1
|
Musumeci F, Fasce A, Falesiedi M, Oleari F, Grossi G, Carbone A, Schenone S. Approaching Gallium-68 radiopharmaceuticals for tumor diagnosis: a Medicinal Chemist's perspective. Eur J Med Chem 2025; 294:117760. [PMID: 40393260 DOI: 10.1016/j.ejmech.2025.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Nuclear medicine has revolutionized disease diagnosis and treatment, particularly in oncology, by enabling precise imaging and targeted therapies using radiopharmaceuticals. Recently, Gallium-68 (68Ga) has emerged as a powerful positron emission tomography (PET) imaging agent, with a growing role in theranostics when paired with 177Lu for cancer treatment. The ability to obtain 68Ga from 68Ge/68Ga generators, along with its favorable radiochemical and pharmacokinetic properties, has driven an increasing number of clinical applications, which culminated with the approvals of 68Ga-DOTA-TOC and 68Ga-DOTA-TATE for the treatment of neuroendocrine tumors, and 68Ga-PSMA-11 for prostate cancer over the past decade. This review provides a comprehensive overview of 68Ga radiochemistry, chelators, and key compounds in clinical trials, highlighting the potential of this radionuclide in precision oncology.
Collapse
Affiliation(s)
- Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Alessandro Fasce
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Marta Falesiedi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Federica Oleari
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|
2
|
Otaegui J, Sultan D, Heo GS, Liu Y. Positron Emission Tomography Imaging of the Adaptive Immune System in Cardiovascular Diseases. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:209-224. [PMID: 40313531 PMCID: PMC12042138 DOI: 10.1021/cbmi.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 05/03/2025]
Abstract
Cardiovascular diseases are the leading cause of death around the globe. In recent years, a crucial role of the immune system has been acknowledged in cardiac disease progression, opening the door for immunomodulatory therapies. To this ongoing change of paradigm, positron emission tomography (PET) imaging of the immune system has become a remarkable tool to reveal immune cell trafficking and monitor disease progression and treatment response. Currently, PET imaging of the immune system in cardiovascular disease mainly focuses on the innate immune system such as macrophages, while the immune cells of the adaptive immune system including B and T cells are less studied. This can be ascribed to the lack of radiotracers specifically binding to B and T cell biomarkers compatible with PET imaging within the cardiovascular system. In this review, we summarize current knowledge about the role of the adaptive immune system (e.g., B and T cells) in major cardiovascular diseases and introduce key biomarkers for specific targeting of these immune cells and their subpopulations. Finally, we present available radiotracers for these biomarkers and propose a pathway for developing probes or optimizing those already used in other fields (e.g., oncology) to make them compatible with the cardiovascular system.
Collapse
Affiliation(s)
- Jaume
Ramon Otaegui
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| |
Collapse
|
3
|
Marlin A, Tran PN, Dierolf M, DeLuca M, Joaqui Joaqui MA, Glaser OM, Koller AJ, Alucio-Sarduy E, Gork M, Śmiłowicz D, Pierre V, Engle JW, Boros E. Evaluation of PSMA-Targeted TREN-CAM Conjugates for Targeted Imaging of Cancer with 68Ga(III) and 45Ti(IV). Bioconjug Chem 2025; 36:859-866. [PMID: 40103324 DOI: 10.1021/acs.bioconjchem.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chelation approaches that are compatible with a multitude of isotopes are an important area of development. Here, we introduce the design, synthesis, and evaluation of 2,3-dihydroxyterephthalate/catechol chelator conjugates compatible with the positron emission tomography (PET) isotopes 68Ga3+ and 45Ti4+, targeting the prostate-specific membrane antigen (PSMA). The conjugates are made in a multistep organic synthesis incorporating 2,3-dihydroxyterephthalate, linked to the amino hexanoic acid-extended, urea-dipeptides EuE or KuE (substrates of the PSMA active site). The radiochemical complexes, [45Ti][Ti(TREN-CAM-hex-EuE)]2-, [45Ti][Ti(TREN-CAM-hex-KuE)]2-, and [68Ga][Ga(TREN-CAM-hex-KuE)]3- form readily at room temperature within 15 min with a molar activity of 24-29 mCi/μmol. The corresponding chelates are stable in phosphate-buffered saline (PBS) solution prior to injection. Subsequent in vivo studies in a bilateral tumor xenograft mouse model were conducted, including 90- and 270-min PET, followed by biodistribution and metabolite analysis at 2 or 5 h postinjection. These studies demonstrated selective uptake of the radiochemical complexes in the PSMA-expressing tumor (17.25 ± 4.15, 13.84 ± 3.85, 15.64 ± 6.37% ID/g for [45Ti][Ti(TREN-CAM-hex-EuE)]2-, [45Ti][Ti(TREN-CAM-hex-KuE)]2- and [68Ga][Ga(TREN-CAM-hex-KuE)]3- respectively), with pharmacokinetics dominated by renal clearance. Delayed clearance of the [45Ti][Ti(TREN-CAM-hex-KuE)]2- complex is observed when compared with that of [68Ga][Ga(TREN-CAM-hex-KuE)]3- as indicated by elevated activity retention in the blood, which we attribute to the charge difference and partial complex dissociation. Urine metabolite analysis shows that [68Ga][Ga(TREN-CAM-hex-KuE)]3- is excreted >98% intact, while [45Ti][Ti(TREN-CAM-hex-KuE)]2- exhibited signs of dechelation. Conclusively, our data support further investigation of bifunctional TREN-CAM derivatives as a synthetically accessible bifunctional chelator class for 68Ga3+ and 45Ti4+ isotopes.
Collapse
Affiliation(s)
- Axia Marlin
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Morgan Dierolf
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Molly DeLuca
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - M Andrey Joaqui Joaqui
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Owen M Glaser
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Eduardo Alucio-Sarduy
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mallory Gork
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Valérie Pierre
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Radiology, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Li Y, Wang Y, Wang Y, Huang J, Guo Z. Development and Evaluation of 68Ga-Labeled TMTP1-Based Cyclic Peptide Probes for Targeting Hepatocellular Carcinoma. Mol Pharm 2025; 22:1901-1910. [PMID: 39993946 DOI: 10.1021/acs.molpharmaceut.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This study focused on the development and evaluation of four [68Ga]-labeled cyclic TMTP1 peptide-based probes for targeting highly metastatic hepatocellular carcinoma (HCC). The probes─[68Ga]Ga-N-G-NVvRQ, [68Ga]Ga-c[K(N)NVvRQ], [68Ga]Ga-c[K(N)NVVRQ], and [68Ga]Ga-c[K(N)NVvRQ]2─were designed using a head-to-tail cyclization strategy to enhance their stability, improve tumor targeting, and reduce uptake in nontarget organs. The microPET imaging results showed that although tumor uptake for all four probes was similar at each time point, renal evaluation revealed that [68Ga]Ga-c[K(N)NVvRQ] had the lowest value at 15 min (1.90 ± 0.87%ID/g), significantly outperforming linear analog [68Ga]Ga-N-G-NVvRQ (2.87 ± 0.86%ID/g) and dimeric peptide, [68Ga]Ga-c[K(N)NVvRQ]2 (3.92 ± 0.68%ID/g), and the probe exhibited the lowest physiological uptake across major organs. At 30 min, the liver uptake of [68Ga]Ga-c[K(N)NVvRQ] was 0.29 ± 0.08%ID/g, with a tumor-to-liver (T/L) ratio of 2.45 ± 0.03. This low nonspecific uptake in normal organs contributed to high-contrast PET imaging, facilitating the diagnosis of small tumor lesions. In addition, the probe demonstrated sustained low renal radioactivity retention, which may offer potential benefits for minimizing additional radioactive damage to the kidneys. Overall, [68Ga]Ga-c[K(N)NVvRQ] achieved a good balance between strong tumor uptake and low nonspecific uptake in organs (especially in kidneys), making it an ideal candidate for further investigation in HCC imaging applications.
Collapse
Affiliation(s)
- Yesen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yanjie Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yaoxuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinxiong Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Rodrigues D, Fonseca AI, do Carmo S, Sereno J, Hrynchak I, Moreira JN, Gomes C, Abrunhosa A. Is Copper-61 the New Gallium-68? Automation and Preclinical Proof-of-Concept of 61Cu-Based Radiopharmaceuticals for Prostate Cancer Imaging. Pharmaceuticals (Basel) 2025; 18:469. [PMID: 40283906 PMCID: PMC12030277 DOI: 10.3390/ph18040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background: While gallium-68 has traditionally dominated PET imaging in oncology, copper radionuclides have sparked interest for their potential applications in nuclear medicine and theranostics. Considering the advantageous physical decay properties of copper-61 compared to those of gallium-68, we describe a fully automated GMP-compliant synthesis process for 61Cu-based radiopharmaceuticals and demonstrate their in vivo application for targeting the overexpressed PSMA by PET/MR imaging. Methods: Copper-61 was obtained through the irradiation of natural zinc liquid targets in a biomedical cyclotron. [61Cu]Cu-DOTAGA-PSMA-I&T and [61Cu]Cu-NODAGA-PSMA-I&T were produced without manual intervention in two Synthera® Extension modules. Radiochemical purity was analyzed by radio-HPLC and iTLC. Cellular uptake was evaluated in LNCaP and DU145 cells. In vivo PET/MRI was performed in control mice to evaluate the biodistribution of both radiopharmaceuticals, and in tumor-bearing mice to assess the targeting ability towards PSMA. Results: The fully automated process developed proved to be effective for the synthesis of 61Cu-based radiopharmaceuticals, with appropriate molar activities. The final products exhibited high radiochemical purity (>98%) and remained stable for up to 6 h after the EOS. A time-dependent increase in cellular uptake was observed in LNCaP cells, but not in DU145 cells. As opposed to [61Cu]Cu-NODAGA-PSMA-I&T, [61Cu]Cu-DOTAGA-PSMA-I&T exhibited poor kinetic stability in vivo. Subsequent PET/MR imaging with [61Cu]Cu-NODAGA-PSMA-I&T showed tumor uptake lasting up to 4 h post-injection, predominant renal clearance, and no detectable accumulation in non-targeted organs. Conclusions: These results demonstrate the feasibility of the implemented process, which yields adequate amounts of high-quality radiopharmaceuticals and can be adapted to any standard production facility. This streamlined approach enhances reproducibility and scalability, bringing copper-61 closer to widespread clinical use, to the detriment of the conventionally accepted gallium-68.
Collapse
Affiliation(s)
- Diana Rodrigues
- Coimbra Institute for Biomedical Imaging and Translational Research, and Institute for Nuclear Sciences Applied to Health (CIBIT/ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; (D.R.); (S.d.C.); (J.S.)
| | - Alexandra I. Fonseca
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.F.); (I.H.)
| | - Sérgio do Carmo
- Coimbra Institute for Biomedical Imaging and Translational Research, and Institute for Nuclear Sciences Applied to Health (CIBIT/ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; (D.R.); (S.d.C.); (J.S.)
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.F.); (I.H.)
| | - José Sereno
- Coimbra Institute for Biomedical Imaging and Translational Research, and Institute for Nuclear Sciences Applied to Health (CIBIT/ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; (D.R.); (S.d.C.); (J.S.)
| | - Ivanna Hrynchak
- ICNAS Pharma, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.F.); (I.H.)
| | - João N. Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Célia Gomes
- Centre for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research, and Institute for Nuclear Sciences Applied to Health (CIBIT/ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; (D.R.); (S.d.C.); (J.S.)
| |
Collapse
|
6
|
Kręcisz P, Stefańska K, Studziński J, Pitucha M, Czylkowska A, Szymański P. Radiocopper in Radiopharmacy and Medical Use: Current Status and Perspective. J Med Chem 2025; 68:2356-2376. [PMID: 39895089 PMCID: PMC11831595 DOI: 10.1021/acs.jmedchem.4c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Of the 32 known copper isotopes, some have interesting properties for nuclear medicine, for example the short-lived 60Cu, 61Cu, 62Cu, the moderate long-lived 64Cu and the long-lived 67Cu. Due to their emission properties, copper isotopes are suitable for both imaging diagnostics (60Cu, 61Cu, 62Cu, 64Cu) and targeted radiotherapy (64Cu and 67Cu). As their chemical properties are virtually identical, a single radiopharmaceutical structure can be labeled with different isotopes, depending on the clinical application. This, combined with the ability to combine radioisotopes with different nuclear properties with the same ligand, makes them extremely versatile. The purpose of this review is to introduce the world of copper radiopharmaceuticals and to summarize recent advances in methods for producing copper radioisotopes and the preclinical research of radiopharmaceuticals labeled with copper radioisotopes.
Collapse
Affiliation(s)
- Paweł Kręcisz
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Katarzyna Stefańska
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Jakub Studziński
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Monika Pitucha
- Independent
Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Agnieszka Czylkowska
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Paweł Szymański
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
- Department
of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
7
|
Zhang X, Ma L, Cai K, Guo X, Zhang G, Dong J, Zheng Y, Su X, Tao T, Li X, Yuan Y. PSMA-Targeted Intracellular Self-Assembled Probe for Enhanced PET Imaging. Bioconjug Chem 2025; 36:20-24. [PMID: 39810600 DOI: 10.1021/acs.bioconjchem.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, 68Ga-CBT-PSMA, designed for prostate cancer. This probe integrates an intracellular self-assembly strategy to enhance PET imaging signals and significantly improve the signal-to-noise ratio. The glutamate-urea-based prostate-specific membrane antigen (PSMA)-targeting motif enables specific recognition of prostate cancer cells and enhances cellular uptake; then the self-assembly process induced by glutathione reduction effectively accumulates the probe within tumor cells, thereby amplifying PET imaging signals. This approach not only enhances signal intensity and resolution but also facilitates precise cancer localization and diagnosis, offering new avenues for advancing cancer diagnostic techniques.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ke Cai
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiangyuan Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Guangtao Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jiajing Dong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoyu Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Tao Tao
- Department of Urology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Xiaohu Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Wang IE, Morrissette LJ, Wong KK, Brooks AF, Dakanali M, Scott PJH. A comparison of routine [ 68Ga]Ga-PSMA-11 preparation using Locametz and Illuccix kits. EJNMMI Radiopharm Chem 2024; 9:87. [PMID: 39692998 DOI: 10.1186/s41181-024-00317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Approval of Locametz and Illuccix kits for the manufacture of [68Ga]Ga-PSMA-11 (gallium Ga68 gozetotide), a PET imaging agent for prostate cancer, as well as the corresponding therapeutic ([177Lu]Lu-PSMA-617 Pluvicto), has led to a rapid increase in demand for [68Ga]Ga-PSMA-11 PET imaging. Radiopharmaceutical manufacturers, using 68Ge/68Ga generators, may decide to adopt Locametz and/or Illuccix kits, which requires a comparison to select the most suitable kit for day-to-day use. The objective of this article is to compare both kits and provide guidance for selecting one for routine use, as well as evaluate labeling consistency of both kits during routine production. Additionally, we report our experience during 1.5 years of daily [68Ga]Ga-PSMA-11 production at our facility using both kits. RESULTS Locametz (n = 181) and Illuccix (n = 256) kits were prepared using non-silicone coated and silicone-coated needles with 68Ga activities ranging from 0.53 to 3.16 GBq, with a failure rate of 1 in 128 runs for both kits. With Locametz, a 3.7 GBq generator and 10-min incubation at room temperature gave doses that passed quality control (QC) testing. Use of non-silicone coated needles in the process led to solution discoloration, and QC failure. Additionally, lack of vial inversion led to inconsistent labeling, which improved with subsequent vial agitation. For Illuccix, addition of the acetate buffer to the precursor vial prior to adding the [68Ga]GaCl3 simplifies the workflow. The maximum tolerated activity was 1.85 GBq. Lack of vial inversion led to failures, which were rectified by agitating the vial to properly incorporate the acetate solution with the generator eluate. CONCLUSIONS Both kits benefited from using a syringe pump to elute the 68Ge/68Ga generator, vial agitation, and longer length/smaller bore silicone coated needles. Both kits have similar workflows, comparable QC outcomes, and result in equivalent clinical images. Thus, the decision between kits will ultimately be determined by production preferences. Since radiopharmacies have an established "kit-based" workflow, Locametz kits with higher allowed activities and longer shelf-life may offer benefits. Conversely, more traditional PET manufacturing facilities might benefit from using Illuccix kits due to compatibility with cyclotron-produced [68Ga]GaCl3 allowing for kit batching. Ultimately, the commercial availability of 2 approved kits for production of [68Ga]Ga-PSMA-11 PET has facilitated ready access to this important new imaging agent.
Collapse
Affiliation(s)
- Ivan E Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Luke J Morrissette
- Department of Radiology, University of Michigan, 2276 Medical Science 1, 1301 Catherine St., Ann Arbor, MI, 48109-5610, USA
| | - Ka Kit Wong
- Department of Radiology, University of Michigan, 2276 Medical Science 1, 1301 Catherine St., Ann Arbor, MI, 48109-5610, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science 1, 1301 Catherine St., Ann Arbor, MI, 48109-5610, USA
| | - Marianna Dakanali
- Department of Radiology, University of Michigan, 2276 Medical Science 1, 1301 Catherine St., Ann Arbor, MI, 48109-5610, USA
| | - Peter J H Scott
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Radiology, University of Michigan, 2276 Medical Science 1, 1301 Catherine St., Ann Arbor, MI, 48109-5610, USA.
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Li Z, Mo C, Li C, Wang Q, Huang S, Huang Y, Liang Y. Gallium-68 Labeled Positron Emission Computed Tomography Tracer Targeting Glypican-3 with High Contrast for Hepatocellular Carcinoma Imaging. ACS Pharmacol Transl Sci 2024; 7:4021-4031. [PMID: 39698271 PMCID: PMC11651169 DOI: 10.1021/acsptsci.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Hepatocellular carcinoma (HCC) represents the predominant form of primary liver cancer, yet early, precise, and noninvasive detection continues to pose a considerable clinical challenge. Glypican-3 (GPC3), a membrane-bound proteoglycan, is markedly overexpressed in most HCC cases, while exhibiting low expression in normal and hepatitis-affected liver tissues. Given its crucial role in malignant transformation and tumor progression, GPC3 emerges as a compelling target for imaging. In this study, we developed and evaluated 2 68Ga-labeled GPC3-targeted positron emission tomography (PET) probes, each incorporating either polyethylene glycol (PEG) or 4-(p-methylphenyl)butanoic acid (an albumin-binding moiety). Comparative analyses revealed that 68Ga-ALB-GBP, which includes the albumin-binding moiety, exhibited superior in vivo stability, enhanced tumor uptake, and an improved tumor-to-liver ratio relative to 68Ga-PEG2-GBP in subcutaneous HCC mouse models. Micro-PET/computed tomography imaging of orthotopic liver cancer with 68Ga-ALB-GBP demonstrated a tumor-to-liver ratio of 2.29 ± 0.13 and a tumor-to-muscle ratio of 13.03 ± 1.63 at 3 h postinjection, outperforming the performance of the clinically used 18F-fluorodeoxyglucose PET imaging. These findings suggest that 68Ga-ALB-GBP is a promising diagnostic tool for HCC and a strong candidate for clinical translation with potential utility in both diagnostic and therapeutic settings. Moreover, the incorporation of an albumin-binding moiety into PET tracers significantly extends blood circulation time, thereby enhancing bioavailability and facilitating high-contrast PET imaging.
Collapse
Affiliation(s)
- Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Chunwei Mo
- Department
of Nuclear Medicine, Nanfang Hospital, GDMPA Key Laboratory for Quality
Control and Evaluation of Radiopharmaceuticals, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chengzhe Li
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Qiong Wang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Size Huang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Yong Huang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| |
Collapse
|
10
|
Tomiyoshi K, Wilson LJ, Mourtada F, Mourtada JS, Namiki Y, Kamata W, Yang DJ, Inoue T. Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics 2024; 16:1458. [PMID: 39598580 PMCID: PMC11597032 DOI: 10.3390/pharmaceutics16111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted radionuclide therapy (TRT) for internal pathway-directed treatment is a game changer for precision medicine. TRT improves tumor control while minimizing damage to healthy tissue and extends the survival for patients with cancer. The application of theranostic-paired TRT along with cellular phenotype and genotype correlative analysis has the potential for malignant disease management. Chelation chemistry is essential for the development of theranostic-paired radiopharmaceuticals for TRT. Among image-guided TRT, 68Ga and 99mTc are the current standards for diagnostic radionuclides, while 177Lu and 225Ac have shown great promise for β- and α-TRT, respectively. Their long half-lives, potent radiobiology, favorable decay schemes, and ability to form stable chelation conjugates make them ideal for both manufacturing and clinical use. The current challenges include optimizing radionuclide production processes, coordinating chelation chemistry stability of theranostic-paired isotopes to reduce free daughters [this pertains to 225Ac daughters 221Fr and 213Bi]-induced tissue toxicity, and improving the modeling of micro dosimetry to refine dose-response evaluation. The empirical approach to TRT delivery is based on standard radionuclide administered activity levels, although clinical trials have revealed inconsistent outcomes and normal-tissue toxicities despite equivalent administered activities. This review presents the latest optimization methods for chelation-based theranostic radiopharmaceuticals, advancements in micro-dosimetry, and SPECT/CT technologies for quantifying whole-body uptake and monitoring therapeutic response as well as cytogenetic correlative analyses.
Collapse
Affiliation(s)
- Katsumi Tomiyoshi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Lydia J. Wilson
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | - Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | | | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Wataru Kamata
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - David J. Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| |
Collapse
|
11
|
Lebruška V, Dobrovolná T, Gemperle T, Kubíček V, Kossatz S, Hermann P. A UV-Vis method for investigation of gallium(III) complexation kinetics with NOTA and TRAP chelators: advantages, limitations and comparison with radiolabelling. Dalton Trans 2024; 53:17554-17564. [PMID: 39392056 DOI: 10.1039/d4dt02383h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An easy and cheap method for measurement of GaIII complexation kinetics was developed. The method is based on UV-Vis quantification of non-complexed chelators after the addition of CuII ions at individual time points. The method was evaluated using established ligands, H3nota and H6notPPr, and was utilized to study the kinetics of GaIII complexation with four new symmetric derivatives of 1,4,7-triazacyclononane bearing methylphosphonate/phosphinate pendant arms - TRAP ligands. Chelators bearing ethoxy groups (H3L1) or 2,2,2-trifluoroethyl groups (H3L2) on the phosphorus atoms showed fast formation (t99% = 21 and 10 min, respectively, at pH 2.0) and efficient radiolabelling which were comparable to the previously reported chelators bearing the 2-carboxyethyl group (H6notPPr). Chelators bearing (N,N-dibenzyl-amino)methyl (H3L3) and aminomethyl (H3L4) substituents showed a significantly slower complexation (t99% = 4.4 and 3.6 h, respectively, at pH 2.0) and inefficient radiolabelling, mainly at room temperature or low pH. This was caused by protonation of the amino groups of the pendant arms leading to coulombic repulsion between the GaIII ion and the positively charged protonated amines. The trends in complexation rates determined by the UV-Vis method correlated well with the results of the 68Ga radiolabelling study.
Collapse
Affiliation(s)
- Viktor Lebruška
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Tereza Dobrovolná
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Tereza Gemperle
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich (TUM), Einsteinstrasse 25, 81675, Munich, Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| |
Collapse
|
12
|
Kleynhans J, Ebenhan T, Sathekge MM. Expanding Role for Gallium-68 PET Imaging in Oncology. Semin Nucl Med 2024; 54:778-791. [PMID: 38964934 DOI: 10.1053/j.semnuclmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Gallium-68 has gained substantial momentum since 2003 as a versatile radiometal that is extremely useful for application in the development of novel oncology targeting diagnostic radiopharmaceuticals. It is available through both generator produced radioactivity and via cyclotron production methods and can therefore be implemented in either small- or large-scale production facilities. It can also be implemented within different spectrum of infrastructure settings with relative ease. Whilst many of the radiopharmaceuticals are being development and investigated, which is summarized in this manuscript, [68Ga]Ga-SSTR2 and [68Ga]Ga-PSMA has prominence in current clinical guidelines. The novel tracer [68Ga]Ga-FAPi has also gained significant interest in the clinical context. A comparison of the labelling strategies followed to incorporate gallium-68 and fluorine-18 into the same molecular targeting constructs clearly demonstrate that gallium-68 complexation is the most convenient approach. Recently, cold kit based starting products are available to make the small-scale production of gallium-68 radiopharmaceuticals even more efficient when combined with generator produced gallium-68. The regulatory aspects is currently changing to support the implementation of gallium-68 and other diagnostic radiopharmaceuticals, simplifying the translation towards clinical use. Overall, the development of gallium-68 based radiopharmaceuticals is not only rapidly changing the landscape of diagnosis in oncology, but this growth also promotes innovation and progress in new applications of therapeutic radiometals such as lutetium-177 and actinium-225.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological Sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Mike Machaba Sathekge
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
13
|
Migliari S, Bruno S, Bianchera A, De Nardis I, Scarano A, Lusardi M, Gaiani A, Guercio A, Scarlattei M, Baldari G, Bettini R, Ruffini L. Validation of a radiosynthesis method and a novel quality control system for [ 68 Ga]Ga-MAA: is TLC enough to assess radiopharmaceutical quality? EJNMMI Radiopharm Chem 2024; 9:70. [PMID: 39405010 PMCID: PMC11480274 DOI: 10.1186/s41181-024-00302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Technetium-99 m-labelled macroaggregated human serum albumin ([99mTc]Tc-MAA) is commonly used for lung perfusion scintigraphy. The European Pharmacopoeia (Eu.Ph.) specifies thin-layer chromatography (TLC) as the only method to assess its radiochemical purity (RCP). Similarly, TLC is the sole method reported in the literature to evaluate the RCP of Gallium-68-labelled MAA [68 Ga]Ga-MAA, recently introduced for lung perfusion PET/CT imaging. Since [68 Ga]Ga-MAA is prepared from commercial kits originally designed for the preparation of [99mTc]Tc-MAA, it is essential to optimize and validate the preparation methods for [68 Ga]Ga-MAA. RESULTS We tested a novel, simplified method for the preparation of [68 Ga]Ga-MAA that does not require organic solvents, prewash or final purification steps to remove radioactive impurities. We assessed the final product using radio-TLC, radio-UV-HPLC, and radio SDS-PAGE. Overall, our quality control (QC) method successfully detected [68 Ga]Ga-MAA along with all potential impurities, including free Ga-68, [68 Ga]Ga-HSA, unlabeled HSA, which may occur during labelling process and HEPES residual, a non-toxic but non-human-approved contaminant, used as buffer solution. We then applied our QC system to [68 Ga]Ga-MAA prepared under different conditions (25°-40°-75°-95 °C), thus defining the optimal temperature for labelling. Scanning Electron Microscopy (SEM) analysis of the products obtained through our novel method confirmed that most [68 Ga]Ga-MAA particles preserved the morphological structure and size distribution of unlabeled MAA, with a particle diameter range of 25-50 μm, assuring diagnostic efficacy. CONCLUSIONS We optimized a novel method to prepare [68 Ga]Ga-MAA through a QC system capable of monitoring all impurities of the final products.
Collapse
Affiliation(s)
- Silvia Migliari
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Stefano Bruno
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Ilaria De Nardis
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Antonio Scarano
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Monica Lusardi
- Chromatography and Mass Division, Orion Scientific, Via Giacomelli 16, 35010, Padua, Italy
| | - Anna Gaiani
- Chromatography and Mass Division, Orion Scientific, Via Giacomelli 16, 35010, Padua, Italy
| | - Alessandra Guercio
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Maura Scarlattei
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Giorgio Baldari
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27a, 43124, Parma, Italy
| | - Livia Ruffini
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
14
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Kraihammer M, Petřík M, Rangger C, Gabriel M, Haas H, Nilica B, Virgolini I, Decristoforo C. Automated Production of [ 68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics 2024; 16:1231. [PMID: 39339267 PMCID: PMC11435116 DOI: 10.3390/pharmaceutics16091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
Collapse
Affiliation(s)
- Martin Kraihammer
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-77900 Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
16
|
Mortensen JVK, Mattiussi S, Hvass L, Lund EG, Shalgunov V, Roesch F, Battisti UM, Herth MM, Kjaer A. [ 68Ga]Ga-DOTAGA-Glu(FAPi) 2 Shows Enhanced Tumor Uptake and Theranostic Potential in Preclinical PET Imaging. Diagnostics (Basel) 2024; 14:2024. [PMID: 39335703 PMCID: PMC11431137 DOI: 10.3390/diagnostics14182024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The use of fibroblast activation protein inhibitors (FAPis) for positron emission tomography (PET) imaging in cancer has garnered significant interest in recent years, yielding promising results in preclinical and clinical settings. FAP is predominantly expressed in pathological conditions such as fibrosis and cancer, making it a compelling target. An optimized approach involves using FAPi homodimers as PET tracers, which enhance tumor uptake and retention, making them more effective candidates for therapy. Here, a UAMC-1110 inhibitor-based homodimer, DOTAGA-Glu(FAPi)2, was synthesized and radiolabeled with gallium-68, and its efficacy was evaluated in vivo for PET imaging in an endogenously FAP-expressing xenografted mouse model, U87MG. Notably, 45 min post-injection, the mean uptake of [68Ga]Ga-DOTAGA-Glu(FAPi)2 was 4.7 ± 0.5% ID/g in the tumor with low off-target accumulation. The ex vivo analysis of the FAP expression in the tumors confirmed the in vivo results. These findings highlight and confirm the tracer's potential for diagnostic imaging of cancer and as a theranostic companion.
Collapse
Affiliation(s)
- Julie van Krimpen Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Simona Mattiussi
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Emilie Graae Lund
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Frank Roesch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Ebrahimi F, Zargari NR, Akhlaghi M, Asghari SM, Abdi K, Balalaie S, Asadi M, Beiki D. Synthesis, Radiolabeling, and Biodistribution Study of a Novel DOTA-Peptide for Targeting Vascular Endothelial Growth Factor Receptors in the Molecular Imaging of Breast Cancer. Pharmaceutics 2024; 16:899. [PMID: 39065596 PMCID: PMC11279866 DOI: 10.3390/pharmaceutics16070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 07/28/2024] Open
Abstract
As angiogenesis plays a pivotal role in tumor progression and metastasis, leading to more cancer-related deaths, the angiogenic process can be considered as a target for diagnostic and therapeutic applications. The vascular endothelial growth factor receptor-1 (VEGR-1) and VEGFR-2 have high expression on breast cancer cells and contribute to angiogenesis and tumor development. Thus, early diagnosis through VEGFR-1/2 detection is an excellent strategy that can significantly increase a patient's chance of survival. In this study, the VEGFR1/2-targeting peptide VGB3 was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), using 6-aminohexanoic acid (Ahx) as a spacer to prevent steric hindrance in binding. DOTA-Ahx-VGB3 was radiolabeled with Gallium-68 (68Ga) efficiently. An in vitro cell binding assay was assessed in the 4T1 cell line. The tumor-targeting potential of [68Ga]Ga-DOTA-Ahx-VGB3 was conducted for 4T1 tumor-bearing mice. Consequently, high radiochemical purity [68Ga]Ga-DOTA-Ahx-VGB3 (RCP = 98%) was prepared and stabilized in different buffer systems. Approximately 17% of the radiopeptide was internalized after 2 h incubation and receptor binding as characterized by the IC50 value being about 867 nM. The biodistribution and PET/CT studies revealed that [68Ga]Ga-DOTA-Ahx-VGB3 reached the tumor site and was excreted rapidly by the renal system. These features convey [68Ga]Ga-DOTA-Ahx-VGB3 as a suitable agent for the noninvasive visualization of VEGFR-1/2 expression.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - S. Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran;
| | - Khosrou Abdi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran 158754416, Iran
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| |
Collapse
|
18
|
Tan S, Ding X, Pan D, Xu Y, Wang C, Yan J, Chen C, Wang L, Wang X, Yang M, Xu Y. Synthesis and Characterization of a Novel PET Tracer for Noninvasive Evaluation of FGL1 Status in Tumors. Mol Pharm 2024; 21:3425-3433. [PMID: 38836286 DOI: 10.1021/acs.molpharmaceut.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibrinogen-like protein 1 (FGL1) is a potential novel immune checkpoint target for malignant tumor diagnosis and therapy. Accurate detection of FGL1 levels in tumors via noninvasive PET imaging might be beneficial for managing the disease. To achieve this, multiple FGL1-targeting peptides (FGLP) were designed, and a promising candidate, 68Ga-NOTA-FGLP2, was identified through a high-throughput screening approach using microPET imaging of 68Ga-labeled peptides. Subsequent in vitro cell experiments showed that uptake values of 68Ga-NOTA-FGLP2 in FGL1 positive Huh7 tumor cells were significantly higher than those in FGL1 negative U87 MG tumor cells. Further microPET imaging showed that the Huh7 xenografts were clearly visualized with a favorable contrast. ROI analysis showed that the uptake values of the tracer in Huh7 xenografts were 2.63 ± 0.07% ID/g at 30 min p.i.. After treatment with an excess of unlabeled FGLP2, the tumor uptake significantly decreased to 0.54 ± 0.05% ID/g at 30 min p.i.. Moreover, the uptake in U87 MG xenografts was 0.44 ± 0.06% ID/g at the same time point. The tracer was excreted mainly through the renal system. 18F-FDG PET imaging was also performed in mice bearing Huh7 and U87 MG xenografts, respectively. However, there was no significant difference in the uptake between the tumors with different FGL1 expressions. Preclinical data indicated that 68Ga-NOTA-FGLP2 might be a suitable radiotracer for in vivo noninvasive visualization of tumors with abundant expression of FGL1. Further investigation of 68Ga-NOTA-FGLP2 for tumor diagnosis and therapy is undergoing.
Collapse
Affiliation(s)
- Siyi Tan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Ding
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yue Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ce Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chongyang Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xinyu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
19
|
van Brandwijk EA, Aalbersberg EA, Hosseini AS, Huitema ADR, Hendrikx JJMA. Automated radiolabelling of [ 68Ga]Ga-PSMA-11 (gallium ( 68Ga)-gozetotide) using the Locametz® kit and two generators. EJNMMI Radiopharm Chem 2024; 9:31. [PMID: 38632189 PMCID: PMC11024066 DOI: 10.1186/s41181-024-00260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Steps have been taken by pharmaceutical companies to obtain marketing authorisation of PSMA ligands in the European Union. Since December 2022, Locametz® (PSMA-11, gozetotide) is licensed as kit for manual radiolabelling with gallium-68 and commercially available since mid-2023. The Summary of Product Characteristic (SmPC) describes manual radiolabelling with a maximum activity after radiolabelling of 1369 MBq. We aimed for radiolabelling with a higher activity to increase production efficiency, and thus, automated radiolabelling is strongly preferred over manual radiolabelling to reduce radiation exposure to personnel. The aim of this study was to develop and validate a method for automated radiolabelling of the Locametz® kit using ~ 2000 MBq of gallium-68 eluate for radiolabelling. RESULTS Automated radiolabelling of [68Ga]Ga-PSMA-11 using the Locametz® kit provided a product which complies to the Ph. Eur., had a shelf-life of 6 h at room temperature, and theoretically reduced radiation exposure 5.7 times. Radiolabelling with one and two generator(s) resulted in a radiochemical yield of 91-102% and 96-101% after preparation, respectively. The radiochemical purity ranged from 98.0 to 99.6% for radiolabelling with one generator and ranged from 98.4 to 99.3% for radiolabelling with two generators with similar stability. The activity of the final product was much higher when using two generators, 1961-2035 MBq compared to 740-1260 MBq, which leads to ~ 1.5 times more patient syringes available per preparation. CONCLUSION Automated radiolabelling of [68Ga]Ga-PSMA-11 using the Locametz® kit with higher gallium-68 activity than specified in the SmPC results in a product that is in compliance with the Ph. Eur. monograph and has a shelf-life of 6 h at room temperature. Radiolabelling with two generators proved possible and resulted in a product with similar quality but with much higher efficiency.
Collapse
Affiliation(s)
- Elke A van Brandwijk
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Else A Aalbersberg
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Arman S Hosseini
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Pediatric Oncology, Utrecht, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Rubira L, Donzé C, Fouillet J, Algudo B, Kotzki PO, Deshayes E, Fersing C. [ 68Ga]Ga-FAPI-46 synthesis on a GAIA® module system: Thorough study of the automated radiolabeling reaction conditions. Appl Radiat Isot 2024; 206:111211. [PMID: 38309117 DOI: 10.1016/j.apradiso.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The influence of several parameters involved in the 68Ga radiolabeling of FAPI-46 was studied at the scale of the automated reaction. Among the buffers tested, HEPES 0.3 M pH 4 allowed both high radiochemical purity (RCP) and radiochemical yield (RCY), without prepurification of 68Ga but after final purification of [68Ga]Ga-FAPI-46 on a C18 cartridge. A longer reaction time did not show significant benefit on the RCP, while higher loads of FAPI-46 and gentisic acid as anti-radiolysis compound allowed better RCY.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Charlotte Donzé
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Juliette Fouillet
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Benjamin Algudo
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Emmanuel Deshayes
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Cyril Fersing
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
21
|
Deng J, Yang J, Wang Y, Liu G, Chen Y. Comparison of the relative diagnostic performance of 68Ga-DOTA-IBA and 18F-NaF for the detection of bone metastasis. Front Oncol 2024; 14:1364311. [PMID: 38585006 PMCID: PMC10995215 DOI: 10.3389/fonc.2024.1364311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose We aimed to compare the relative diagnostic efficacy of 68Ga-Labeled DOTA-ibandronic acid (68Ga-DOTA-IBA) to that of18F-NaF PET/CT as a mean of detecting bone metastases in patients with a range of cancer types. Methods This study retrospectively enrolled patients with bone metastases associated with various underlying malignancies. All patients underwent both 68Ga-DOTA-IBA and 18F-NaF PET/CT scans. Histopathology and follow-up CT or MRI imaging results were used as reference criteria, with a minimum follow-up period of 3 months. The maximum Standardized Uptake Value (SUVmax) and number of bone metastases were recorded. The Target-Background Ratio (TBR) was calculated along with the detection rate, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 68Ga-DOTA-IBA and 18F-NaF PET/CT imaging for overall and partial primary solid tumor bone metastases. Pearson chi-square test, McNemar test, and Kappa test was conducted to assess the correlation and consistency of diagnostic efficiency between the two imaging agents. Receiver Operating Characteristic curve (ROC curve) was performed to compare diagnostic performance and the area under the curve of the two imaging agents, determining optimal critical values for SUVmax and TBR in diagnosing bone metastasis. Differences in SUVmax and TBR values between the two imaging agents for detecting bone metastases were analyzed using the Wilcoxon signed rank test. The difference was statistically significant when P < 0.05. Results A total of 24 patients (13 women and 11 men) were included in this study, with a mean age of 52 (interquartile range, 49-64 years). The detection rate, sensitivity, specificity, PPV, NPV, accuracy, and AUC of 68Ga-DOTA-IBA and 18F-NaF PET/CT for bone metastases were 81%, 90%, 62%, 95%, 43%, 88%, 0.763, and 89%, 99%, 59%, 95%, 89%, 95%, 0.789, respectively. There was no significant difference between the two imaging methods (P < 0.01), and there was a significant correlation (X2=168.43, P < 0.001) and a strong consistency (Kappa=0.774,P < 0.001) between the diagnostic results of the two imaging agents. The SUVmax values of lesions measured by 68Ga-DOTA-IBA and 18F-NaF imaging in 22 patients with bone metastasis were 5.1 ± 5.4 and 19.6 ± 15.1, respectively, with statistically significant differences (P<0.05). The TBR values of the two imaging methods were 5.0 ± 5.0 and 6.7 ± 6.4, respectively, with statistically significant differences (P<0.05). The AUC of the SUVmax of 68Ga-DOTA-IBA and 18F-NaF curves were 0.824 and 0.862, respectively, with no statistically significant difference (P=0.490). No significant difference was found in the AUC of the TBR of 68Ga-DOTA-IBA and 18F-NaF (0.832 vs 0.890; P=0.248). Subgroup analysis showed significant correlation between the two imaging agents in the diagnosis of bone metastases in lung cancer and breast cancer, with consistent diagnostic results. However, in the diagnosis of bone metastases in prostate cancer, there was a significant difference (P<0.001) and lack of consistency (P=0.109). Conclusion The diagnostic efficacy of 68Ga-DOTA-IBA for bone metastasis lesions is comparable to that of 18F-NaF. This finding holds significant clinical importance in terms of diagnosis of bone metastasis and selecting treatment plans for patients with malignant tumors.
Collapse
Affiliation(s)
- Jia Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingwei Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Guangfu Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Martin S, Wendlinger L, Litvinenko A, Faizova R, Schottelius M. Validation of a size exclusion method for concomitant purification and formulation of peptide radiopharmaceuticals. EJNMMI Radiopharm Chem 2024; 9:23. [PMID: 38512591 PMCID: PMC10957824 DOI: 10.1186/s41181-024-00254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Both in clinical routine and in preclinical research, the established standard procedure for the final purification of radiometal-labeled peptide radiopharmaceuticals is cartridge-based reversed-phase (RP) solid phase extraction (SPE). It allows the rapid and quantitative separation of the radiolabeled peptide from hydrophilic impurities and easy integration into automated synthesis procedures. However, product elution from RP cartridges necessitates the use of organic solvents and product recovery is sometimes limited. Thus, an alternative purification method based on commercially available size exclusion cartridges was investigated. RESULTS Since most peptide radiopharmaceuticals have a molecular weight > 1 kDa, Sephadex G10 cartridges with a molecular size cut-off of 700 Da were used for the final purification of a broad palette of 68Ga-, 64Cu- and 99mTc-labeled experimental peptide radiotracers as well as the clinically relevant ligand PSMA-617. Results (radiochemical purity (RCP, determined by ITLC), recovery from the solid support) were compared to the respective standard RP-SPE method. Generally, retention of unreacted 68Ga, 64Cu and 99mTc salts on the G10 cartridges was quantitative up to the specified elution volume (1.2 mL) for 68Ga and 99mTc and 99.6% for 64Cu. Even at increased elution volumes of 1.5-2 mL, RCPs of the eluted 68Ga- and 99mTc -radiopeptides were > 99%. For all peptides with a molecular weight ≥ 2 kDa, product recovery from the G10 cartridges was consistently > 85% upon respective adjustment of the elution volume. Product recovery was lowest for [68Ga]Ga-PSMA-617 (67%, 1.2 mL to 84%, 2 mL). The pH of the final product solution was found to be volume-dependent (1.2 mL: pH 6.3; 1.5 mL: pH 5.9; 2 mL: pH 5.5). Notably, the G10 cartridges were reused up to 20 times without compromising performance, and implementation of the method in an automated radiosynthesis procedure was successful. CONCLUSIONS Overall, size exclusion purification yielded all peptide radiopharmaceuticals in excellent radiochemical purities (> 99%) in saline within 10-12 min. Although product recovery is marginally inferior to classical SPE purifications, this method has the advantage of completely avoiding organic solvents and representing a cost-effective, easy-to-implement purification approach for automated radiotracer synthesis.
Collapse
Affiliation(s)
- Sebastian Martin
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Lennard Wendlinger
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Alexandra Litvinenko
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Radmila Faizova
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland.
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.
| |
Collapse
|
23
|
Kamal N, Nizam S, Abdul Aziz A. The effects of nuclear level density model and alpha optical model potential to the excitation functions of novel therapeutic radionuclides. Appl Radiat Isot 2024; 203:111085. [PMID: 37924626 DOI: 10.1016/j.apradiso.2023.111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
In this study, the theoretical cross sections of 209Bi(α,2n)211At, 65Cu(α,n)68Ga, 100Ru(α,n)103Pd, and 121Sb(α,n)124I are calculated using TALYS 1.96, incorporating the effects of the alpha optical model potential and nuclear level density models. The validation process involves comparing the calculated cross sections with experimental data and utilizing statistical deviation factors. This comparison allows us to determine the optimal combination of nuclear model parameters for each reaction. The result shows that theoretical calculations which utilized semi microscopic level density models and alpha OMP managed to describe the excitation functions close to the experimental data. The comparison of nuclear model calculations with experimental data plays a crucial role in ensuring the reliability of the data, making it an essential aspect of modern evaluation procedures.
Collapse
Affiliation(s)
- N Kamal
- Department of Physics, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia
| | - S Nizam
- Department of Physics, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia
| | - A Abdul Aziz
- Department of Physics, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia.
| |
Collapse
|
24
|
Vernekar S, Budha RR, Alavala RR. Radiopharmaceuticals: A New Vista for Diagnosis and Treatment of Thyroid Cancer. Curr Radiopharm 2024; 17:148-162. [PMID: 38213166 DOI: 10.2174/0118744710277275231112081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 01/13/2024]
Abstract
Radiopharmaceuticals are in the diagnosis and treatment of cancerous and noncancerous diseases, and a hope for optimistic effort in the field of nuclear medicine. They play a crucial role in clinical nuclear medicine by providing a tool to comprehend human disease and create efficient treatments. A detailed analysis is provided regarding the crux of molecular imaging including PET and SPECT overview for the detection of cancers. For a specified understanding of radiation therapy, topics include ranging from the selection of radionuclide to its development and manufacture, and dosage requirements to establishing the importance of I- 131 Radiotherapy in thyroid cancer. In this review, we also discussed the current state of the art of nuclear medicine in thyroid cancer, including the role of radioiodine (RAI) therapeutic scans in the diagnosis of differentiated thyroid cancer. In addition, we established a brief outlook into the current status of the research in thyroid cancer and discussed the future directions in this field.
Collapse
Affiliation(s)
- Siddhi Vernekar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Roja Rani Budha
- Amity Institute of Pharmacy, Amity University, Panvel, Mumbai, Maharashtra, 410206, India
| | - Rajasekhar Reddy Alavala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
25
|
Nelson BJB, Leier S, Wilson J, Wuest M, Doupe J, Andersson JD, Wuest F. 64Cu production via the 68Zn(p,nα) 64Cu nuclear reaction: An untapped, cost-effective and high energy production route. Nucl Med Biol 2024; 128-129:108875. [PMID: 38199184 DOI: 10.1016/j.nucmedbio.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Copper-64 (64Cu, t1/2 = 12.7 h) is a positron emitter well suited for theranostic applications with beta-emitting 67Cu for targeted molecular imaging and radionuclide therapy. The present work aims to evaluate the radionuclidic purity and radiochemistry of 64Cu produced via the 68Zn(p,nα)64Cu nuclear reaction. Macrocyclic chelators DOTA, NOTA, TETA, and prostate-specific membrane antigen ligand PSMA I&T were radiolabeled with purified 64Cu and tested for in vitro stability. [64Cu]Cu-PSMA I&T was used to demonstrate in vivo PET imaging using 64Cu synthesized via the 68Zn(p,nα)64Cu production route and its suitability as a theranostic imaging partner alongside 67Cu therapy. METHODS 64Cu was produced on a 24 MeV TR-24 cyclotron at a beam energy of 23.5 MeV and currents up to 70 μA using 200 mg 68Zn encapsulated within an aluminum‑indium-graphite sealed solid target assembly. 64Cu semi-automated purification was performed using a NEPTIS Mosaic-LC synthesis unit employing CU, TBP, and TK201 (TrisKem) resins. Radionuclidic purity was measured by HPGe gamma spectroscopy, while ICP-OES assessed elemental purity. Radiolabeling was performed with NOTA at room temperature and DOTA, TETA, and PSMA I&T at 95 °C. 64Cu incorporation was studied by radio-TLC. 64Cu in vitro stability of [64Cu]Cu-NOTA, [64Cu]Cu-DOTA, [64Cu]Cu-TETA, and [64Cu]Cu-PSMA I&T was assessed at 37 °C from 0 to 72 h in human blood serum. Preclinical PET imaging was performed at 1, 24, and 48 h post-injection with [64Cu]Cu-PSMA I&T in LNCaP tumor-bearing mice and compared with [68Ga]Ga-PSMA I&T. RESULTS Maximum purified activity of 4.9 GBq [64Cu]CuCl2 was obtained in 5 mL of pH 2-3 solution, with 2.9 GBq 64Cu concentrated in 0.5 mL. HPGe gamma spectroscopy of purified 64Cu detected <0.3 % co-produced 67Cu at EOB with no other radionuclidic impurities. ICP-OES elemental analysis determined <1 ppm Al, Zn, In, Fe, and Cu in the [64Cu]CuCl2 product. NOTA, DOTA, TETA, and PSMA I&T were radiolabeled with 64Cu, resulting in maximum molar activities of 164 ± 6 GBq/μmol, 155 ± 31 GBq/μmol, 266 ± 34 GBq/μmol, and 117 ± 2 GBq/μmol, respectively. PET imaging in PSMA-expressing LNCaP xenografts resulted in high tumor uptake (SUVmean = 1.65 ± 0.1) using [64Cu]Cu-PSMA I&T, while [68Ga]Ga-PSMA I&T yielded an SUVmean of 0.76 ± 0.14 after 60 min post-injection. CONCLUSIONS 64Cu was purified in a small volume amenable for radiolabeling, with yields suitable for preclinical and clinical application. The 64Cu production and purification process and the favourable PET imaging properties confirm the 68Zn(p,nα)64Cu nuclear reaction as a viable 64Cu production route for facilities with access to a higher energy proton cyclotron, compared to using expensive 64Ni target material and the 64Ni(p,n)64Cu nuclear reaction. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our 64Cu production technique provides an alternative production route with the potential to improve 64Cu availability for preclinical and clinical studies alongside 67Cu therapy.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Samantha Leier
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jonathan Doupe
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta T6G 1Z2, Canada
| | - Jan D Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
26
|
Mallapura H, Ovdiichuk O, Jussing E, Thuy TA, Piatkowski C, Tanguy L, Collet-Defossez C, Långström B, Halldin C, Nag S. Microfluidic-based production of [ 68Ga]Ga-FAPI-46 and [ 68Ga]Ga-DOTA-TOC using the cassette-based iMiDEV™ microfluidic radiosynthesizer. EJNMMI Radiopharm Chem 2023; 8:42. [PMID: 38091157 PMCID: PMC10719436 DOI: 10.1186/s41181-023-00229-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The demand for 68Ga-labeled radiotracers has significantly increased in the past decade, driven by the development of diversified imaging tracers, such as FAPI derivatives, PSMA-11, DOTA-TOC, and DOTA-TATE. These tracers have exhibited promising results in theranostic applications, fueling interest in exploring them for clinical use. Among these probes, 68Ga-labeled FAPI-46 and DOTA-TOC have emerged as key players due to their ability to diagnose a broad spectrum of cancers ([68Ga]Ga-FAPI-46) in late-phase studies, whereas [68Ga]Ga-DOTA-TOC is clinically approved for neuroendocrine tumors. To facilitate their production, we leveraged a microfluidic cassette-based iMiDEV radiosynthesizer, enabling the synthesis of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC based on a dose-on-demand (DOD) approach. RESULTS Different mixing techniques were explored to influence radiochemical yield. We achieved decay-corrected yield of 44 ± 5% for [68Ga]Ga-FAPI-46 and 46 ± 7% for [68Ga]Ga-DOTA-TOC in approximately 30 min. The radiochemical purities (HPLC) of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC were 98.2 ± 0.2% and 98.4 ± 0.9%, respectively. All the quality control results complied with European Pharmacopoeia quality standards. We optimized various parameters, including 68Ga trapping and elution, cassette batches, passive mixing in the reactor, and solid-phase extraction (SPE) purification and formulation. The developed synthesis method reduced the amount of precursor and other chemicals required for synthesis compared to conventional radiosynthesizers. CONCLUSIONS The microfluidic-based approach enabled the implementation of radiosynthesis of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC on the iMiDEV™ microfluidic module, paving the way for their use in preclinical and clinical applications. The microfluidic synthesis approach utilized 2-3 times less precursor than cassette-based conventional synthesis. The synthesis method was also successfully validated in a similar microfluidic iMiDEV module at a different research center for the synthesis of [68Ga]Ga-FAPI-46 with limited runs. Our study demonstrated the potential of microfluidic methods for efficient and reliable radiometal-based radiopharmaceutical synthesis, contributing valuable insights for future advancements in this field and paving the way for routine clinical applications in the near future.
Collapse
Affiliation(s)
- Hemantha Mallapura
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden.
| | - Olga Ovdiichuk
- Nancyclotep, Molecular Imaging Platform, 5 Rue du Morvan, 54500, Vandoeuvre Les Nancy, France
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Tran A Thuy
- Department of Oncology and Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, 17176, Stockholm, Sweden
| | | | - Laurent Tanguy
- PMB-Alcen, Route des Michels CD56, 13790, Peynier, France
| | - Charlotte Collet-Defossez
- Nancyclotep, Molecular Imaging Platform, 5 Rue du Morvan, 54500, Vandoeuvre Les Nancy, France
- Inserm, IADI, Université de Lorraine, 54000, Nancy, France
| | - Bengt Långström
- Department of Chemistry, Uppsala University, 75123, Uppsala, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| |
Collapse
|
27
|
Baitullina A, Claude G, Sucena SF, Nisli E, Scholz C, Bhardwaj P, Amthauer H, Brenner W, Geppert C, Gorges C, Abram U, da Silva Maia PI, Spreckelmeyer S. Metallacages with 2,6-dipicolinoylbis(N,N-dialkylthioureas) as novel platforms in nuclear medicine for 68Ga, 177Lu and 198Au. EJNMMI Radiopharm Chem 2023; 8:40. [PMID: 37982944 PMCID: PMC10661681 DOI: 10.1186/s41181-023-00225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Heterometallic gold metallacages are of great interest for the incorporation of several cations. Especially in nuclear medicine, those metallacages can serve as a platform for radionuclides relevant for imaging or therapy (e.g. 68Ga or 177Lu). Moreover, the radionuclide 198Au is an attractive beta emitter, for potential application in nuclear medicine. Here, we aim to synthesize a new set of gold metallacages and to study their ability to coordinate to 68Ga, 177Lu and 198Au. RESULTS New heterometallic gold metallacages of composition [M{Au(Lmorph-κS)}3] (M = La3+, Tb3+, Lu3+ or Y3+) and [Ga{Au(Lmorph-κS)}2]NO3 have been synthesized from 2,6-dipicolinoylbis(N,N-morpholinylthiourea) (H2Lmorph) with [AuCl(THT)] and the target M3+ metal ions in yields ranging from 33 (Lu) to 62% (Tb). The characterization of the compounds bases on ESI-MS, 1H NMR, IR, EA and single-crystal X-ray diffraction techniques (all except the Ga derivative). Selected gold cages derived from H2Lmorph were compared to previously reported gold cages that were derived from 2,6-dipicolinoylbis(N,N-diethylthiourea) (H2Ldiethyl). The tested metallacages show similar IC50 values close to that of auranofin in four different cancer cell lines (MCF-7, PC-3, U383, U343), e.g. 4.5 ± 0.7 µM for [Ga{Au(Ldiethyl)}2]NO3 on PC-3. The radiolabeling experiments thereof show high radiochemical purities with 68Ga and 198Au and low radiochemical purity with 177Lu. CONCLUSIONS The results indicate that these gold metallacages could serve as a novel platform for inclusion of different (radio)nuclides with potential theranostic applications in nuclear medicine.
Collapse
Affiliation(s)
- Anna Baitullina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Guilhem Claude
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Suelen F Sucena
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Eda Nisli
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Cedric Scholz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Punita Bhardwaj
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Holger Amthauer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Winfried Brenner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christopher Geppert
- Forschungsreaktor TRIGA Mainz, Johannes Gutenberg-Universität Mainz, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Christian Gorges
- Forschungsreaktor TRIGA Mainz, Johannes Gutenberg-Universität Mainz, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Pedro Ivo da Silva Maia
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Uberaba, MG, 38025-440, Brazil.
| | - Sarah Spreckelmeyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
28
|
Rusu T, Delion M, Pirot C, Blin A, Rodenas A, Talbot JN, Veran N, Portal C, Montravers F, Cadranel J, Prignon A. Fully automated radiolabeling of [ 68Ga]Ga-EMP100 targeting c-MET for PET-CT clinical imaging. EJNMMI Radiopharm Chem 2023; 8:30. [PMID: 37843660 PMCID: PMC10579204 DOI: 10.1186/s41181-023-00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND c-MET is a transmembrane receptor involved in many biological processes and contributes to cell proliferation and migration during cancer invasion process. Its expression is measured by immunehistochemistry on tissue biopsy in clinic, although this technique has its limitations. PET-CT could allow in vivo mapping of lesions expressing c-MET, providing whole-body detection. A number of radiopharmaceuticals are under development for this purpose but are not yet in routine clinical use. EMP100 is a cyclic oligopeptide bound to a DOTA chelator, with nanomolar affinity for c-MET. The aim of this project was to develop an automated method for radiolabelling the radiopharmaceutical [68Ga]Ga-EMP100. RESULTS The main results showed an optimal pH range between 3.25 and 3.75 for the complexation reaction and a stabilisation of the temperature at 90 °C, resulting in an almost complete incorporation of gallium-68 after 10 min of heating. In these experiments, 90 µg of EMP-100 peptide were initially used and then lower amounts (30, 50, 75 µg) were explored to determine the minimum required for sufficient synthesis yield. Radiolysis impurities were identified by radio-HPLC and ascorbic acid and ethanol were used to improve the purity of the compound. Three batches of [68Ga]Ga-EMP100 were then prepared according to the optimised parameters and all met the established specifications. Finally, the stability of [68Ga]Ga-EMP100 was assessed at room temperature over 3 h with satisfactory results in terms of appearance, pH, radiochemical purity and sterility. CONCLUSIONS For the automated synthesis of [68Ga]Ga-EMP100, the parameters of pH, temperature, precursor peptide content and the use of adjuvants for impurity management were efficiently optimised, resulting in the production of three compliant and stable batches according to the principles of good manufacturing practice. [68Ga]Ga-EMP100 was successfully synthesised and is now available for clinical development in PET-CT imaging.
Collapse
Affiliation(s)
- Timofei Rusu
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France.
- Positron Molecular Imaging Laboratory (LIMP) UMS28 Small Animal Phenotyping, Sorbonne University, Paris, France.
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France.
- Radiopharmacist - Hôpital Tenon Assistance Publique - Hôpitaux de Paris, Paris, France.
| | - Matthieu Delion
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Charlotte Pirot
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Amaury Blin
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Anita Rodenas
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France
| | - Jean-Noël Talbot
- Institut National des Sciences et Techniques Nucléaires (INSTN), Saclay, France
| | - Nicolas Veran
- CHRU de Nancy Pôle Pharmacie : Centre Hospitalier Régional Universitaire de Nancy Pôle Pharmacie, Nancy, France
| | | | - Françoise Montravers
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Jacques Cadranel
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France
- Service de Pneumologie et Oncologie Thoracique, APHP - Hôpital Tenon and Sorbonne Université, Paris, France
| | - Aurélie Prignon
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France
- Positron Molecular Imaging Laboratory (LIMP) UMS28 Small Animal Phenotyping, Sorbonne University, Paris, France
| |
Collapse
|
29
|
Sharma S, Pandey MK. Radiometals in Imaging and Therapy: Highlighting Two Decades of Research. Pharmaceuticals (Basel) 2023; 16:1460. [PMID: 37895931 PMCID: PMC10610335 DOI: 10.3390/ph16101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The present article highlights the important progress made in the last two decades in the fields of molecular imaging and radionuclide therapy. Advancements in radiometal-based positron emission tomography, single photon emission computerized tomography, and radionuclide therapy are illustrated in terms of their production routes and ease of radiolabeling. Applications in clinical diagnostic and radionuclide therapy are considered, including human studies under clinical trials; their current stages of clinical translations and findings are summarized. Because the metalloid astatine is used for imaging and radionuclide therapy, it is included in this review. In regard to radionuclide therapy, both beta-minus (β-) and alpha (α)-emitting radionuclides are discussed by highlighting their production routes, targeted radiopharmaceuticals, and current clinical translation stage.
Collapse
Affiliation(s)
| | - Mukesh K. Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
30
|
Blok S, Wängler C, Bartenstein P, Jurkschat K, Schirrmacher R, Lindner S. Good practices for the automated production of 18F-SiFA radiopharmaceuticals. EJNMMI Radiopharm Chem 2023; 8:25. [PMID: 37819534 PMCID: PMC10567618 DOI: 10.1186/s41181-023-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The positron emitting isotope fluorine-18 (18F) possesses almost ideal physicochemical properties for the development of radiotracers for diagnostic molecular imaging employing positron emission tomography (PET). 18F in its nucleophilic anionic 18F- form is usually prepared by bombarding an enriched 18O water target with protons of various energies between 5 and 20 MeV depending on the technical specifications of the cyclotron. Large thick-target yields between 5 and 14 GBq/µA can be obtained, enough to prepare large batches of radiotracers capable to serve a considerable contingent of patients (50 + per clinical batch). The overall yield of the radiotracer however depends on the efficiency of the 18F labeling chemistry. The Silicon Fluoride Acceptor chemistry (SiFA) has introduced a convenient and highly efficient way to provide clinical peptide-based 18F-radiotracers in a kit-like procedure matching the convenience of 99mTc radiopharmaceuticals. MAIN BODY A radiotracer's clinical success primarily hinges on whether its synthesis can be automated. Due to its simplicity, the SiFA chemistry, which is based on isotopic exchange (18F for 19F), does not only work in a manual setup but has been proven to be automatable, yielding large batches of 18F-radiotracers of high molar activity (Am). The production of SiFA radiotracer can be centralized and the radiopharmaceutical be distributed via the "satellite" principle, where one production facility economically serves multiple clinical application sites. Clinically validated tracers such as [18F]SiTATE and [18F]Ga-rhPSMA-7/-7.3 have been synthesized in an automated synthesis unit under good manufacturing practice conditions and used in large patient cohorts. Communication of common guidelines and practices is warranted to further the dissemination of SiFA radiopharmaceuticals and to give easy access to this technology. CONCLUSION This current review highlights the most recent achievements in SiFA radiopharmaceutical automation geared towards large batch production for clinical application. Best practice advice and guidance towards a facilitated implementation of the SiFA technology into new and already operating PET tracer production facilities is provided. A brief outlook spotlights the future potential of SiFA radiochemistry within the landscape of non-canonical labeling chemistries.
Collapse
Affiliation(s)
- Simon Blok
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada.
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
31
|
Yang J, Deng J, Fan D, Chen G, Lu Z, Liu H, Mok GSP, Chen Y. Biodistribution and Internal Dosimetry of 68 Ga-DOTA-IBA PET Imaging for Patients With Bone Metastases. Clin Nucl Med 2023; 48:847-852. [PMID: 37418288 DOI: 10.1097/rlu.0000000000004757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
PURPOSE We have developed a new pharmaceutical, ibandronic acid (IBA), and preliminarily demonstrated that it is an efficient bisphosphonate for the diagnosis and treatment of bone metastases. This study aims to examine the biodistribution and internal dosimetry of the diagnostic 68 Ga-DOTA-IBA in patients. PATIENTS AND METHODS 68 Ga-DOTA-IBA was intravenously injected based on 1.81-2.57 MBq/Kg into 8 patients with bone metastases. Each patient underwent 4 sequential static whole-body PET scans at 0.1, 0.45, 0.8, and 1.8 hours after injection. The acquisition time for each scan was 20 minutes with 10 bed positions. Image registrations and volume of interest delineation were first performed on Hermes, whereas percentage injected activity (%IA), absorbed dose, and effective dose were measured for source organs, using OLINDA/EXM v2.0. Dosimetrics for the bladder was based on a bladder voiding model. RESULTS No adverse effects were observed on all patients. After the injection, 68 Ga-DOTA-IBA rapidly accumulated in bone metastases and cleared from nonbone tissues, as indicated by visual analysis and %IA measured on the sequential scans. High activity uptake was presented in the expected target organs, that is, bone, red marrow, and the drug-excretion organs such as kidneys and bladder. The mean total body effective dose is 0.022 ± 0.002 mSv/MBq. CONCLUSIONS 68 Ga-DOTA-IBA has high bone affinity and is promising in the diagnosis of bone metastases. Dosimetric results show that the absorbed doses for critical organs and total body are within the safety limit and with high bone retention. It also has the potential to be used in 177 Lu-therapy as a theranostic pair.
Collapse
Affiliation(s)
| | | | | | - Gefei Chen
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | | | - Greta S P Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | | |
Collapse
|
32
|
Sergienko VB, Ansheles AA. [Positron emission tomography in cardiological practice]. TERAPEVT ARKH 2023; 95:531-536. [PMID: 38159001 DOI: 10.26442/00403660.2023.07.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024]
Abstract
The utility of positron emission tomography in cardiology currently goes beyond the ischemic heart disease and covers an increasingly wider range of non-coronary pathology, which requires timely expert diagnostics, including chronic heart disease of any etiology, valvular and electrophysiology disorders, cardiooncology. Authors emphasize the importance of the development of positron emission tomography technologies in the Russian Federation. This includes the development and implementation of new radiopharmaceuticals for the diagnosis of pathological processes of the cardiovascular system, systemic and local inflammation, including atherosclerosis, impaired perfusion and myocardial metabolism, and also for solving specific diagnostic tasks in comorbid pathology.
Collapse
Affiliation(s)
- V B Sergienko
- Chazov National Medical Research Center of Cardiology
| | - A A Ansheles
- Chazov National Medical Research Center of Cardiology
| |
Collapse
|
33
|
Vatsa R, Kaur D, Shekhar SS, Chhabra A, Chakraborty S, Dash A, Shukla J, Mittal BR. Comparison of 99m Tc-methylenediphosphonate and 68 Ga-BPAMD PET/computed tomography imaging in bone metastasis. Nucl Med Commun 2023; 44:463-470. [PMID: 36897059 DOI: 10.1097/mnm.0000000000001685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Bone is considered as the third most common site of metastases, besides lung and liver. Early detection of skeletal metastases aids in better management of skeletal-related events. In the present study cold kit-based 2,2 ' ,2 '' -(10-(2-((diphosphonomethyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (BPAMD) was labeled with 68 Ga. The radiolabeling parameters and clinical evaluation in patients with suspected bone metastases were compared with routinely used 99m Tc-methylenediphosphonate ( 99m Tc-MDP). METHODOLOGY The kit components of MDP were incubated with at room temperature for 10 min, followed by radiochemical purity testing using thin-layer chromatography. For radiolabeling of BPAMD, the cold kit components reconstituted in 400 μL of HPLC grade water were transferred and incubated with 68 GaCl 3 in the reactor vessel of the fluidic module at 95°C for 20 min. Radiochemical yield and purity were determined with instant thin-layer chromatography using 0.5 M sodium citrate as mobile phase. For clinical evaluation, patients ( n = 10) with suspected bone metastases were enrolled. 99m Tc-MDP and 68 Ga-BPAMD scans were performed on two different days in random order. Imaging outcomes were noted and compared. RESULTS Radiolabeling of both tracers is facile using cold kit, although BPAMD requires heating. The radiochemical purity was observed to be greater than 99% for all preparations. Both MDP and BPAMD detected skeletal lesions; however, additional lesions were detected in total of seven patients which were not visualized clearly on 99m Tc-MDP scan. CONCLUSION BPAMD can be easily tagged with 68 Ga using cold kits. The radiotracer is suitable and efficient for detection of bone metastases using PET/computed tomography.
Collapse
Affiliation(s)
- Rakhee Vatsa
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Damanpreet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Shashank Singh Shekhar
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Anupriya Chhabra
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | | | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
34
|
Cankaya A, Balzer M, Amthauer H, Brenner W, Spreckelmeyer S. Optimization of 177Lu-labelling of DOTA-TOC, PSMA-I&T and FAPI-46 for clinical application. EJNMMI Radiopharm Chem 2023; 8:10. [PMID: 37233924 DOI: 10.1186/s41181-023-00196-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND 177Lu-radiopharmaceuticals are routinely used for the treatment of various tumor entities. The productions of radiopharmaceuticals follow strict good-manufacturing practice guidelines and synthesis optimizations thereof have a strong impact on e.g. the quality of the product, radiation safety and costs. The purpose of this study is to optimize the precursor load of three radiopharmaceuticals. For that, different precursor loads were evaluated and compared to previously reported findings. RESULTS All three radiopharmaceuticals were successfully synthesized in high radiochemical purities and yields on the ML Eazy. The precursor load was optimized for [177Lu]Lu-FAPI-46 from 27.0 to 9.7 µg/GBq, for [177Lu]Lu-DOTATOC from 11 to 10 µg/GBq and for [177Lu]Lu-PSMA-I&T from 16.3 to 11.6 µg/GBq. CONCLUSIONS We successfully reduced the precursor load for all three radiopharmaceuticals while maintaining their quality.
Collapse
Affiliation(s)
- Aylin Cankaya
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Matthias Balzer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Holger Amthauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Winfried Brenner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sarah Spreckelmeyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
35
|
Śmiłowicz D, Eisenberg S, Ahn SH, Koller AJ, Lampkin PP, Boros E. Radiometallation and photo-triggered release of ready-to-inject radiopharmaceuticals from the solid phase. Chem Sci 2023; 14:5038-5050. [PMID: 37206398 PMCID: PMC10189872 DOI: 10.1039/d2sc06977f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
The efficient, large-scale synthesis of radiometallated radiopharmaceuticals represents an emerging clinical need which, to date, is inherently limited by time consuming, sequential procedures to conduct isotope separation, radiochemical labeling and purification prior to formulation for injection into the patient. In this work, we demonstrate that a solid-phase based, concerted separation and radiosynthesis strategy followed by photochemical release of radiotracer in biocompatible solvents can be employed to prepare ready-to-inject, clinical grade radiopharmaceuticals. Optimization of resin base, resin loading, and radiochemical labeling capacity are demonstrated with 67Ga and 64Cu radioisotopes using a short model peptide sequence and further validated using two peptide-based radiopharmaceuticals with clinical relevance, targeting the gastrin-releasing peptide and the prostate specific membrane antigen. We also demonstrate that the solid-phase approach enables separation of non-radioactive carrier ions Zn2+ and Ni2+ present at 105-fold excess over 67Ga and 64Cu by taking advantage of the superior Ga3+ and Cu2+ binding affinity of the solid-phase appended, chelator-functionalized peptide. Finally, a proof of concept radiolabeling and subsequent preclinical PET-CT study with the clinically employed positron emitter 68Ga successfully exemplifies that Solid Phase Radiometallation Photorelease (SPRP) allows the streamlined preparation of radiometallated radiopharmaceuticals by concerted, selective radiometal ion capture, radiolabeling and photorelease.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook NY 11794 USA
| | - Shawn Eisenberg
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook NY 11794 USA
| | - Shin Hye Ahn
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook NY 11794 USA
| | - Angus J Koller
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook NY 11794 USA
| | - Philip P Lampkin
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53705 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook NY 11794 USA
| |
Collapse
|
36
|
Saatchi K, Bénard F, Hundal N, Grimes J, Shcherbinin S, Pourghiasian M, Brooks DE, Celler A, Häfeli UO. Preclinical PET Imaging and Toxicity Study of a 68Ga-Functionalized Polymeric Cardiac Blood Pool Agent. Pharmaceutics 2023; 15:pharmaceutics15030767. [PMID: 36986628 PMCID: PMC10052923 DOI: 10.3390/pharmaceutics15030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Cardiac blood pool imaging is currently performed almost exclusively with 99mTc-based compounds and SPECT/CT imaging. Using a generator-based PET radioisotope has a few advantages, including not needing nuclear reactors to produce it, obtaining better resolution in humans, and potentially reducing the radiation dose to the patient. When the shortlived radioisotope 68Ga is used, it can be applied repeatedly on the same day—for example, for the detection of bleeding. Our objective was to prepare and evaluate a long-circulating polymer functionalized with gallium for its biodistribution, toxicity, and dosimetric properties. A 500 kDa hyperbranched polyglycerol was conjugated to the chelator NOTA and radiolabeled rapidly at room temperature with 68Ga. It was then injected intravenously into a rat, and gated imaging allowed us to easily observe wall motion and cardiac contractility, confirming the suitability of this radiopharmaceutical for cardiac blood pool imaging. Internal radiation dose calculations showed that the radiation doses that patients would receive from the PET agent would be 2.5× lower than those from the 99mTc agent. A complete 14-day toxicology study in rats concluded that there were no gross pathology findings, changes in body or organ weights, or histopathological events. This radioactive-metal-functionalized polymer might be a suitable non-toxic agent to advance for clinical application.
Collapse
Affiliation(s)
- Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| | - François Bénard
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | | | - Joshua Grimes
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sergey Shcherbinin
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| |
Collapse
|
37
|
Migliari S, Scarlattei M, Baldari G, Ruffini L. Scale down and optimized automated production of [68Ga]68Ga-DOTA-ECL1i PET tracer targeting CCR2 expression. EJNMMI Radiopharm Chem 2023; 8:3. [PMID: 36729317 PMCID: PMC9895323 DOI: 10.1186/s41181-023-00188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Recently it has been identified a short peptide that showed allosteric antagonism against C-C motif chemokine receptor 2 (CCR2) expressed on inflammatory monocyte and macrophages. A 7-D-amino acid peptidic CCR2 inhibitor called extracellular loop 1 inverso (ECL1i), d(LGTFLKC) has been identified and labeled to obtain a new probe for positron emission tomography in pulmonary fibrosis, heart injury, abdominal aortic aneurysm inflammation, atherosclerosis, head and neck cancer. Our goal was to develop, optimize and validate an automated synthesis method for [68Ga]68Ga-DOTA-ECL1i to make it available for a broader community. The synthesis of [68Ga]68Ga-DOTA-ECL1i was done using the Scintomics GRP® module with the already estabilished synthesis template for [68Ga]68Ga-DOTATOC/[68Ga]68Ga-PSMA. The radiopharmaceutical production was optimized scaling down the amount of DOTA-ECL1i (from 50 to 10 μg), evaluating synthesis efficiency and relevant quality control parameters in accordance with the European Pharmacopeia. RESULTS Best results were yielded with 20 μg DOTA-ECL1i and then the process validation was carried out by producing three different batches on three different days obtaining an optimal radiochemical yield (66.69%) as well as radiochemical purity (100%) and molar activity (45.41 GBq/µmol). CONCLUSIONS [68Ga]68Ga-DOTA-ECL1i was successfully synthesized and it is, thus, available for multi-dose application in clinical settings.
Collapse
Affiliation(s)
- Silvia Migliari
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Maura Scarlattei
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giorgio Baldari
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Livia Ruffini
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
38
|
Gültekin A. Good practices for Ga-68 radiopharmaceutical production: an important correction. EJNMMI Radiopharm Chem 2023; 8:1. [PMID: 36692826 PMCID: PMC9873864 DOI: 10.1186/s41181-022-00184-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/26/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aziz Gültekin
- grid.411742.50000 0001 1498 3798Department of Nuclear Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
39
|
Automated GMP Production and Preclinical Evaluation of [ 68Ga]Ga-TEoS-DAZA and [ 68Ga]Ga-TMoS-DAZA. Pharmaceutics 2022; 14:pharmaceutics14122695. [PMID: 36559188 PMCID: PMC9783202 DOI: 10.3390/pharmaceutics14122695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
[68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA are two novel radiotracers suitable for functional PET liver imaging. Due to their specific liver uptake and biliary excretion, the tracers may be applied for segmental liver function quantification, gall tree imaging and the differential diagnosis of liver nodules. The purpose of this study was to investigate problems that occurred initially during the development of the GMP compliant synthesis procedure and to evaluate the tracers in a preclinical model. After low radiolabeling yields were attributed to precursor instability at high temperatures, an optimized radiolabeling procedure was established. Quality controls were in accordance with Ph. Eur. requirements and gave compliant results, although the method for the determination of the 68Ga colloid is partially inhibited due to the presence of a radioactive by-product. The determination of logP revealed [68Ga]Ga-TEoS-DAZA (ethoxy bearing) to be more lipophilic than [68Ga]Ga-TMoS-DAZA (methoxy bearing). Accordingly, biodistribution studies in an in ovo model showed a higher liver uptake for [68Ga]Ga-TEoS-DAZA. In dynamic in ovo PET imaging, rapid tracer accumulation in the liver was observed. Similarly, the activity in the intestines rose steadily within the first hour p.i., indicating biliary excretion. As [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA can be prepared according to GMP guidelines, transition into the early clinical phase is now possible.
Collapse
|