1
|
Hong Z, Zhao Y, Pahlavan S, Wang X, Han S, Wang X, Wang K. iPSC modification strategies to induce immune tolerance. LIFE MEDICINE 2025; 4:lnaf016. [PMID: 40376110 PMCID: PMC12076409 DOI: 10.1093/lifemedi/lnaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/18/2025]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise in regenerative medicine. However, immune rejections remain one of the major obstacles to stem cell therapy. Though conventional immunosuppressants are available in clinics, the side effects prevent the wide application of hPSCs derivatives, compromising both survival rate and quality of life. In recent years, a myriad of strategies aimed at inducing immune tolerance specifically by engineering stem cells has been introduced to society. One strategy involves human leukocyte antigen (HLA) deletion through gene editing, affording allografts the capability to evade the host immune system. Another strategy involves immune cloak, which is the focus of this review, with emphasis on the overexpression of immune checkpoints and the blocking of immune cytotoxic pathways. Nevertheless, co-transplantation with mesenchymal stem cells (MSCs) and enhanced MSCs confers immune privilege to engraftments. This review summarizes recent studies on the intricacies of immune tolerance induction by engineering stem cells. In addition, we endeavor to deliberate upon the safety and limitations associated with this promising and potential therapeutic modality.
Collapse
Affiliation(s)
- Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Xue Wang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sen Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Vo QD, Nakamura K, Saito Y, Iida T, Yoshida M, Amioka N, Akagi S, Miyoshi T, Yuasa S. iPSC-Derived Biological Pacemaker-From Bench to Bedside. Cells 2024; 13:2045. [PMID: 39768137 PMCID: PMC11674228 DOI: 10.3390/cells13242045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
- Center for Advanced Heart Failure, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Naofumi Amioka
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| |
Collapse
|
3
|
Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ 2024; 12:e18422. [PMID: 39619184 PMCID: PMC11608026 DOI: 10.7717/peerj.18422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 03/10/2025] Open
Abstract
The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells. These developments include optimizing starting cells, refining culture systems, and introducing genetic modifications. With the rapid development of organoid technology, organoid composition has evolved from single-cell to multi-cell types, enhancing their level of biomimicry. Tissue structure has become more refined, and core challenges like vascularization are being addressed actively. These improvements are expected to pave the way for the construction of organoid atlases, automated large-scale cultivation, and universally compatible organoid biobanks. However, major obstacles remain to be overcome before urgently proof-of-concept organoids can be readily converted to practical applications. These obstacles include achieving structural and functional summarily to native tissue, remodeling the microenvironment, and scaling up production. This review aims to summarize the status of organoid development and applications, highlight recent progress, acknowledge existing limitations and challenges, and provide insights into future advancements. It is expected that this will contribute to the establishment of a reliable, scalable, and practical platform for organoid production and translation, further promoting their use in the pharmaceutical industry and regenerative medicine.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Innovation and Transformation Center, University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yun Wang
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Dermatology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qi-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Kai Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan-Kai Lei
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
5
|
Murata T, Hama N, Kamatani T, Mori A, Otsuka R, Wada H, Seino KI. Induced pluripotent stem cell-derived hematopoietic stem and progenitor cells induce mixed chimerism and donor-specific allograft tolerance. Am J Transplant 2023; 23:1331-1344. [PMID: 37244443 DOI: 10.1016/j.ajt.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
In transplantation using allogeneic induced pluripotent stem cells (iPSCs), strategies focused on major histocompatibility complexes were adopted to avoid immune rejection. We showed that minor antigen mismatches are a risk factor for graft rejection, indicating that immune regulation remains one of the most important issues. In organ transplantation, it has been known that mixed chimerism using donor-derived hematopoietic stem/progenitor cells (HSPCs) can induce donor-specific tolerance. However, it is unclear whether iPSC-derived HSPCs (iHSPCs) can induce allograft tolerance. We showed that 2 hematopoietic transcription factors, Hoxb4 and Lhx2, can efficiently expand iHSPCs with a c-Kit+Sca-1+Lineage- phenotype, which possesses long-term hematopoietic repopulating potential. We also demonstrated that these iHSPCs can form hematopoietic chimeras in allogeneic recipients and induce allograft tolerance in murine skin and iPSC transplantation. With mechanistic analyses, both central and peripheral mechanisms were suggested. We demonstrated the basic concept of tolerance induction using iHSPCs in allogeneic iPSC-based transplantation.
Collapse
Affiliation(s)
- Tomoki Murata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoki Kamatani
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihiro Mori
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
6
|
Smith S, Ascione R. Targeting neuro-immune systems to achieve cardiac tissue repair following myocardial infarction: A review of therapeutic approaches from in-vivo preclinical to clinical studies. Pharmacol Ther 2023; 245:108397. [PMID: 36996910 PMCID: PMC7616359 DOI: 10.1016/j.pharmthera.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Myocardial healing following myocardial infarction (MI) toward either functional tissue repair or excessive scarring/heart failure, may depend on a complex interplay between nervous and immune system responses, myocardial ischemia/reperfusion injury factors, as well as genetic and epidemiological factors. Hence, enhancing cardiac repair post MI may require a more patient-specific approach targeting this complex interplay and not just the heart, bearing in mind that the dysregulation or modulation of just one of these systems or some of their mechanisms may determine the outcome either toward functional repair or toward heart failure. In this review we have elected to focus on existing preclinical and clinical in-vivo studies aimed at testing novel therapeutic approaches targeting the nervous and immune systems to trigger myocardial healing toward functional tissue repair. To this end, we have only selected clinical and preclinical in-vivo studies reporting on novel treatments targeting neuro-immune systems to ultimately treat MI. Next, we have grouped and reported treatments under each neuro-immune system. Finally, for each treatment we have assessed and reported the results of each clinical/preclinical study and then discussed their results collectively. This structured approach has been followed for each treatment discussed. To keep this review focused, we have deliberately omitted to cover other important and related research areas such as myocardial ischemia/reperfusion injury, cell and gene therapies as well as any ex-vivo and in-vitro studies. The review indicates that some of the treatments targeting the neuro-immune/inflammatory systems appear to induce beneficial effects remotely on the healing heart post MI, warranting further validation. These remote effects on the heart also indicates the presence of an overarching synergic response occurring across the nervous and immune systems in response to acute MI, which appear to influence cardiac tissue repair in different ways depending on age and timing of treatment delivery following MI. The cumulative evidence arising from this review allows also to make informed considerations on safe as opposed to detrimental treatments, and within the safe treatments to ascertain those associated with conflicting or supporting preclinical data, and those warranting further validation.
Collapse
Affiliation(s)
- Sarah Smith
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes. Bioengineering (Basel) 2023; 10:bioengineering10020237. [PMID: 36829731 PMCID: PMC9952364 DOI: 10.3390/bioengineering10020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues.
Collapse
|
8
|
Torrents S, Grau-Vorster M, Vives J. Illustrative Potency Assay Examples from Approved Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:139-149. [PMID: 37258788 DOI: 10.1007/978-3-031-30040-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Advanced therapy medicinal products (ATMP) encompass a new type of drugs resulting from the manipulation of genes, cells, and tissues to generate innovative medicinal entities with tailored pharmaceutical activity. Definition of suitable potency tests for product release are challenging in this context, in which the active ingredient is composed of living cells and the mechanism of action often is poorly understood. In this chapter, we present and discuss actual potency assays used for the release of representative commercial ATMP from each category of products (namely, KYMRIAH® (tisagenlecleucel), Holoclar® (limbal epithelial stem cells), and PROCHYMAL®/RYONCIL™ (remestemcel-L)). We also examine concerns related to the biological relevance of selected potency assays and challenges ahead for harmonization and broader implementation in compliance with current quality standards and regulatory guidelines.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Seino KI. Studies on immune regulation for allogeneic iPSC-based transplantation. Inflamm Regen 2022; 42:65. [PMID: 36581853 PMCID: PMC9801599 DOI: 10.1186/s41232-022-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ken-ichiro Seino
- grid.39158.360000 0001 2173 7691Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|