1
|
Pereira H, Chakarov N, Caspers BA, Gilles M, Jones W, Mijoro T, Zefania S, Székely T, Krüger O, Hoffman JI. The gut microbiota of three avian species living in sympatry. BMC Ecol Evol 2024; 24:144. [PMID: 39574002 PMCID: PMC11580620 DOI: 10.1186/s12862-024-02329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Evolutionary divergence and genetic variation are often linked to differences in microbial community structure and diversity. While environmental factors and diet heavily influence gut microbial communities, host species contributions are harder to quantify. Closely related species living in sympatry provide a unique opportunity to investigate species differences without the confounding effects of habitat and dietary variation. We therefore compared and contrasted the gut microbiota of three sympatric plover species: the widespread Kittlitz's and white-fronted plovers (Anarhynchus pecuarius and A. marginatus) and the endemic and vulnerable Madagascar plover (A. thoracicus). RESULTS We found no significant differences in the beta diversity (composition) of the gut microbiota of the three species. However, A. thoracicus exhibited higher intraspecific compositional similarity (i.e. lower pairwise distances) than the other two species; this pattern was especially pronounced among juveniles. By contrast, microbial alpha diversity varied significantly among the species, being highest in A. pecuarius, intermediate in A. marginatus and lowest in A. thoracicus. This pattern was again stronger among juveniles. Geographical distance did not significantly affect the composition of the gut microbiota, but genetic relatedness did. CONCLUSION While patterns of microbial diversity varied across species, the lack of compositional differences suggests that habitat and diet likely exert a strong influence on the gut microbiota of plovers. This may be enhanced by their precocial, ground-dwelling nature, which could facilitate the horizontal transmission of microbes from the environment. We hypothesise that gut microbiota diversity in plovers primarily reflects the ecological pool of microbiota, which is subsequently modified by host-specific factors including genetics. The reduced microbial and genetic diversity of the endemic A. thoracicus may hinder its ability to adapt to environmental changes, highlighting the need for increased conservation efforts for this vulnerable species.
Collapse
Grants
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- Universität Bielefeld (3146)
Collapse
Affiliation(s)
- Hugo Pereira
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - William Jones
- Institut Supérieur de Technologie de Menabe, Université of Toliara & Morondava, Toliara, 601, Madagascar
| | - Tafitasoa Mijoro
- HUN-REN-Debrecen University Reproductive Strategies Research Group, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Sama Zefania
- HUN-REN-Debrecen University Reproductive Strategies Research Group, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Tamás Székely
- Institut Supérieur de Technologie de Menabe, Université of Toliara & Morondava, Toliara, 601, Madagascar
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Evolutionary Population Genetics, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| |
Collapse
|
2
|
Zhu W, Chang L, Zhang M, Chen Q, Sui L, Shen C, Jiang J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024; 27:109907. [PMID: 38812552 PMCID: PMC11135016 DOI: 10.1016/j.isci.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Hellal J, Barthelmebs L, Bérard A, Cébron A, Cheloni G, Colas S, Cravo-Laureau C, De Clerck C, Gallois N, Hery M, Martin-Laurent F, Martins J, Morin S, Palacios C, Pesce S, Richaume A, Vuilleumier S. Unlocking secrets of microbial ecotoxicology: recent achievements and future challenges. FEMS Microbiol Ecol 2023; 99:fiad102. [PMID: 37669892 PMCID: PMC10516372 DOI: 10.1093/femsec/fiad102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, microorganisms are affected by pollution with consequences on their host organisms and on the functioning of their environment. They also play key roles in the fate of pollutants through the degradation, transformation, and transfer of organic or inorganic compounds. Thus, they are crucial for the development of nature-based solutions to reduce pollution and of bio-based solutions for environmental risk assessment of chemicals. At the intersection between microbial ecology, toxicology, and biogeochemistry, microbial ecotoxicology is a fast-expanding research area aiming to decipher the interactions between pollutants and microorganisms. This perspective paper gives an overview of the main research challenges identified by the Ecotoxicomic network within the emerging One Health framework and in the light of ongoing interest in biological approaches to environmental remediation and of the current state of the art in microbial ecology. We highlight prevailing knowledge gaps and pitfalls in exploring complex interactions among microorganisms and their environment in the context of chemical pollution and pinpoint areas of research where future efforts are needed.
Collapse
Affiliation(s)
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs – Analyse-Environnement, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Annette Bérard
- UMR EMMAH INRAE/AU – équipe SWIFT, 228, route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | | | - Giulia Cheloni
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech (Liege University), Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | - Marina Hery
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Fabrice Martin-Laurent
- Institut Agro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21065 Dijon, France
| | - Jean Martins
- IGE, UMR 5001, Université Grenoble Alpes, CNRS, G-INP, INRAE, IRD Grenoble, France
| | | | - Carmen Palacios
- Université de Perpignan Via Domitia, CEFREM, F-66860 Perpignan, France
- CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | | | - Agnès Richaume
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
| | | |
Collapse
|
5
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|