1
|
Chen K, Li M, Fu TQ, Hu YY, Chen L, Huang Q, Xu L, Zeng ZL, Li DS. Partial normalization of microbiota dysbiosis in condyloma acuminatum patients following treatment. Front Cell Infect Microbiol 2025; 15:1558469. [PMID: 40230439 PMCID: PMC11994705 DOI: 10.3389/fcimb.2025.1558469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Condyloma acuminatum (CA) is the most common sexually transmitted disease and the presence of microbiota dysbiosis has been observed to promote the progress of the disease. However, the explicit characteristics of microbiota dysbiosis in CA patients have not been well elucidated yet. Methods We recruited 40 CA patients who received QYXJ (an in-hospital prescription that has been used to treat CA for many years) treatment and 40 healthy controls (HC) in the current study. Before and after two weeks QYXJ administration, the skin microbiome of each patient was assessed using 16S rRNA gene sequencing. Results Here, we found increased relative abundances of Staphylococcus and Lactobacillus, whereas a decreased Escherichia in CA patients relative to healthy controls (HC). Moreover, we also observed significant alpha and beta diversity differences between the CA and HC groups, and QYXJ treatment effectivity attenuated these alterations of genus level and microbial diversity in patients with CA. Importantly, further microbial interaction and function analyses revealed the significantly enriched relative abundance of Caldivirga and Streptococcus in microbial community, decreased complexity of microbial interactions and downregulated metabolic pathways in CA patients, including membrane transport, lipid metabolism and carbohydrate metabolism. Remarkably, QYXJ administration partially restored these microbiota dysbiosis, which subsequently shifts microbiomes of patients with CA towards healthy-like microbiota. Conclusion This study further confirmed the changes of skin microbiome in CA pathogenesis and firstly revealed the protective effects of QYXJ in microbiota dysbiosis resolution, suggesting its potential role as a novel method for CA treatment.
Collapse
Affiliation(s)
- Kai Chen
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Wuhan, China
| | - Meng Li
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| | - Tian-Qi Fu
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| | - Yan-Yan Hu
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| | - Lan Chen
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Medicine, Jianghan University, Wuhan, China
| | - Qian Huang
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| | - Li Xu
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhi-Liang Zeng
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| | - Dong-Sheng Li
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Infectious Skin Diseases of Hubei Province, Wuhan No. 1 Hospital, Wuhan, China
| |
Collapse
|
2
|
Li P, Zeng BH, He SW, Liu B, Chen CZ, Feng JX, Liu L, Li ZH. Sex-specific effects of triphenyltin on gut microbiota and intergenerational effects in marine medaka (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136924. [PMID: 39709808 DOI: 10.1016/j.jhazmat.2024.136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
In this study, a mixed model was applied to the marine medaka to investigate the intergenerational effects of parental exposure to Triphenyltin (TPT) and the subsequent perturbations in parental gut microbiota on the gut microbiota of offspring. In addition, "microgenderome" has been focused on elucidating the different responses of males and females to environmental stress. The results indicated that TPT exhibited androgenic effects and long-term toxicological consequences, influencing the internal steroid hormone levels of the offspring and leading to their abnormal growth and development. Furthermore, the "microgenderome" has been observed in fish, which resulted in sex-specific responses among females and males when exposed to TPT. The effects of parental TPT exposure on offspring also varied by sex; specifically, it disrupted the intestinal microenvironment in female offspring, creating selective pressure on gut microbiota. In contrast, the male gut microbiota exhibited greater sensitivity to environmental perturbations, allowing rapid community interactions to achieve a relatively stable state. These findings suggest that TPT poses significant long-term toxicological effects that warrant further attention and management. Moreover, the identification of the "microgenderome" phenomenon in fish may provide new insights into gut microbiota disruption and its functional implications.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bian-Hao Zeng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | | | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
3
|
Vanhove MPM, Koblmüller S, Fernandes JMO, Hahn C, Plusquin M, Kmentová N. Cichlid fishes are promising underutilized models to investigate helminth-host-microbiome interactions. Front Immunol 2025; 16:1527184. [PMID: 40018030 PMCID: PMC11864961 DOI: 10.3389/fimmu.2025.1527184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
The "Old Friends Hypothesis" suggests insufficient exposure to symbionts hinders immune development, contributing to increased immune-related diseases in the Global North. The microbiome is often the focus; helminths, potentially also offering health benefits, lack attention. Infection and effect of helminths are influenced and perhaps determined by micro-organisms. Mechanisms behind parasite-microbiome interactions are poorly understood, despite implications on host health. These interactions are typically studied for single helminth species in laboratory animal models, overlooking helminth diversity. Reviewing research on relationships between helminth and microbial diversity yielded 27 publications; most focused on human or other mammalian hosts, relying on natural exposure rather than experimental helminth inoculation. Only about half investigated host health outcomes. Remaining knowledge gaps warrant considering additional candidate model systems. Given the high helminthiasis burden and species diversity of helminths, we propose seeking models in the Global South, where a considerable proportion of research on diversity aspects of helminth-microbiome interactions took place. Low availability of genomic resources for helminths in the Global South, however, necessitates more integrative helminthological research efforts. Given substantial similarities in immune systems, several fishes are models for human health/disease. More effort could be done to establish this for cichlids, whose representatives in the African Great Lakes provide a well-delineated, closed natural system relevant to human health in view of fish-borne zoonoses and other water-borne parasites. A good baseline exists for these cichlids' genomics, parasitology, and microbiology. We suggest exploring African Great Lake cichlids as model hosts for interactions between microbial diversity, helminth diversity, and host health.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
| | | | - Jorge M. O. Fernandes
- Renewable Marine Resources Department, Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | | | - Michelle Plusquin
- Research Group Environmental Biology, Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
- Freshwater Biology, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
4
|
Kanika NH, Liaqat N, Chen H, Ke J, Lu G, Wang J, Wang C. Fish gut microbiome and its application in aquaculture and biological conservation. Front Microbiol 2025; 15:1521048. [PMID: 39839099 PMCID: PMC11747440 DOI: 10.3389/fmicb.2024.1521048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Understanding the diversity and function of fish gut microbiomes has advanced substantially, yet many aspects remain poorly understood, particularly the interplay among microbiota, host species, and environmental factors in the context of conservation. This review explores the composition and abundance of gut bacterial communities in key aquaculture fish groups-cyprinids, ictalurids (catfish), salmonids, and cichlids (tilapia)-alongside the model organism zebrafish, across diverse geographic regions. The findings highlight environmental habitats and host species as primary determinants of gut microbiome structure, offering a global perspective on these microbial communities. Across all fish groups, the phyla Firmicutes, Fusobacteria, and Proteobacteria consistently dominated, while temperate, sub-equatorial, and sub-tropical regions exhibited the highest microbiome diversity, underscoring the contribution of taxonomic and environmental factors. The gut bacterial diversity of farm-raised fish shows a significant divergence from that of wild-caught fish, reflecting the impacts of ecological and management differences. Understanding the dynamic responses of fish gut microbiota is vital for guiding conservation efforts, safeguarding aquatic biodiversity, and advancing sustainable aquaculture practices. Future research should leverage innovative techniques and integrative approaches, both experimental and theoretical, to uncover the functional roles of microbiomes and predict their responses to environmental changes. Expanding geographic and taxonomic coverage will be critical for creating a comprehensive framework to inform global aquaculture and conservation strategies. Collectively, this perspective highlights the transformative potential of microbiome research in addressing global challenges in aquaculture and conservation biology.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Nusrat Liaqat
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, China
| | - Huifan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Xia X, Wang L, Pei H, Dong C, Zhang Y, Ding J. Nanoplastics exposure simplifies the network structure of sea cucumber (Apostichopus japonicus) gut microbiota and improves cluster randomness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124663. [PMID: 39097257 DOI: 10.1016/j.envpol.2024.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Nanoplastics (NPs) are abundant in ocean environments, leading to environmental pollution and notable disruptions to the physiological functions of marine animals. To investigate the toxic effects of NPs on echinoderms, specifically sea cucumbers (Apostichopus japonicus), they were exposed to varying concentrations of NPs (0, 102, 104 particles/L) for 14 d. Subsequently, the 102 particles/L exposure group was purified for 35 d to elucidate the impact of both NPs exposure and purification on the intestinal bacteria structure and function. The results showed that the richness and variety of intestinal bacteria in sea cucumbers significantly reduced under NPs exposure, and then they could be restored to the pre-exposure treatment state after 35 d of purification. With the increase of NPs exposure concentration in the environment, the intestinal core bacteria gradually changed from Firmicutes and Proteobacteria to Pseudoalteromonas and Vibrio. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database annotated that the gut microbiota of sea cucumbers was significantly downregulated in the glycosylation, carbohydratic and amino acid metabolic pathways (P < 0. 05), exogenous substance biodegradation and metabolism, DNA replication and repair pathways were significantly up-regulated (P < 0.05) under the exposure of NPs. In addition, nanoplastics exposure simplified the symbiotic network relationships of the gut bacteria, reduced the selective effect of host on the intestinal bacteria, and increased stochasticity. In conclusion, waterborne NPs can adversely affect the structure and function of sea cucumber intestinal bacteria, with these effects persisting for a duration. However, as the purification time lengthens, these adverse effects gradually diminish. This study aims to provide some theoretical basis for the biotoxic effects of NPs.
Collapse
Affiliation(s)
- Xinglong Xia
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China
| | - Luo Wang
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Honglin Pei
- Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Changkun Dong
- Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yanmin Zhang
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Francis D, Sun F. A comparative analysis of mutual information methods for pairwise relationship detection in metagenomic data. BMC Bioinformatics 2024; 25:266. [PMID: 39143554 PMCID: PMC11323399 DOI: 10.1186/s12859-024-05883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Construction of co-occurrence networks in metagenomic data often employs correlation to infer pairwise relationships between microbes. However, biological systems are complex and often display qualities non-linear in nature. Therefore, the reliance on correlation alone may overlook important relationships and fail to capture the full breadth of intricacies presented in underlying interaction networks. It is of interest to incorporate metrics that are not only robust in detecting linear relationships, but non-linear ones as well. RESULTS In this paper, we explore the use of various mutual information (MI) estimation approaches for quantifying pairwise relationships in biological data and compare their performances against two traditional measures-Pearson's correlation coefficient, r, and Spearman's rank correlation coefficient, ρ. Metrics are tested on both simulated data designed to mimic pairwise relationships that may be found in ecological systems and real data from a previous study on C. diff infection. The results demonstrate that, in the case of asymmetric relationships, mutual information estimators can provide better detection ability than Pearson's or Spearman's correlation coefficients. Specifically, we find that these estimators have elevated performances in the detection of exploitative relationships, demonstrating the potential benefit of including them in future metagenomic studies. CONCLUSIONS Mutual information (MI) can uncover complex pairwise relationships in biological data that may be missed by traditional measures of association. The inclusion of such relationships when constructing co-occurrence networks can result in a more comprehensive analysis than the use of correlation alone.
Collapse
Affiliation(s)
- Dallace Francis
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Fengzhu Sun
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Díaz-Sánchez S, Vaz-Rodrigues R, Contreras M, Rafael M, Villar M, González-García A, Artigas-Jerónimo S, Gortázar C, de la Fuente J. Zebrafish gut microbiota composition in response to tick saliva biomolecules correlates with allergic reactions to mammalian meat consumption. Microbiol Res 2024; 285:127786. [PMID: 38820703 DOI: 10.1016/j.micres.2024.127786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Entrada Campus Anchieta, 4, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands 38200, Spain
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marta Rafael
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
8
|
Liu Y, Kou C, Chen J, Li Y, Li J. The Response of the Gut Physiological Function and Microbiome of a Wild Freshwater Fish ( Megalobrama terminalis) to Alterations in Reproductive Behavior. Int J Mol Sci 2024; 25:7425. [PMID: 39000530 PMCID: PMC11242598 DOI: 10.3390/ijms25137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The fish gut microbiome is well known for its role in degrading nutrients to improve the host's digestion and absorption efficiency. In this study, we focused on the core physiological adaptability during the various reproductive stages of the black Amur bream (Megalobrama terminalis) to explore the interaction mechanisms among the fish host gut mucosal structure, gut enzyme activity, and gut microbial metabolism in the course of the host's reproductive cycle. Our findings showed that M. terminalis exhibited locomotion metabolic type (aids in sporting) in the reproductive stage, and a change to visceral metabolic type (aids in digestion) during non-reproductive and post-reproductive stage phases. The impact of metabolic type selection and energy demand during various reproductive stages on fish nutrition strategy and digestive function was substantial. Our resulted showed that mitochondria in intestinal epithelial cells of reproductive M. terminalis appeared autophagy phenomenon, and the digestive enzyme activities in the intestines of reproductive M. terminalis were lower than those in the non-reproductive and post-reproductive individuals. Moreover, these differences in nutrition strategy have a prominent impact on the gut microbiome of reproductive M. terminalis, compared to non-reproductive and post-reproductive samples. Our findings showed that reproductive females had lower levels of alpha diversity compared to non-reproductive and post-reproductive females. Our results also showed a greater functional variety and an increase in functional genes related to carbohydrate, lipid, amino acid, cofactors, and vitamin metabolic pathways in the NRS and PRS group. It is noteworthy that an enrichment of genes encoding putative enzymes implicated in the metabolism of taurine and hypotaurine was observed in the RS samples. Our findings illustrated that the stability and resilience of the gut bacterial community could be shaped in the wild fish host-microbiome interactions during reproductive life history.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Chunni Kou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
| | - Jiayue Chen
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| |
Collapse
|
9
|
Yang M, Zhao L, Yu X, Shu W, Cao F, Liu Q, Liu M, Wang J, Jiang Y. Microbial community structure and co-occurrence network stability in seawater and microplastic biofilms under prometryn pollution in marine ecosystems. MARINE POLLUTION BULLETIN 2024; 199:115960. [PMID: 38159383 DOI: 10.1016/j.marpolbul.2023.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Prometryn has been extensively detected in marine environment because of its widespread usage in agriculture and aquaculture and has been concerns since its serious effects on aquatic organisms. However, its impact on the microbial community in the marine ecosystem including seawater and biofilm is still unclear. Therefore, a short-term indoor microcosm experiment of prometryn exposure was conducted. This study found that prometryn had a more significant impact on the structure and stability of the microbial community in seawater compared to microplastic biofilms. Additionally, we observed that the assembly of the microbial community in biofilms was more affected by stochastic processes than in seawater under the exposure of prometryn. Our study provided evidence for the increasing impact of the microbial communities under the stress of prometryn and microplastics.
Collapse
Affiliation(s)
- Mengyao Yang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lingchao Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaowen Yu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wangxinze Shu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Furong Cao
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Fan C, Zheng Y, Xue H, Xu J, Wu M, Chen L, Xu L. Different gut microbial types were found in captive striped hamsters. PeerJ 2023; 11:e16365. [PMID: 37953783 PMCID: PMC10634337 DOI: 10.7717/peerj.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Background Typing analysis has become a popular approach to categorize individual differences in studies of animal gut microbial communities. However, previous definitions of gut microbial types were more understood as a passive reaction process to different external interferences, as most studies involve diverse environmental variables. We wondered whether distinct gut microbial types can also occur in animals under the same external environment. Moreover, the role of host sex in shaping gut microbiota has been widely reported; thus, the current study preliminarily explores the effects of sex on potential different microbial types. Methods Here, adult striped hamsters Cricetulus barabensis of different sexes were housed under the same controlled laboratory conditions, and their fecal samples were collected after two months to assess the gut microbiota by 16S rRNA sequencing. Results The gut microbiota of captive striped hamsters naturally separated into two types at the amplicon sequence variant (ASV) level. There was a significant difference in the Shannon index among these two types. A receiver operating characteristic (ROC) curve showed that the top 30 ASVs could effectively distinguish each type. Linear discriminant analysis of effect size (LEfSe) showed enrichment of the genera Lactobacillus, Treponema and Pygmaiobacter in one gut microbial type and enrichment of the genera Turicibacter and Ruminiclostridium in the other. The former type had higher carbohydrate metabolism ability, while the latter harbored a more complex co-occurrence network and higher amino acid metabolism ability. The gut microbial types were not associated with sex; however, we did find sex differences in the relative abundances of certain bacterial taxa, including some type-specific sex variations. Conclusions Although captive animals live in a unified environment, their gut bacteria can still differentiate into distinct types, but the sex of the hosts may not play an important role in the typing process of small-scale captive animal communities. The relevant driving factors as well as other potential types need to be further investigated to better understand host-microbe interactions.
Collapse
Affiliation(s)
- Chao Fan
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yunjiao Zheng
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huiliang Xue
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
11
|
Pisaniello A, Handley KM, White WL, Angert ER, Boey JS, Clements KD. Host individual and gut location are more important in gut microbiota community composition than temporal variation in the marine herbivorous fish Kyphosus sydneyanus. BMC Microbiol 2023; 23:275. [PMID: 37773099 PMCID: PMC10540440 DOI: 10.1186/s12866-023-03025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Gut microbiota play a key role in the nutrition of many marine herbivorous fishes through hindgut fermentation of seaweed. Gut microbiota composition in the herbivorous fish Kyphosus sydneyanus (family Kyphosidae) varies between individuals and gut sections, raising two questions: (i) is community composition stable over time, especially given seasonal shifts in storage metabolites of dietary brown algae, and (ii) what processes influence community assembly in the hindgut? RESULTS We examined variation in community composition in gut lumen and mucosa samples from three hindgut sections of K. sydneyanus collected at various time points in 2020 and 2021 from reefs near Great Barrier Island, New Zealand. 16S rRNA gene analysis was used to characterize microbial community composition, diversity and estimated density. Differences in community composition between gut sections remained relatively stable over time, with little evidence of temporal variation. Clostridia dominated the proximal hindgut sections and Bacteroidia the most distal section. Differences were detected in microbial composition between lumen and mucosa, especially at genus level. CONCLUSIONS High variation in community composition and estimated bacterial density among individual fish combined with low variation in community composition temporally suggests that initial community assembly involved environmental selection and random sampling/neutral effects. Community stability following colonisation could also be influenced by historical contingency, where early colonizing members of the community may have a selective advantage. The impact of temporal changes in the algae may be limited by the dynamics of substrate depletion along the gut following feeding, i.e. the depletion of storage metabolites in the proximal hindgut. Estimated bacterial density, showed that Bacteroidota has the highest density (copies/mL) in distal-most lumen section V, where SCFA concentrations are highest. Bacteroidota genera Alistipes and Rikenella may play important roles in the breakdown of seaweed into useful compounds for the fish host.
Collapse
Affiliation(s)
- Alessandro Pisaniello
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - W Lindsey White
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland, New Zealand
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Jian Sheng Boey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
12
|
Meng S, Xu H, Qin L, Chen X, Qiu L, Li D, Song C, Fan L, Hu G, Xu P. The Gill-Associated Bacterial Community Is More Affected by Exogenous Chlorella pyrenoidosa Addition than the Bacterial Communities of Water and Fish Gut in GIFT Tilapia ( Oreochromis niloticus) Aquaculture System. BIOLOGY 2023; 12:1209. [PMID: 37759608 PMCID: PMC10525419 DOI: 10.3390/biology12091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
Microalgae has been widely used in aquaculture to improve both the water environment and fish growth; however, the current understanding of the effects of microalgae addition on the key players involved in regulating the water environment and fish health, such as microorganisms, remains limited. Here, a 50-day mesocosm experiment was set up to simulate the culture of Genetic Improvement of Farmed Tilapia (GIFT, Oreochromis niloticus) with an average weight of 14.18 ± 0.93 g and an average length of 82.77 ± 2.80 mm. Different amounts of Chlorella pyrenoidosa were added into these artificial systems to investigate dynamics of bacterial communities in aquaculture water, fish gill, and gut using amplicon-based high-throughput sequencing technology. Our results showed that Chlorella pyrenoidosa addition increased diversity and network complexity of gill-associated bacterial communities rather than those of the water and gut. Furthermore, more biomarkers in the gill-associated bacterial communities were detected in response to Chlorella pyrenoidosa addition than the water and fish gut samples. These findings highlighted the high sensitivity of gill-associated bacterial communities in response to the Chlorella pyrenoidosa addition, implying Chlorella pyrenoidosa addition could play important roles in regulating the fish mucosal immunity by altering the gill-associated microbiota.
Collapse
Affiliation(s)
- Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Lu Qin
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Xi Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| |
Collapse
|
13
|
Maitre A, Wu-Chuang A, Mateos-Hernández L, Piloto-Sardiñas E, Foucault-Simonin A, Cicculli V, Moutailler S, Paoli JC, Falchi A, Obregón D, Cabezas-Cruz A. Rickettsial pathogens drive microbiota assembly in Hyalomma marginatum and Rhipicephalus bursa ticks. Mol Ecol 2023; 32:4660-4676. [PMID: 37366236 DOI: 10.1111/mec.17058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Most tick-borne pathogens (TBPs) are secondarily acquired by ticks during feeding on infected hosts, which imposes 'priority effect' constraints, as arrival order influences the establishment of new species in a microbial community. Here we tested whether once acquired, TBPs contribute to bacterial microbiota functioning by increasing community stability. For this, we used Hyalomma marginatum and Rhipicephalus bursa ticks collected from cattle in different locations of Corsica and combined 16S rRNA amplicon sequencing and co-occurrence network analysis, with high-throughput pathogen detection, and in silico removal of nodes to test for impact of rickettsial pathogens on network properties. Despite its low centrality, Rickettsia showed preferential connections in the networks, notably with a keystone taxon in H. marginatum, suggesting facilitation of Rickettsia colonisation by the keystone taxon. In addition, conserved patterns of community assembly in both tick species were affected by Rickettsia removal, suggesting that privileged connections of Rickettsia in the networks make this taxon a driver of community assembly. However, Rickettsia removal had minor impact on the conserved 'core bacterial microbiota' of H. marginatum and R. bursa. Interestingly, networks of the two tick species with Rickettsia have similar node centrality distribution, a property that is lost after Rickettsia removal, suggesting that this taxon drives specific hierarchical interactions between bacterial microbes in the microbiota. The study indicates that tick-borne Rickettsia play a significant role in the tick bacterial microbiota, despite their low centrality. These bacteria are influential and contribute to the conservation of the 'core bacterial microbiota' while also promoting community stability.
Collapse
Affiliation(s)
- Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, San José de las Lajas, Cuba
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Vincent Cicculli
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jean-Christophe Paoli
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
| | - Alessandra Falchi
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
14
|
Wu X, Gushgari-Doyle S, Lui LM, Hendrickson AJ, Liu Y, Jagadamma S, Nielsen TN, Justice NB, Simmons T, Hess NJ, Joyner DC, Hazen TC, Arkin AP, Chakraborty R. Distinct Depth-Discrete Profiles of Microbial Communities and Geochemical Insights in the Subsurface Critical Zone. Appl Environ Microbiol 2023; 89:e0050023. [PMID: 37272792 PMCID: PMC10304653 DOI: 10.1128/aem.00500-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/06/2023] Open
Abstract
Microbial assembly and metabolic potential in the subsurface critical zone (SCZ) are substantially impacted by subsurface geochemistry and hydrogeology, selecting for microbes distinct from those in surficial soils. In this study, we integrated metagenomics and geochemistry to elucidate how microbial composition and metabolic potential are shaped and impacted by vertical variations in geochemistry and hydrogeology in terrestrial subsurface sediment. A sediment core from an uncontaminated, pristine well at Oak Ridge Field Research Center in Oak Ridge, Tennessee, including the shallow subsurface, vadose zone, capillary fringe, and saturated zone, was used in this study. Our results showed that subsurface microbes were highly localized and that communities were rarely interconnected. Microbial community composition as well as metabolic potential in carbon and nitrogen cycling varied even over short vertical distances. Further analyses indicated a strong depth-related covariation of community composition with a subset of 12 environmental variables. An analysis of dissolved organic carbon (DOC) quality via ultrahigh resolution mass spectrometry suggested that the SCZ was generally a low-carbon environment, with the relative portion of labile DOC decreasing and that of recalcitrant DOC increasing along the depth, selecting microbes from copiotrophs to oligotrophs and also impacting the microbial metabolic potential in the carbon cycle. Our study demonstrates that sediment geochemistry and hydrogeology are vital in the selection of distinct microbial populations and metabolism in the SCZ. IMPORTANCE In this study, we explored the links between geochemical parameters, microbial community structure and metabolic potential across the depth of sediment, including the shallow subsurface, vadose zone, capillary fringe, and saturated zone. Our results revealed that microbes in the terrestrial subsurface can be highly localized, with communities rarely being interconnected along the depth. Overall, our research demonstrates that sediment geochemistry and hydrogeology are vital in the selection of distinct microbial populations and metabolic potential in different depths of subsurface terrestrial sediment. Such studies correlating microbial community analyses and geochemistry analyses, including high resolution mass spectrometry analyses of natural organic carbon, will further the fundamental understanding of microbial ecology and biogeochemistry in subsurface terrestrial ecosystems and will benefit the future development of predictive models on nutrient turnover in these environments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sara Gushgari-Doyle
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Lauren M. Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andrew J. Hendrickson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yina Liu
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Torben N. Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas B. Justice
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tuesday Simmons
- University of California, Berkeley, Berkeley, California, USA
| | - Nancy J. Hess
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Terry C. Hazen
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | - Romy Chakraborty
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Li Q, Fei HL, Luo ZH, Gao SM, Wang PD, Lan LY, Zhao XF, Huang LN, Fan PF. Gut microbiome responds compositionally and functionally to the seasonal diet variations in wild gibbons. NPJ Biofilms Microbiomes 2023; 9:21. [PMID: 37085482 PMCID: PMC10121652 DOI: 10.1038/s41522-023-00388-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Wild animals may encounter multiple challenges especially food shortage and altered diet composition in their suboptimal ranges. Yet, how the gut microbiome responds to dietary changes remains poorly understood. Prior studies on wild animal microbiomes have typically leaned upon relatively coarse dietary records and individually unresolved fecal samples. Here, we conducted a longitudinal study integrating 514 time-series individually recognized fecal samples with parallel fine-grained dietary data from two Skywalker hoolock gibbon (Hoolock tianxing) groups populating high-altitude mountainous forests in western Yunnan Province, China. 16S rRNA gene amplicon sequencing showed a remarkable seasonal fluctuation in the gibbons' gut microbial community structure both across individuals and between the social groups, especially driven by the relative abundances of Lanchnospiraceae and Oscillospiraceae associated with fluctuating consumption of leaf. Metagenomic functional profiling revealed that diverse metabolisms associated with cellulose degradation and short-chain fatty acids (SCFAs) production were enriched in the high-leaf periods possibly to compensate for energy intake. Genome-resolved metagenomics further enabled the resolving metabolic capacities associated with carbohydrate breakdown among community members which exhibited a high degree of functional redundancy. Our results highlight a taxonomically and functionally sensitive gut microbiome actively responding to the seasonally shifting diet, facilitating the survival and reproduction of the endangered gibbon species in their suboptimal habitats.
Collapse
Affiliation(s)
- Qi Li
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
- College of Life Science, China West Normal University, 637002, Nanchong, P.R. China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Pan-Deng Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P.R. China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Xin-Feng Zhao
- School of Life Sciences, South China Normal University, 510631, Guangzhou, P.R. China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China.
| |
Collapse
|
16
|
Corduneanu A, Wu-Chuang A, Maitre A, Obregon D, Sándor AD, Cabezas-Cruz A. Structural differences in the gut microbiome of bats using terrestrial vs. aquatic feeding resources. BMC Microbiol 2023; 23:93. [PMID: 37005589 PMCID: PMC10067309 DOI: 10.1186/s12866-023-02836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Bat gut microbiomes are adapted to the specific diets of their hosts. Despite diet variation has been associated with differences in bat microbiome diversity, the influence of diet on microbial community assembly have not been fully elucidated. In the present study, we used available data on bat gut microbiome to characterize the microbial community assembly of five selected bat species (i.e., Miniopterus schreibersii, Myotis capaccinii, Myotis myotis, Myotis pilosus, and Myotis vivesi), using network analysis. These bat species with contrasting habitat and food preferences (i.e., My. capaccinii and My. pilosus can be piscivorous and/or insectivorous; Mi. schreibersii and My. myotis are exclusively insectivorous; while My. vivesi is a marine predator) offer an invaluable opportunity to test the impact of diet on bat gut microbiome assembly. The results showed that My. myotis showed the most complex network, with the highest number of nodes, while My. vivesi has the least complex structured microbiome, with lowest number of nodes in its network. No common nodes were observed in the networks of the five bat species, with My. myotis possessing the highest number of unique nodes. Only three bat species, My. myotis, My. pilosus and My. vivesi, presented a core microbiome and the distribution of local centrality measures of nodes was different in the five networks. Taxa removal followed by measurement of network connectivity revealed that My. myotis had the most robust network, while the network of My. vivesi presented the lowest tolerance to taxa removal. Prediction of metabolic pathways using PICRUSt2 revealed that Mi. schreibersii had significantly higher functional pathway's richness compared to the other bat species. Most of predicted pathways (82%, total 435) were shared between all bat species, while My. capaccinii, My. myotis and My. vivesi, but no Mi. schreibersii or My. pilosus, showed specific pathways. We concluded that despite similar feeding habits, microbial community assembly can differ between bat species. Other factors beyond diet may play a major role in bat microbial community assembly, with host ecology, sociality and overlap in roosts likely providing additional predictors governing gut microbiome of insectivorous bats.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Apolline Maitre
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Attila D Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
17
|
Liu H, Yang X, Yang W, Zheng Z, Zhu J. Gut Microbiota of Freshwater Gastropod (Bellamya aeruginosa) Assist the Adaptation of Host to Toxic Cyanobacterial Stress. Toxins (Basel) 2023; 15:toxins15040252. [PMID: 37104190 PMCID: PMC10141019 DOI: 10.3390/toxins15040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Gut microbes play a critical role in helping hosts adapt to external environmental changes and are becoming an important phenotype for evaluating the response of aquatic animals to environmental stresses. However, few studies have reported the role that gut microbes play after the exposure of gastropods to bloom-forming cyanobacteria and toxins. In this study, we investigated the response pattern and potential role of intestinal flora in freshwater gastropod Bellamya aeruginosa when exposed to toxic and non-toxic strains of Microcystis aeruginosa, respectively. Results showed that the composition of the intestinal flora of the toxin-producing cyanobacteria group (T group) changed significantly over time. The concentration of microcystins (MCs) in hepatopancreas tissue decreased from 2.41 ± 0.12 on day 7 to 1.43 ± 0.10 μg·g−1 dry weight on day 14 in the T group. The abundance of cellulase-producing bacteria (Acinetobacter) was significantly higher in the non-toxic cyanobacteria group (NT group) than that in the T group on day 14, whereas the relative abundance of MC-degrading bacteria (Pseudomonas and Ralstonia) was significantly higher in the T group than that in the NT group on day 14. In addition, the co-occurrence networks in the T group were more complex than that in the NT group at day 7 and day 14. Some genera identified as key nodes, such as Acinetobacter, Pseudomonas, and Ralstonia, showed different patterns of variation in the co-occurrence network. Network nodes clustered to Acinetobacter increased in the NT group from day 7 to day 14, whereas the interactions between Pseudomonas and Ralstonia and other bacteria almost changed from positive correlations in the D7T group to negative correlations in the D14T group. These results suggested that these bacteria not only have the ability to improve host resistance to toxic cyanobacterial stress by themselves, but they can also further assist host adaptation to environmental stress by regulating the interaction patterns within the community. This study provides useful information for understanding the role of freshwater gastropod gut flora in response to toxic cyanobacteria and reveals the underlying tolerance mechanisms of B. aeruginosa to toxic cyanobacteria.
Collapse
|
18
|
Gallet A, Yao EK, Foucault P, Bernard C, Quiblier C, Humbert JF, Coulibaly JK, Troussellier M, Marie B, Duperron S. Fish gut-associated bacterial communities in a tropical lagoon (Aghien lagoon, Ivory Coast). Front Microbiol 2022; 13:963456. [PMID: 36246274 PMCID: PMC9556852 DOI: 10.3389/fmicb.2022.963456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Aghien lagoon (Ivory Coast) is a eutrophic freshwater lagoon that harbors high biomasses of phytoplankton. Despite Increasing interest in fish gut microbiomes diversity and functions, little data is currently available regarding wild species from tropical west African lakes. Here, gut-associated bacterial communities are investigated in four fish species that are consumed by locale populations, namely the Cichlidae Hemichromis fasciatus, Tilapia guineensis and Sarotherodon melanotheron, and the Claroteidae Chrysichthys nigrodigitatus. Species-related differences are identified, that can be attributed to host phylogeny and diet. Important variations throughout the year are observed in T. guineensis and C. nigrodigitatus. This result emphasized the importance of time-series sampling and comparison with environmental variables even in tropical regions, that are not often conducted in wild populations. Effects of environmental factors (anthropogenic or not) on the microbiota and potential outcomes for fish health and populations sustainability need to be further explored. Interestingly, fish appear as major reservoirs of bacterial diversity, suggesting that they could contribute to the overall stability and resilience of bacterial communities present in the Aghien lagoon.
Collapse
Affiliation(s)
- Alison Gallet
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Eric Kouamé Yao
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Pierre Foucault
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Catherine Quiblier
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | | | | | - Marc Troussellier
- MARBEC, Centre National de la Recherche Scientifique, Université Montpellier, IFREMER, IRD, Montpellier, France
| | - Benjamin Marie
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Sébastien Duperron
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
19
|
Species abundance correlations carry limited information about microbial network interactions. PLoS Comput Biol 2022; 18:e1010491. [PMID: 36084152 PMCID: PMC9518925 DOI: 10.1371/journal.pcbi.1010491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/28/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Unraveling the network of interactions in ecological communities is a daunting task. Common methods to infer interspecific interactions from cross-sectional data are based on co-occurrence measures. For instance, interactions in the human microbiome are often inferred from correlations between the abundances of bacterial phylogenetic groups across subjects. We tested whether such correlation-based methods are indeed reliable for inferring interaction networks. For this purpose, we simulated bacterial communities by means of the generalized Lotka-Volterra model, with variation in model parameters representing variability among hosts. Our results show that correlations can be indicative for presence of bacterial interactions, but only when measurement noise is low relative to the variation in interaction strengths between hosts. Indication of interaction was affected by type of interaction network, process noise and sampling under non-equilibrium conditions. The sign of a correlation mostly coincided with the nature of the strongest pairwise interaction, but this is not necessarily the case. For instance, under rare conditions of identical interaction strength, we found that competitive and exploitative interactions can result in positive as well as negative correlations. Thus, cross-sectional abundance data carry limited information on specific interaction types. Correlations in abundance may hint at interactions but require independent validation. The bacteria in and on our body (the human microbiome) largely determine how our body functions, and whether we stay healthy or get sick. These bacteria do not live on their own, but interact among each other and with their human host. Finding out which bacteria interact with each other is cumbersome, but patterns of joint occurrence between species might provide a clue to their ecological dependencies. We investigated whether correlations in species abundance can be used for the purpose of ecological network reconstruction. We simulated different bacterial communities with known interactions according to a theoretical population model. After having collected virtual samples from our simulated data, we performed a correlation analysis and then compared the correlation network with our known interaction network. We found that correlations can be informative for underlying interactions, but ecological conclusions should be drawn carefully. An obvious limitation of correlation analysis is that direction of interaction cannot be recovered from co-occurrence data, making correlations insensitive for detection of asymmetric interactions. In addition, we found that competitive and exploitative interactions can induce positive as well as negative correlations. We recommend careful interpretation and validation when inferring networks from cross-sectional abundance data.
Collapse
|
20
|
Quintanilla-Mena MA, Olvera-Novoa MA, Sánchez-Tapia IA, Lara-Pérez LA, Rivas-Reyes I, Gullian-Klanian M, Patiño-Suárez MV, Puch-Hau CA. The digestive tract sections of the sea cucumber Isostichopus badionotus reveal differences in composition, diversity, and functionality of the gut microbiota. Arch Microbiol 2022; 204:463. [PMID: 35792945 DOI: 10.1007/s00203-022-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
For the first time, this study analyses the composition and diversity of the gut microbiota of Isostichopus badionotus in captivity, using high-throughput 16S rRNA sequencing, and predicts the metagenomic functions of the microbiota. The results revealed a different composition of the gut microbiota for the foregut (FG) and midgut (MG) compared to the hindgut (HG), with a predominance of Proteobacteria, followed by Actinobacteria, Bacteroidetes, and Firmicutes. The FG and MG demonstrated a greater bacterial diversity compared to the HG. In addition, a complex network of interactions was observed at the genus level and identified some strains with probiotic and bioremediation potentials, such as Acinetobacter, Ruegeria, Streptococcus, Lactobacillus, Pseudomonas, Enterobacter, Aeromonas, Rhodopseudomonas, Agarivorans, Bacillus, Enterococcus, Micrococcus, Bifidobacterium, and Shewanella. Predicting metabolic pathways revealed that the bacterial composition in each section of the intestine participates in different physiological processes such as metabolism, genetic and environmental information processing, organismal systems, and cellular processes. Understanding and manipulating microbe--host-environment interactions and their associated functional capacity could substantially contribute to achieving more sustainable aquaculture systems for I. badionotus.
Collapse
Affiliation(s)
- Mercedes A Quintanilla-Mena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Miguel A Olvera-Novoa
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Itzel A Sánchez-Tapia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Luis A Lara-Pérez
- Tecnológico Nacional de México Campus Instituto Tecnológico de la Zona Maya, Carretera Chetumal-Escárcega km 21.5, C.P. 77965, Ejido Juan Sarabia, Quintana Roo, Mexico
| | - Isajav Rivas-Reyes
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Mariel Gullian-Klanian
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941, Carretera Mérida-Progreso, P.O. Box 97300, Mérida, Yucatán, Mexico
| | - María V Patiño-Suárez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Carlos A Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
21
|
Drivers of ecological assembly in the hindgut of Atlantic Cod fed a macroalgal supplemented diet. NPJ Biofilms Microbiomes 2022; 8:36. [PMID: 35508464 PMCID: PMC9068720 DOI: 10.1038/s41522-022-00296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is difficult to disentangle the many variables (e.g. internal or external cues and random events) that shape the microbiota in the gastrointestinal tract of any living species. Ecological assembly processes applied to microbial communities can elucidate these drivers. In our study, farmed Atlantic cod (Gadus morhua) were fed a diet of 10% macroalgae supplement (Ulva rigida [ULVA] or Ascophyllum nodosum [ASCO] or a non-supplemented control diet [CTRL]) over 12 weeks. We determined the influence of ecological assembly processes using a suite of null-modelling tools. We observed dissimilarity in the abundance of common OTUs over time, which was driven by deterministic assembly. The CTRL samples showed selection as a critical assembly process. While dispersal limitation was a driver of the gut microbiome for fish fed the macroalgae supplemented diet at Week 12 (i.e., ASCO and ULVA). Fish from the ASCO grouping diverged into ASCO_N (normal) and ASCO_LG (lower growth), where ASCO_LG individuals found the diet unpalatable. The recruitment of new taxa overtime was altered in the ASCO_LG fish, with the gut microbiome showing phylogenetic underdispersion (nepotistic species recruitment). Finally, the gut microbiome (CTRL and ULVA) showed increasing robustness to taxonomic disturbance over time and lower functional redundancy. This study advances our understanding of the ecological assembly and succession in the hindgut of juvenile Atlantic cod across dietary treatments. Understanding the processes driving ecological assembly in the gut microbiome, in fish research specifically, could allow us to manipulate the microbiome for improved health or resilience to disease for improved aquaculture welfare and production.
Collapse
|
22
|
Cao X, Dong A, Kang G, Wang X, Duan L, Hou H, Zhao T, Wu S, Liu X, Huang H, Wu R. Modeling spatial interaction networks of the gut microbiota. Gut Microbes 2022; 14:2106103. [PMID: 35921525 PMCID: PMC9351588 DOI: 10.1080/19490976.2022.2106103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
How the gut microbiota is organized across space is postulated to influence microbial succession and its mutualistic relationships with the host. The lack of dynamic or perturbed abundance data poses considerable challenges for characterizing the spatial pattern of microbial interactions. We integrate allometric scaling theory, evolutionary game theory, and prey-predator theory into a unified framework under which quasi-dynamic microbial networks can be inferred from static abundance data. We illustrate that such networks can capture the full properties of microbial interactions, including causality, the sign of the causality, strength, and feedback loop, and are dynamically adaptive along spatial gradients, and context-specific, characterizing variability between individuals and within the same individual across time and space. We design and conduct a gut microbiota study to validate the model, characterizing key spatial determinants of the microbial differences between ulcerative colitis and healthy controls. Our model provides a sophisticated means of unraveling a complete atlas of how microbial interactions vary across space and quantifying causal relationships between such spatial variability and change in health state.
Collapse
Affiliation(s)
- Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Liyun Duan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Huixing Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shuang Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Huang
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Rongling Wu
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
23
|
Deng Y, Kokou F, Eding EH, Verdegem MCJ. Impact of early-life rearing history on gut microbiome succession and performance of Nile tilapia. Anim Microbiome 2021; 3:81. [PMID: 34838149 PMCID: PMC8627003 DOI: 10.1186/s42523-021-00145-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background Fish gut microbial colonisation starts during larval stage and plays an important role in host’s growth and health. To what extent first colonisation could influence the gut microbiome succession and growth in later life remains unknown. In this study, Nile tilapia embryos were incubated in two different environments, a flow-through system (FTS) and a biofloc system (BFS); hatched larvae were subsequently cultured in the systems for 14 days of feeding (dof). Fish were then transferred to one common recirculating aquaculture system (RAS1, common garden, 15–62 dof), followed by a growth trial in another RAS (RAS2, growth trial, 63–105 dof). In RAS2, fish were fed with two types of diet, differing in non-starch polysaccharide content. Our aim was to test the effect of rearing environment on the gut microbiome development, nutrient digestibility and growth performance of Nile tilapia during post-larvae stages. Results Larvae cultured in the BFS showed better growth and different gut microbiome, compared to FTS. After the common garden, the gut microbiome still showed differences in species composition, while body weight was similar. Long-term effects of early life rearing history on fish gut microbiome composition, nutrient digestibility, nitrogen and energy balances were not observed. Still, BFS-reared fish had more gut microbial interactions than FTS-reared fish. A temporal effect was observed in gut microbiome succession during fish development, although a distinct number of core microbiome remained present throughout the experimental period. Conclusion Our results indicated that the legacy effect of first microbial colonisation of the fish gut gradually disappeared during host development, with no differences in gut microbiome composition and growth performance observed in later life after culture in a common environment. However, early life exposure of larvae to biofloc consistently increased the microbial interactions in the gut of juvenile Nile tilapia and might possibly benefit gut health. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00145-w.
Collapse
Affiliation(s)
- Yale Deng
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Fotini Kokou
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands.
| | - Ep H Eding
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc C J Verdegem
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
24
|
Maas RM, Deng Y, Dersjant-Li Y, Petit J, Verdegem MCJ, Schrama JW, Kokou F. Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci Rep 2021; 11:8221. [PMID: 33859242 PMCID: PMC8050056 DOI: 10.1038/s41598-021-87408-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.
Collapse
Affiliation(s)
- Roel M. Maas
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yale Deng
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Jules Petit
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc C. J. Verdegem
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan W. Schrama
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Fotini Kokou
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
25
|
Panteli N, Mastoraki M, Lazarina M, Chatzifotis S, Mente E, Kormas KA, Antonopoulou E. Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals. Microorganisms 2021; 9:microorganisms9040699. [PMID: 33800578 PMCID: PMC8067204 DOI: 10.3390/microorganisms9040699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insect meals are considered promising, eco-friendly, alternative ingredients for aquafeed. Considering the dietary influence on establishment of functioning gut microbiota, the effect of the insect meal diets on the microbial ecology should be addressed. The present study assessed diet- and species-specific shifts in gut resident bacterial communities of juvenile reared Dicentrarchus labrax and Sparus aurata in response to three experimental diets with insect meals from three insects (Hermetia illucens, Tenebrio molitor, Musca domestica), using high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. The dominant phyla were Firmicutes, Proteobacteria and Actinobacteria in all dietary treatments. Anaerococcus sp., Cutibacterium sp. and Pseudomonas sp. in D. labrax, and Staphylococcus sp., Hafnia sp. and Aeromonas sp. in S. aurata were the most enriched shared species, following insect-meal inclusion. Network analysis of the dietary treatments highlighted diet-induced changes in the microbial community assemblies and revealed unique and shared microbe-to-microbe interactions. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly differentiated, including genes associated with metabolic pathways. The present findings strengthen the importance of diet in microbiota configuration and underline that different insects as fish feed ingredients elicit species-specific differential responses of structural and functional dynamics in gut microbial communities.
Collapse
Affiliation(s)
- Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
| | - Maria Mastoraki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
| | - Maria Lazarina
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stavros Chatzifotis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003 Heraklion, Greece;
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (E.M.); (K.A.K.)
| | - Konstantinos Ar. Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (E.M.); (K.A.K.)
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
- Correspondence: ; Tel.: +30-231-099-8563
| |
Collapse
|