
The discovery of a copper precatalyst that facilitates the key mechanistic steps of arene halodeboronation has allowed a step change in the synthesis of radioiodine-containing arenes. The active precatalyst [Cu(OAc)(phen)2]OAc was shown to perform room temperature radio-iododeboronation of aryl boronic acids with 1-2 mol % loadings and 10 min reaction times. These mild conditions enable particularly clean reactions, as demonstrated with the efficient preparation of the radiopharmaceutical and SPECT tracer, meta-iodobenzylguanidine (MIBG).
Collapse
Affiliation(s)
- Holly McErlain
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Matthew J Andrews
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow, G12 OYN, U.K
| | | |
Collapse
|
24
|
Myburgh PJ, Solingapuram Sai KK. Two decades of [ 11C]PiB synthesis, 2003-2023: a review. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:48-62. [PMID: 38500746 PMCID: PMC10944378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Because carbon-11 (11C) radiotracers cannot be shipped over long distances, their use in routine positron emission tomography (PET) studies is dependent on the production capabilities of individual radiochemistry laboratories. Since 2003, 11C-labeled Pittsburgh compound B ([11C]PiB) has been the gold standard PET radiotracer for in vivo imaging of amyloid β (Aβ) plaques. For more than two decades, researchers have been working to develop faster, higher-yielding, more robust, and optimized production methods with higher radiochemical yields for various imaging applications. This review evaluates progress in [11C]PiB radiochemistry. An introductory overview assesses how it has been applied in clinical neurologic imaging research. We examine the varying approaches reported for radiolabeling, purification, extraction, and formulation. Further considerations for QC methods, regulatory considerations, and optimizations were also discussed.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational Imaging Program, Wake Forest School of MedicineWinston-Salem, NC 27157, USA
| | - Kiran Kumar Solingapuram Sai
- Translational Imaging Program, Wake Forest School of MedicineWinston-Salem, NC 27157, USA
- Department of Radiology, Wake Forest School of MedicineWinston-Salem, NC 27157, USA
| |
Collapse
|
25
|
Lindsley C, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals: A "Hot" Topic. ACS Pharmacol Transl Sci 2024; 7:1-7. [PMID: 38230278 PMCID: PMC10789131 DOI: 10.1021/acsptsci.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Craig
W. Lindsley
- Department
of Pharmacology, Department of Chemistry, and Vanderbilt Institute
of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E. Müller
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical
Research and Development, Novartis, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|
26
|
Chalet L, Debatisse J, Wateau O, Boutelier T, Wiart M, Costes N, Mérida I, Redouté J, Langlois JB, Lancelot S, Léon C, Cho TH, Mechtouff L, Eker OF, Nighoghossian N, Canet-Soulas E, Becker G. The PREMISE database of 20 Macaca fascicularis PET/MRI brain images available for research. Lab Anim (NY) 2024; 53:13-17. [PMID: 37996697 PMCID: PMC10766538 DOI: 10.1038/s41684-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Non-human primate studies are unique in translational research, especially in neurosciences where neuroimaging approaches are the preferred methods used for cross-species comparative neurosciences. In this regard, neuroimaging database development and sharing are encouraged to increase the number of subjects available to the community, while limiting the number of animals used in research. Here we present a simultaneous positron emission tomography (PET)/magnetic resonance (MR) dataset of 20 Macaca fascicularis images structured according to the Brain Imaging Data Structure standards. This database contains multiple MR imaging sequences (anatomical, diffusion and perfusion imaging notably), as well as PET perfusion and inflammation imaging using respectively [15O]H2O and [11C]PK11195 radiotracers. We describe the pipeline method to assemble baseline data from various cohorts and qualitatively assess all the data using signal-to-noise and contrast-to-noise ratios as well as the median of intensity and the pseudo-noise-equivalent-count rate (dynamic and at maximum) for PET data. Our study provides a detailed example for quality control integration in preclinical and translational PET/MR studies with the aim of increasing reproducibility. The PREMISE database is stored and available through the PRIME-DE consortium repository.
Collapse
Affiliation(s)
- Lucie Chalet
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Olea Medical, La Ciotat, France
| | - Justine Debatisse
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), UMR 5229 CNRS, Bron Cedex, France
| | | | | | - Marlène Wiart
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
| | | | | | | | | | | | - Christelle Léon
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
| | - Tae-Hee Cho
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Omer Faruk Eker
- Hospices Civils de Lyon, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon, Bât. Blaise Pascal, Villeurbanne, France
| | - Norbert Nighoghossian
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France.
| | - Guillaume Becker
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France.
- Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Lyon, France.
| |
Collapse
|
27
|
Nair M, Cheung YY, Liu F, Koran ME, Rosenberg AJ. Fully automated dual-run manufacturing of [ 11C]PIB on FASTlab. Nucl Med Biol 2024; 128-129:108873. [PMID: 38154168 PMCID: PMC10922476 DOI: 10.1016/j.nucmedbio.2023.108873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
This report describes an updated, fully automated method for the production of [11C]PIB on a cassette-based automated synthesis module. The method allows for two separate productions of [11C]PIB, both of which meet all specification for use in clinical studies. The GE FASTlab developer system was used to create the cassette design as well as the controlling tracer package. The method takes 16 min from the delivery of [11C]MeOTf to the FASTlab, or 35 min from the End of Bombardment; and reliably produces 3547 ± 586 MBq of [11C]PIB in high radiochemical purity (> 98 %). This methodology increases the production capacity of radiopharmaceutical facilities for [11C]PIB, and can easily produce 4 batches in a single day with limited infrastructure footprint.
Collapse
Affiliation(s)
| | - Yiu-Yin Cheung
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fei Liu
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ellen Koran
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Rosenberg
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
28
|
Lindsley CW, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals: A "Hot" Topic. J Med Chem 2023; 66:16457-16463. [PMID: 38109062 DOI: 10.1021/acs.jmedchem.3c02281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Craig W Lindsley
- Department of Pharmacology, Department of Chemistry, and Vanderbilt Institute of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical Research and Development, Novartis, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|
29
|
Pretze M, Michler E, Runge R, Wetzig K, Tietze K, Brandt F, Schultz MK, Kotzerke J. Influence of the Molar Activity of 203/212Pb-PSC-PEG 2-TOC on Somatostatin Receptor Type 2-Binding and Cell Uptake. Pharmaceuticals (Basel) 2023; 16:1605. [PMID: 38004470 PMCID: PMC10675797 DOI: 10.3390/ph16111605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: In neuroendocrine tumors (NETs), somatostatin receptor subtype 2 is highly expressed, which can be targeted by a radioactive ligand such as [177Lu]Lu-1,4,7,10-tetraazacyclododecane-N,N',N″,N‴,-tetraacetic acid-[Tyr3,Thr8]-octreotide (177Lu-DOTA-TOC) and, more recently, by a lead specific chelator (PSC) containing 203/212Pb-PSC-PEG2-TOC (PSC-TOC). The molar activity (AM) can play a crucial role in tumor uptake, especially in receptor-mediated uptake, such as in NETs. Therefore, an investigation of the influence of different molar activities of 203/212Pb-PSC-TOC on cell uptake was investigated. (2) Methods: Optimized radiolabeling of 203/212Pb-PSC-TOC was performed with 50 µg of precursor in a NaAc/AcOH buffer at pH 5.3-5.5 within 15-45 min at 95° C. Cell uptake was studied in AR42 J, HEK293 sst2, and ZR75-1 cells. (3) Results: 203/212Pb-PSC-TOC was radiolabeled with high radiochemical purity >95% and high radiochemical yield >95%, with AM ranging from 0.2 to 61.6 MBq/nmol. The cell uptake of 203Pb-PSC-TOC (AM = 38 MBq/nmol) was highest in AR42 J (17.9%), moderate in HEK293 sstr (9.1%) and lowest in ZR75-1 (0.6%). Cell uptake increased with the level of AM. (4) Conclusions: A moderate AM of 15-40 MBq/nmol showed the highest cell uptake. No uptake limitation was found in the first 24-48 h. Further escalation experiments with even higher AM should be performed in the future. It was shown that AM plays an important role because of its direct dependence on the cellular uptake levels, possibly due to less receptor saturation with non-radioactive ligands at higher AM.
Collapse
Affiliation(s)
- Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Roswitha Runge
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Kerstin Wetzig
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Katja Tietze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Florian Brandt
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Michael K. Schultz
- Department of Radiology, University of Iowa, Iowa City, IA 52240, USA;
- Viewpoint Molecular Targeting, Inc. (DBA Perspective Therapeutics), Coralville, IA 52241, USA
- Department of Chemistry, University of Iowa, Iowa City, IA 52241, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| |
Collapse
|
30
|
Li Q, Hou W, Wu M, Li L, Su M, Ma B, Cui F, Ren Y, Xu J, Zou K, Tian R, Sun X. Quality and consistency of clinical practice guideline recommendations for PET/CT and PET: a systematic appraisal. Eur Radiol 2023; 33:7879-7889. [PMID: 37314473 DOI: 10.1007/s00330-023-09786-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To systematically appraise the methodologies used for guidelines for positron emission tomography (PET) imaging and to compare the consistency of these recommendations. METHODS We searched PubMed, EMBASE, four guideline databases, and Google Scholar to identify evidence-based clinical practice guidelines pertaining to the use of PET, PET/computed tomography (CT), or PET/magnetic resonance in routine practice. We assessed the quality of each guideline using the Appraisal of Guidelines for Research and Evaluation II instrument and compared recommendations regarding indications for 18F-fluorodeoxyglucose (FDG) PET/CT. RESULTS Thirty-five guidelines for PET imaging, published between 2008 and 2021, were included. These guidelines performed well in the domains of scope and purpose (median 80.6%, inter-quartile range [IQR] 77.8-83.3%) and clarity of presentation (median 75%, IQR 69.4-83.3%), but poorly in applicability (median 27.1%, IQR 22.9-37.5%). Recommendations for 48 indications in 13 cancers were compared. Considerable inconsistencies in the direction of whether to support the use of FDG PET/CT were observed in 10 (20.1%) indications pertaining to 8 cancer types: head and neck cancer (treatment response assessment), colorectal cancer (staging in patients with stages I-III disease), esophageal cancer (staging), breast cancer (restaging and treatment response assessment), cervical cancer (staging in patients with stage < IB2 disease and treatment response assessment), ovarian cancer (restaging), pancreatic cancer (diagnosis), and sarcoma (treatment response assessment). CONCLUSIONS Current guidelines for PET imaging vary in methodological quality and provided considerably inconsistent recommendations. Efforts are needed to improve adherence to guideline development methodologies, to synthesis high-quality evidence, and to adopt standard terminologies. PROTOCOL REGISTRATION NUMBER PROSPERO CRD42020184965. CLINICAL RELEVANCE STATEMENT Guidelines for PET imaging provide considerably inconsistent recommendations and vary in methodological quality. It is suggested that clinicians be critical of these recommendations when applying them in practice, that guideline developers adopt more rigorous development methodologies, and that researchers prioritize research gaps identified by current guidelines. KEY POINTS • PET guidelines vary in methodological quality and provided inconsistent recommendations. Efforts are needed to improve methodologies, synthesize high-quality evidence, and standardize terminologies. • Among six domains of methodological quality assessed by the AGREE II tool, guidelines for PET imaging performed well in scope and purpose (median 80.6%, inter-quartile range 77.8-83.3%) and clarity of presentation (75%, 69.4-83.3%), but poorly in applicability (27.1%, 22.9-37.5%). • Among the 48 recommendations (for 13 cancer types) compared, conflicts in the direction of whether to support FDG PET/CT use were observed in 10 (20.1%), for 8 cancer types (i.e., head and neck, colorectal, esophageal, breast, cervical, ovarian, pancreatic, and sarcoma).
Collapse
Affiliation(s)
- Qianrui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Chinese Evidence-Based Medicine Center, Cochrane China Center, and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Wenxiu Hou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Wu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, Cochrane China Center, and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Minggang Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Futao Cui
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Chinese Evidence-Based Medicine Center, Cochrane China Center, and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Jiayue Xu
- Chinese Evidence-Based Medicine Center, Cochrane China Center, and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Kang Zou
- Chinese Evidence-Based Medicine Center, Cochrane China Center, and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, Cochrane China Center, and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China.
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, China.
| |
Collapse
|
31
|
Nekolla SG, Rischpler C, Higuchi T. Preclinical Imaging of Cardiovascular Disesase. Semin Nucl Med 2023; 53:586-598. [PMID: 37268498 DOI: 10.1053/j.semnuclmed.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Noninvasive imaging techniques, such as SPECT, PET, CT, echocardiography, or MRI, have become essential in cardiovascular research. They allow for the evaluation of biological processes in vivo without the need for invasive procedures. Nuclear imaging methods, such as SPECT and PET, offer numerous advantages, including high sensitivity, reliable quantification, and the potential for serial imaging. Modern SPECT and PET imaging systems, equipped with CT and MRI components in order to get access to morphological information with high spatial resolution, are capable of imaging a wide range of established and innovative agents in both preclinical and clinical settings. This review highlights the utility of SPECT and PET imaging as powerful tools for translational research in cardiology. By incorporating these techniques into a well-defined workflow- similar to those used in clinical imaging- the concept of "bench to bedside" can be effectively implemented.
Collapse
Affiliation(s)
- Stephan G Nekolla
- Nuklearmedizinische Klinik der TU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Ullrich M, Brandt F, Löser R, Pietzsch J, Wodtke R. Comparative Saturation Binding Analysis of 64Cu-Labeled Somatostatin Analogues Using Cell Homogenates and Intact Cells. ACS OMEGA 2023; 8:24003-24009. [PMID: 37426243 PMCID: PMC10324063 DOI: 10.1021/acsomega.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
The development of novel ligands for G-protein-coupled receptors (GPCRs) typically entails the characterization of their binding affinity, which is often performed with radioligands in a competition or saturation binding assay format. Since GPCRs are transmembrane proteins, receptor samples for binding assays are prepared from tissue sections, cell membranes, cell homogenates, or intact cells. As part of our investigations on modulating the pharmacokinetics of radiolabeled peptides for improved theranostic targeting of neuroendocrine tumors with a high abundance of the somatostatin receptor sub-type 2 (SST2), we characterized a series of 64Cu-labeled [Tyr3]octreotate (TATE) derivatives in vitro in saturation binding assays. Herein, we report on the SST2 binding parameters measured toward intact mouse pheochromocytoma cells and corresponding cell homogenates and discuss the observed differences taking the physiology of SST2 and GPCRs in general into account. Furthermore, we point out method-specific advantages and limitations.
Collapse
Affiliation(s)
- Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Florian Brandt
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Reik Löser
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| |
Collapse
|
33
|
McNeil BL, Mastroianni SA, McNeil SW, Zeisler S, Kumlin J, Borjian S, McDonagh AW, Cross M, Schaffer P, Ramogida CF. Optimized production, purification, and radiolabeling of the 203Pb/ 212Pb theranostic pair for nuclear medicine. Sci Rep 2023; 13:10623. [PMID: 37391445 PMCID: PMC10313663 DOI: 10.1038/s41598-023-37313-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
TRIUMF is one of the only laboratories in the world able to produce both lead-203 (203Pb, t1/2 = 51.9 h) and 212Pb (t1/2 = 10.6 h) onsite via its 13 and 500 MeV cyclotrons, respectively. Together, 203Pb and 212Pb form an element-equivalent theranostic pair that potentiate image-guided, personalized cancer treatment, using 203Pb as a single-photon emission computed tomography (SPECT) source, and 212Pb for targeted alpha therapy. In this study, improvements to 203Pb production were accomplished by manufacturing electroplated, silver-backed thallium (Tl) targets to improve target thermal stability, which allow for higher currents during irradiation. We implemented a novel, two-column purification method that employs selective Tl precipitation (203Pb only) alongside extraction and anion exchange chromatography to elute high specific activity and chemical purity 203/212Pb in a minimal volume of dilute acid, without the need for evaporation. Optimization of the purification method translated to improvements in radiolabeling yields and apparent molar activity of lead chelators TCMC (S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra(2-carbamoylmethyl)cyclododecane) and Crypt-OH, a derivative of a [2.2.2]-cryptand.
Collapse
Affiliation(s)
- Brooke L McNeil
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | - Scott W McNeil
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | | | | | | | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- ARTMS Inc., Burnaby, BC, V5A 4N5, Canada
- Department of Radiology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
34
|
Wawrowicz K, Żelechowska-Matysiak K, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. Platinum nanoparticles labelled with iodine-125 for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. NANOSCALE ADVANCES 2023; 5:3293-3303. [PMID: 37325536 PMCID: PMC10262957 DOI: 10.1039/d3na00165b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Convenient therapeutic protocols against hepatocellular carcinoma (HCC) exhibit low treatment effectiveness, especially in the context of long-term effects, which is primarily related to late diagnosis and high tumor heterogeneity. Current trends in medicine concern combined therapy to achieve new powerful tools against the most aggressive diseases. When designing modern, multimodal therapeutics, it is necessary to look for alternative routes of specific drug delivery to the cell, its selective (with respect to the tumor) activity and multidirectional action, enhancing the therapeutic effect. Targeting the physiology of the tumor makes it possible to take advantage of certain characteristic properties of the tumor that differentiate it from other cells. In the present paper we designed for the first time iodine-125 labeled platinum nanoparticles for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. High selectivity achieved by targeting the tumor microenvironment of these cells was associated with effective radionuclide desorption in the presence of H2O2. The therapeutic effect was found to be correlated with cell damage at various molecular levels including DNA DSBs and was observed in a dose-dependent manner. A three-dimensional tumor spheroid revealed successful radioconjugate anticancer activity with a significant treatment response. A possible concept for clinical application after prior in vivo trials may be achieved via transarterial injection of micrometer range lipiodol emulsions with encapsulated 125I-NP. Ethiodized oil gives several advantages especially for HCC treatment; thus bearing in mind a suitable particle size for embolization, the obtained results highlight the exciting prospects for the development of PtNP-based combined therapy.
Collapse
Affiliation(s)
- Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
- Department of Nuclear Medicine, Central Clinical Hospital of the Ministry of the Interior and Administration Wołoska 137 St. 02-507 Warsaw Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences Ciszewskiego 8 St. 02-786 Warsaw Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| |
Collapse
|
35
|
Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A Medicinal Chemistry Perspective on Excitatory Amino Acid Transporter 2 Dysfunction in Neurodegenerative Diseases. J Med Chem 2023; 66:2330-2346. [PMID: 36787643 PMCID: PMC9969404 DOI: 10.1021/acs.jmedchem.2c01572] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).
Collapse
Affiliation(s)
- Igor C Fontana
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 - Neo floor seventh, 141 83 Stockholm, Sweden
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 90035-003 Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 305 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Salvatore Bongarzone
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
36
|
Cyclotron Production of Gallium-68 Radiopharmaceuticals Using the 68Zn(p,n) 68Ga Reaction and Their Regulatory Aspects. Pharmaceutics 2022; 15:pharmaceutics15010070. [PMID: 36678699 PMCID: PMC9867404 DOI: 10.3390/pharmaceutics15010070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for 68Ga radiopharmaceuticals, the use of medical cyclotrons is currently being explored. The resulting 68Ga production is several times higher than obtained from a generator. Moreover, the use of solid targets yields end of purification and end of synthesis (EOS) of up to 194 GBq and 72 GBq, respectively. Furthermore, experiments employing liquid targets have provided promising results, with an EOS of 3 GBq for [68Ga]Ga-PSMA-11. However, some processes can be further optimized, specifically purification, to achieve high 68Ga recovery and apparent molar activity. In the future, 68Ga will probably remain one of the most in-demand radionuclides; however, careful consideration is needed regarding how to reduce the production costs. Thus, this review aimed to discuss the production of 68Ga radiopharmaceuticals using Advanced Cyclotron Systems, Inc. (ACSI, Richmond, BC, Canada) Richmond, Canada and GE Healthcare, Wisconsin, USA cyclotrons, its related factors, and regulatory concerns.
Collapse
|
37
|
Bamminger K, Raitanen J, Karanikas G, Rasul S, Nics L, Mitterhauser M, Wadsak W, Hacker M, Pichler V, Vraka C. Rapid, high-yield enzymatic synthesis of n.c.a. 6-[ 18F]fluorodopamine (6-[ 18F]FDA) for in vivo application. Nucl Med Biol 2022; 114-115:189-197. [PMID: 35820986 DOI: 10.1016/j.nucmedbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Karsten Bamminger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Julia Raitanen
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Nelson BJB, Andersson JD, Wuest F, Spreckelmeyer S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm Chem 2022; 7:27. [PMID: 36271969 PMCID: PMC9588110 DOI: 10.1186/s41181-022-00180-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background The radiometal gallium-68 (68Ga) is increasingly used in diagnostic positron emission tomography (PET), with 68Ga-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional 99mTc agents. In precision medicine, PET applications of 68Ga are widespread, with 68Ga radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin. Main body These 68Ga radiopharmaceuticals include agents such as [68Ga]Ga-macroaggregated albumin for myocardial perfusion evaluation, [68Ga]Ga-PLED for assessing renal function, [68Ga]Ga-t-butyl-HBED for assessing liver function, and [68Ga]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (68Ge) generators and cyclotron production routes strongly positions 68Ga for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the 68Ga radiopharmaceutical community, and recommendations for centers interested in establishing 68Ga radiopharmaceutical production. Conclusion This review outlines important aspects of 68Ga radiopharmacy, including 68Ga production routes using a 68Ge/68Ga generator or medical cyclotron, standardized 68Ga radiolabeling methods, quality control procedures for clinical 68Ga radiopharmaceuticals, and suggested best practices for centers with established or upcoming 68Ga radiopharmaceutical production. Finally, an outlook on 68Ga radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Jan D Andersson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.,Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
39
|
Bartoli F, Elsinga P, Nazario LR, Zana A, Galbiati A, Millul J, Migliorini F, Cazzamalli S, Neri D, Slart RHJA, Erba PA. Automated Radiosynthesis, Preliminary In Vitro/In Vivo Characterization of OncoFAP-Based Radiopharmaceuticals for Cancer Imaging and Therapy. Pharmaceuticals (Basel) 2022; 15:ph15080958. [PMID: 36015106 PMCID: PMC9416253 DOI: 10.3390/ph15080958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
FAP-targeted radiopharmaceuticals represent a breakthrough in cancer imaging and a viable option for therapeutic applications. OncoFAP is an ultra-high-affinity ligand of FAP with a dissociation constant of 680 pM. OncoFAP has been recently discovered and clinically validated for PET imaging procedures in patients with solid malignancies. While more and more clinical validation is becoming available, the need for scalable and robust procedures for the preparation of this new class of radiopharmaceuticals continues to increase. In this article, we present the development of automated radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging and therapy. A new series of [68Ga]Ga-OncoFAP, [177Lu]Lu-OncoFAP and [18F]AlF-OncoFAP was produced with high radiochemical yields. Chemical and biochemical characterization after radiolabeling confirmed its excellent stability, retention of high affinity for FAP and absence of radiolysis by-products. The in vivo biodistribution of [18F]AlF-NOTA-OncoFAP, a candidate for PET imaging procedures in patients, was assessed in mice bearing FAP-positive solid tumors. The product showed rapid accumulation in solid tumors, with an average of 6.6% ID/g one hour after systemic administration and excellent tumor-to-healthy organs ratio. We have developed simple, quick, safe and robust synthetic procedures for the preparation of theranostic OncoFAP-compounds based on Gallium-68, Lutetium-177 and Fluorine-18 using the commercially available FASTlab synthesis module.
Collapse
Affiliation(s)
- Francesco Bartoli
- Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
| | - Philip Elsinga
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
| | - Luiza Reali Nazario
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
| | - Aureliano Zana
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Andrea Galbiati
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Jacopo Millul
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Francesca Migliorini
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Samuele Cazzamalli
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland;
- Philogen S.p.A., 53100 Siena, Italy
| | - Riemer H. J. A. Slart
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Paola Anna Erba
- Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
- Correspondence:
| |
Collapse
|
40
|
Korde A, Mikolajczak R, Kolenc P, Bouziotis P, Westin H, Lauritzen M, Koole M, Herth MM, Bardiès M, Martins AF, Paulo A, Lyashchenko SK, Todde S, Nag S, Lamprou E, Abrunhosa A, Giammarile F, Decristoforo C. Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals. EJNMMI Radiopharm Chem 2022; 7:18. [PMID: 35852679 PMCID: PMC9296747 DOI: 10.1186/s41181-022-00168-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background The development of radiopharmaceuticals requires extensive evaluation before they can be applied in a diagnostic or therapeutic setting in Nuclear Medicine. Chemical, radiochemical, and pharmaceutical parameters must be established and verified to ensure the quality of these novel products.
Main body To provide supportive evidence for the expected human in vivo behaviour, particularly related to safety and efficacy, additional tests, often referred to as “non-clinical” or “preclinical” are mandatory. This document is an outcome of a Technical Meeting of the International Atomic Energy Agency. It summarises the considerations necessary for non-clinical studies to accommodate the regulatory requirements for clinical translation of radiopharmaceuticals. These considerations include non-clinical pharmacology, radiation exposure and effects, toxicological studies, pharmacokinetic modelling, and imaging studies. Additionally, standardisation of different specific clinical applications is discussed.
Conclusion This document is intended as a guide for radiopharmaceutical scientists, Nuclear Medicine specialists, and regulatory professionals to bring innovative diagnostic and therapeutic radiopharmaceuticals into the clinical evaluation process in a safe and effective way.
Collapse
Affiliation(s)
- Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - Petra Kolenc
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Penelope Bouziotis
- National Centre for Scientific Research "Demokritos", Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, 15341, Athens, Greece
| | - Hadis Westin
- Department of Immunology, Genetics and Pathology, Ridgeview Instruments AB, Uppsala Universitet, Dag Hammarskjölds Väg 36A, 752 37, Uppsala, Sweden
| | - Mette Lauritzen
- Bruker BioSpin MRI GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34298, Montpellier, France
| | - Andre F Martins
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Antonio Paulo
- Centro de Ciências E Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela Lrs, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066, Lisbon, Portugal
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergio Todde
- Department of Medicine and Surgery, University of Milano-Bicocca, Tecnomed Foundation, Milan, Italy
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76, Stockholm, Sweden
| | - Efthimis Lamprou
- Bioemtech, Lefkippos Attica Technology Park-N.C.S.R Demokritos, Athens, Greece
| | - Antero Abrunhosa
- ICNAS/CIBIT, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Francesco Giammarile
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
41
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
42
|
Optimization of Precursor Preparation in PSMA-11 Radiolabeling to Obtain a Highly Reproducible Radiochemical Yield. Pharmaceuticals (Basel) 2022; 15:ph15030343. [PMID: 35337140 PMCID: PMC8953397 DOI: 10.3390/ph15030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
[68Ga]Ga-PSMA-11 PET/CT plays a pivotal role in the diagnosis and staging of prostate cancer because of its higher sensitivity and detection rate compared with traditional choline PET/CT. A highly reproducible radiochemical yield of the radiopharmaceutical to be used in the clinical routine is an important parameter for planning and optimization of clinical activity. During radiometallation of PSMA-11, the presence of metal ion contaminants in the peptide precursor may cause a decrease in the [68Ga]Ga-PSMA-11 radiochemical yield because of metal ion contaminants competition with gallium-68. To optimize the radiochemical yield of [68Ga]Ga-PSMA-11 radiosynthesis, data obtained by preparing the solution of the PSMA-11 precursor with three different methods (A, B, and C) were compared. Methods A and B consisted of the reconstitution of different quantities of precursor (1000 µg and 30 µg, respectively) to obtain a 1 µg/mL solution. In Method A, the precursor solution was aliquoted and stored frozen, while the precursor solution obtained with Method B was entirely used. Method C consisted of the reconstitution of 1000 µg of precursor taking into account net peptide content as described in European Pharmacopoeia. Radiosynthesis data demonstrated that reconstitution methods B and C gave a consistently higher and reproducible radiochemical yield, highlighting the role of metals and precursor storage conditions on the synthesis performance.
Collapse
|
43
|
Wieczorek Villas Boas CA, de Jesus Silva J, Pereira Dias LA, Brandão Freire MR, Balieiro LM, Ferreira Dos Santos CS, Vivaldini BF, Benedetto R, Vieira DP, de Queiroz Souza Passos P, Marumo MH, Teixeira LFS, Bortoleti de Araújo E. In vitro and in vivo response of PSMA-617 radiolabeled with CA and NCA lutetium-177. Appl Radiat Isot 2021; 180:110064. [PMID: 34923290 DOI: 10.1016/j.apradiso.2021.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
The PSMA-targeted radionuclide therapy has been explored since 2015 with radioisotope lutetium-177, whose β- emission range is adequate for micrometastases treatment. This radioisotope is obtained by two different production routes that directly affect the specific activity of lutetium-177 (non-carrier added and carrier added) and, consequently, the specific activity of radiopharmaceuticals, like 177Lu-PSMA-617. The influence of the specific activity of lutetium-177 on the properties of the radiopharmaceutical PSMA-617 was evaluated through pre-clinical studies. The in vitro study pointed to a lower constant of dissociation with non-carrier added lutetium-177 due to the difference in the specific activity. However, competition and internalization assays resulted in similar results for both lutetium-177. Based on these pre-clinical experiments, the total in vitro tumor cell binding and tumor uptake in vivo were similar, with no influence of the specific activity of the 177Lu-PSMA-617. Regardless the specific activity did not directly affect tumor uptake, the tumor/non-target organs ratios were higher for the radiopharmaceutical labeled with carrier added lutetium-177, which had the lowest specific activity.
Collapse
Affiliation(s)
- Cristian Antonio Wieczorek Villas Boas
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil; Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St Louis, MO, 63110, USA.
| | - Jefferson de Jesus Silva
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Luís Alberto Pereira Dias
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Maria Renata Brandão Freire
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Luiza Mascarenhas Balieiro
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Carolina Silva Ferreira Dos Santos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Bianca Franchesqueti Vivaldini
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Raquel Benedetto
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Daniel Perez Vieira
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Priscila de Queiroz Souza Passos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Maria Helena Marumo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Luis Felipe S Teixeira
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| | - Elaine Bortoleti de Araújo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av Prof. Lineu Prestes, 2242 - Cidade Universitária, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
44
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|