1
|
Rapún J, Pérez-Martín S, Cámara-Checa A, San José G, Núñez-Fernández R, Crespo-García T, Hoban A, Rubio-Alarcón M, Martínez-Blanco E, Tamargo J, Díez-Guerra FJ, López B, Gómez R, González A, Delpón E, Caballero R. Two concurrent mechanisms are responsible for the I Na increase produced by dapagliflozin and empagliflozin in healthy and heart failure cardiomyocytes. Biomed Pharmacother 2025; 186:117984. [PMID: 40101587 DOI: 10.1016/j.biopha.2025.117984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Dapagliflozin and empagliflozin exert many cardiovascular protective actions in heart failure (HF) patients. HF-induced electrical remodelling decreases the expression of Nav1.5 channels (encoded by SCN5A) that generate the cardiac Na+ current (INa) impairing excitability and promoting arrhythmias. We aimed to mechanistically decipher the peak INa increase produced by dapagliflozin and empagliflozin in healthy and HF cardiomyocytes. We recorded macroscopic and single-channel currents and action potentials (AP) using the patch-clamp technique and generated a mouse model of HF with reduced ejection fraction by transverse aortic constriction (TAC). Single-channel recordings showed that dapagliflozin and empagliflozin (1 μM) increased the open probability (Po) of Nav1.5 channels by augmenting channel re-openings and the number of traces with openings and by doubling the open time constant, respectively. Both drugs increased SCN5A mRNA levels and the membrane expression of Nav1.5 channels. Empagliflozin also enhanced the cytoplasmic mobility of Nav1.5 channels. Molecular modelling and site-directed mutagenesis analysis demonstrated that both drugs bind to a previously unknown site at the Nav1.5 DIII-DIV fenestration. Dapagliflozin and empagliflozin hyperpolarized the resting membrane potential and increased the action potential amplitude in human cardiomyocytes derived from induced pluripotent stem cells. Importantly, in TAC cardiomyocytes dapagliflozin and empagliflozin restored the HF-reduced peak INa to control levels. Dapagliflozin and empagliflozin bind to a novel site within cardiac Nav1.5 increasing INa by augmenting the Po and the membrane expression of the channels. We hypothesized that this unique effects could be of interest for the treatment of arrhythmias associated with decreased Nav1.5 channel expression.
Collapse
Affiliation(s)
- Josu Rapún
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Sara Pérez-Martín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Gorka San José
- CIBERCV, Instituto de Salud Carlos III, Spain; Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona 31008, Spain
| | - Roberto Núñez-Fernández
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Adam Hoban
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Elena Martínez-Blanco
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - F Javier Díez-Guerra
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Begoña López
- CIBERCV, Instituto de Salud Carlos III, Spain; Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona 31008, Spain
| | - Ricardo Gómez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain
| | - Arantxa González
- CIBERCV, Instituto de Salud Carlos III, Spain; Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona 31008, Spain; Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona 31009, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain.
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| |
Collapse
|
2
|
Kumawat A, Tavazzani E, Lentini G, Trancuccio A, Kukavica D, Oldani A, Denegri M, Priori SG, Camilloni C. Molecular insights into the rescue mechanism of an HERG activator against severe LQT2 mutations. J Biomed Sci 2025; 32:40. [PMID: 40197385 PMCID: PMC11974032 DOI: 10.1186/s12929-025-01134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Mutations in the HERG potassium channel are a major cause of long QT syndrome type 2 (LQT2), which can lead to sudden cardiac death. The HERG channel plays a critical role in the repolarization of the myocardial action potential, and loss-of-function mutations prolong cardiac repolarization. METHODS In this study, we investigated the efficacy and underlying molecular mechanism of ICA-105574, an HERG activator, in shortening the duration of cardiac repolarization in severe LQT2 variants. We characterized the efficacy of ICA-105574 in vivo, using an animal model to assess its ability to shorten the QT interval and in vitro, in cellular models mimicking severe HERG channel mutations (A561V, G628S, and L779P) to evaluate its impact in enhancing IKr current. Additionally, molecular dynamics simulations were used to investigate the molecular mechanism of ICA-105574 action. RESULTS In vivo, ICA-105574 significantly shortened the QT interval. LQT2 mutations drastically reduced IKr amplitude and suppressed tail currents in cellular models. ICA-105574 restored IKr in A561V and G628S. Finally, in silico data showed that ICA-105574 stabilizes a pattern of interactions similar to gain-of-function SQT1 mutations and can reverse the G628S modifications, through an allosteric network linking the binding site to the selectivity filter and the S5P turret helix, thereby restoring its K+ ion permeability. CONCLUSIONS Our results support the development of HERG activators like ICA-105574 as promising pharmacological molecules against some severe LQT2 mutations and suggest that molecular dynamics simulations can be used to test the ability of molecules to modulate HERG function in silico, paving the way for the rational design of new HERG activators.
Collapse
Affiliation(s)
- Amit Kumawat
- Department of Biosciences, University of Milan, Milan, Italy
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Elisa Tavazzani
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Trancuccio
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Deni Kukavica
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Amanda Oldani
- Centro Grandi Strumenti of the University of Pavia, Pavia, Italy
| | - Marco Denegri
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Silvia G Priori
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Zhu C, Li S, Zhang H. Heart Failure and Arrhythmias: Circadian and Epigenetic Interplay in Myocardial Electrophysiology. Int J Mol Sci 2025; 26:2728. [PMID: 40141370 PMCID: PMC11943068 DOI: 10.3390/ijms26062728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Emerging evidence underscores the impact of circadian rhythms on cardiovascular processes, particularly in conditions such as hypertension, myocardial infarction, and heart failure, where circadian rhythm disruptions are linked to disease progression and adverse clinical outcomes. Circadian clock proteins are intricately linked to myocardial electrophysiological remodeling and epigenetic pathways associated with arrhythmias in heart failure. In the context of heart failure, circadian clock dysregulation leads to electrophysiological remodeling in the cardiomyocytes, which can precipitate life-threatening arrhythmias such as ventricular tachycardia (VT) and ventricular fibrillation (VF). This dysregulation may be influenced by environmental factors, such as diet and exercise, as well as genetic factors. Moreover, epigenetic modifications in heart failure have been implicated in the regulation of genes involved in cardiac hypertrophy, fibrosis, and inflammation. The interplay between circadian clock proteins, myocardial electrophysiological remodeling, and epigenetic pathways in heart failure-related arrhythmias is complex and multifaceted. Further research is needed to elucidate how these processes interact and contribute to the development of arrhythmias in heart failure patients. This review aims to explore the connections between circadian rhythms, myocardial electrophysiology, and arrhythmias related to heart failure, with the goal of identifying potential therapeutic targets and interventions that may counteract the adverse effects of circadian disruptions on cardiovascular health.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China; (C.Z.); (S.L.)
| | - Shuang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China; (C.Z.); (S.L.)
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China; (C.Z.); (S.L.)
- Beijing Academy of Artificial Intelligence, Beijing 100084, China
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Zheng Z, Song Y, Li X, Luo T, Tan X. Dissecting the causal effects of smoking, alcohol consumption, and related DNA methylation markers on electrocardiographic indices. Clin Epigenetics 2025; 17:40. [PMID: 40038836 DOI: 10.1186/s13148-025-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Tobacco and alcohol are recognized risk factors for heart disease, yet their causal effects on electrocardiogram (ECG) signaling and mechanisms remain unclear. Previous studies may be susceptible to confounding or bias, and this study dissected the genetic architecture linking tobacco and alcohol consumption with P-wave duration, PR interval, and QT interval. METHODS Utilizing genetic instruments for tobacco and alcohol consumption, associated methylation quantitative trait locus (mQTL), and summary-level GWAS data for ECG indices, we assessed heritability and genetic causal associations using linkage disequilibrium score regression and Mendelian randomization (MR) analysis. Fine mapping was performed via colocalization analysis and summary-data-based MR (SMR) to identify potential shared genetic variants. RESULTS A positive causal relationship was found between drinks per week (DrnkWk) and QT interval [β (95%CI): 1.06 (0.91, 5.05), P = 0.005], with causality substantiated through multiple robust MR models. Multivariable MR confirmed independence from smoking phenotypes. In epigenetic MR analyses, two alcohol-related CpG loci (cg03345232 and cg04605617) were causally associated with QT interval changes, with cg04605617 mapping to PLA2G2C gene significantly prolonging QT. The mQTL rs10916683 at cg04605617 is a strong eQTL for PLA2G2C. Additionally, cg03345232 shared a causal variant (rs12881206) with QT interval predisposition through colocalization analysis. SMR analysis did not identify shared putative functional genes passing the HEIDI test between DrnkWk and the QT interval. CONCLUSIONS There is a causal relationship between DrnkWk and QT interval prolongation, and targeting specific DNA methylation sites like cg04605617 mapped to PLA2G2C may provide novel targets for preventing QT interval prolongation.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Human Phenome institute of SUMC, Guangdong Engineering Research Center of Human Phenome, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, China
| | - Yongfei Song
- Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinhan Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Tao Luo
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Human Phenome institute of SUMC, Guangdong Engineering Research Center of Human Phenome, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, China.
| |
Collapse
|
5
|
Langen JS, Boyle PM, Malan D, Sasse P. Optogenetic quantification of cardiac excitability and electrical coupling in intact hearts to explain cardiac arrhythmia initiation. SCIENCE ADVANCES 2025; 11:eadt4103. [PMID: 40020054 PMCID: PMC11870084 DOI: 10.1126/sciadv.adt4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Increased cardiac excitability and reduced electrical coupling promote cardiac arrhythmia and can be quantified by input resistance (Rm), pacing threshold (Ithr), and cardiac space constant (λ). However, their measurement in the heart was not feasible because the required homogenous current injection cannot be performed with electrical stimulation. We overcame this problem by optogenetic current injection into all illuminated cardiomyocytes of mouse hearts in different action potential phases. Precisely triggered and patterned illumination enabled measuring Rm and λ, which both were smallest at diastole. Pharmacological and depolarization-induced reduction of inwardly rectifying K+ currents (IK1), gap junction block, and cardiac infarction reduced Ithr, showing the importance of high IK1 density and intact cardiomyocyte coupling for preventing arrhythmia initiation. Combining optogenetic current injection and computer simulations was used to classify pro- and anti-arrhythmic mechanisms based on their effects on Rm and Ithr and allowed to quantify IK1 inward rectification in the intact heart, identifying reduced IK1 rectification as anti-arrhythmic concept.
Collapse
Affiliation(s)
- Judith S. Langen
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Patrick M. Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
- eScience Institute, University of Washington, Seattle, Washington, USA
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Tirgar P, Vikstrom A, Sepúlveda JMR, Srivastava LK, Amini A, Tabata T, Higo S, Bub G, Ehrlicher A. Heart-on-a-Miniscope: A Miniaturized Solution for Electrophysiological Drug Screening in Cardiac Organoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409571. [PMID: 39937454 DOI: 10.1002/smll.202409571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Indexed: 02/13/2025]
Abstract
Cardiovascular toxicity remains a primary concern in drug development, accounting for a significant portion of post-market drug withdrawals due to adverse reactions such as arrhythmias. Traditional preclinical models, predominantly based on animal cells, often fail to replicate human cardiac physiology accurately, complicating the prediction of drug-induced effects. Although human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a more genetically relevant system, their use in 2D, static cultures does not sufficiently mimic the dynamic, 3D environment of the human heart. 3D cardiac organoids made from human iPSC-CMs can potentially bridge this gap. However, most traditional electrophysiology assays, developed for single cells or 2D monolayers, are not readily adaptable to 3D organoids. This study uses optical calcium analysis of human organoids combined with miniaturized fluorescence microscopy (miniscope) and heart-on-a-chip technology. This simple, inexpensive, and efficient platform provides robust on-chip calcium imaging of human cardiac organoids. The versatility of the system is demonstrated through cardiotoxicity assay of drugs known to impact cardiac electrophysiology, including dofetilide, quinidine, and thapsigargin. The platform promises to advance drug testing by providing a more reliable and physiologically relevant assessment of cardiovascular toxicity, potentially reducing drug-related adverse effects in clinical settings.
Collapse
Affiliation(s)
- Pouria Tirgar
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
- Center for Structural Biology, McGill University, Montreal, H3G 0B1, Canada
| | - Abigail Vikstrom
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
| | | | | | - Ali Amini
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
- Department of Mechanical Engineering, McGill University, Montreal, H3A 0C3, Canada
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, H3G 1Y6, Canada
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
- Center for Structural Biology, McGill University, Montreal, H3G 0B1, Canada
- Department of Mechanical Engineering, McGill University, Montreal, H3A 0C3, Canada
| |
Collapse
|
7
|
LaBar KS. Fear, learning, and the amygdala: a personal reflection in honor of Joseph LeDoux. Cereb Cortex 2025; 35:5-10. [PMID: 39385539 DOI: 10.1093/cercor/bhae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
In honor of Joseph LeDoux's retirement from an illustrious career in science, I offer a personal reflection on how my graduate training experiences in his lab shaped my subsequent career trajectory and the development of my views on human amygdala function and the scientific enterprise. I discuss the values of openness to scientific exploration and of multi-methodological integration, both of which distinguished his laboratory over the years. I highlight the unique historical context in which the lab's foundational discoveries on the emotional brain occurred and the importance of embracing new technologies to advance an understanding of brain-behavior relationships in affective neuroscience.
Collapse
Affiliation(s)
- Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27708-0999, United States
| |
Collapse
|
8
|
Laska M, Vitous J, Jirik R, Hendrych M, Drazanova E, Kratka L, Nadenicek J, Novakova M, Stracina T. Heart remodelling affects ECG in rat DOCA/salt model. Physiol Res 2024; 73:S727-S753. [PMID: 39808174 PMCID: PMC11827063 DOI: 10.33549/physiolres.935512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025] Open
Abstract
Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function. In this study, myocardial remodelling in rat deoxycorticosterone acetate/salt model was examined over a three-week period. The experiment involved 11 male Sprague-Dawley rats, divided into two groups: fibrosis (n=6) and control (n=5). Myocardial remodelling was induced in the fibrosis group through unilateral nephrectomy, deoxyco-rticosterone acetate administration, and increased salt intake. The results revealed significant structural changes, including increased left ventricular wall thickness, myocardial fractional volume, and development of myocardial fibrosis. Despite these changes, left ventricular ejection fraction was preserved and even increased. ECG analysis showed significant prolongation of the PR interval and widening of the QRS complex in the fibrosis group, indicating disrupted atrioventricular and ventricular conduction, likely due to fibrosis and hypertrophy. Correlation analysis suggested a potential relationship between QRS duration and myocardial hypertrophy, although no significant correlations were found among other ECG parameters and structural changes detected by MRI. The study highlights the advantage of the DOCA/salt model in exploring the impact of myocardial remodelling on electrophysiological properties. Notably, this study is among the first to show that early myocardial remodelling in this model is accompanied by distinct electrophysiological changes, suggesting that advanced methods combined with established animal models can open new opportunities for research in this field. Key words Myocardial fibrosis, Remodelling, Animal model, DOCA-salt, Magnetic resonance imaging.
Collapse
Affiliation(s)
- M Laska
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hiniesto-Iñigo I, Linhart VA, Kusay AS, Liin SI. The endocannabinoid ARA-S facilitates the activation of cardiac Kv7.1/KCNE1 channels from different species. Channels (Austin) 2024; 18:2420651. [PMID: 39462453 PMCID: PMC11520554 DOI: 10.1080/19336950.2024.2420651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
The endogenous endocannabinoid-like compound N-arachidonoyl-L-serine (ARA-S) facilitates activation of the human Kv7.1/KCNE1 channel and shortens a prolonged action potential duration and QT interval in guinea pig hearts. Hence, ARA-S is interesting to study further in cardiac models to explore the functional impact of such Kv7.1/KCNE1-mediated effects. To guide which animal models would be suitable for assessing ARA-S effects, and to aid interpretation of findings in different experimental models, it is useful to know whether Kv7.1/KCNE1 channels from relevant species respond similarly to ARA-S. To this end, we used the two-electrode voltage clamp technique to compare the effects of ARA-S on Kv7.1/KCNE1 channels from guinea pig, rabbit, and human Kv7.1/KCNE1, when expressed in Xenopus laevis oocytes. We found that the activation of Kv7.1/KCNE1 channels from all tested species was facilitated by ARA-S, seen as a concentration-dependent shift in the voltage-dependence of channel opening and increase in current amplitude and conductance over a broad voltage range. The rabbit channel displayed quantitatively similar effects as the human channel, whereas the guinea pig channel responded with more prominent increase in current amplitude and maximal conductance. This study suggests that rabbit and guinea pig models are both suitable for studying ARA-S effects mediated via Kv7.1/KCNE1.
Collapse
Affiliation(s)
- Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Veronika A. Linhart
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ali S. Kusay
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Namekata I, Seki M, Saito T, Odaka R, Hamaguchi S, Tanaka H. Automaticity of the Pulmonary Vein Myocardium and the Effect of Class I Antiarrhythmic Drugs. Int J Mol Sci 2024; 25:12367. [PMID: 39596432 PMCID: PMC11595185 DOI: 10.3390/ijms252212367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The pulmonary vein wall contains a myocardial layer whose ectopic automaticity is the major cause of atrial fibrillation. This review summarizes the results obtained in isolated pulmonary vein myocardium from small experimental animals, focusing on the studies with the guinea pig. The diversity in the action potential waveform reflects the difference in the repolarizing potassium channel currents involved. The diastolic depolarization, the trigger of automatic action potentials, is caused by multiple membrane currents, including the Na+-Ca2+ exchanger current and late INa. The action potential waveform and automaticity are affected differentially by α- and β-adrenoceptor stimulation. Class I antiarrhythmic drugs block the propagation of ectopic electrical activity of the pulmonary vein myocardium through blockade of the peak INa. Some of the class I antiarrhythmic drugs block the late INa and inhibit pulmonary vein automaticity. The negative inotropic and chronotropic effects of class I antiarrhythmic drugs could be largely attributed to their blocking effect on the Ca2+ channel rather than the Na+ channel. Such a comprehensive understanding of pulmonary vein automaticity and class I antiarrhythmic drugs would lead to an improvement in pharmacotherapy and the development of novel therapeutic agents for atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (I.N.); (M.S.); (T.S.); (R.O.); (S.H.)
| |
Collapse
|
11
|
Joshi J, Albers C, Smole N, Guo S, Smith SA. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: strengths, challenges and potential solutions. Front Physiol 2024; 15:1475152. [PMID: 39328831 PMCID: PMC11424716 DOI: 10.3389/fphys.2024.1475152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels and cytoskeletal proteins in the cardiac dyad play a critical role in maintaining excitation-contraction (E-C) coupling and provide cardiac homeostasis. Functional changes in these dyad proteins, whether induced by genetic, epigenetic, metabolic, therapeutic, or environmental factors, can disrupt normal cardiac electrophysiology, leading to abnormal E-C coupling and arrhythmias. Animal models and heterologous cell cultures provide platforms to elucidate the pathogenesis of arrhythmias for basic cardiac research; however, these traditional systems do not truly reflect human cardiac electro-pathophysiology. Notably, patients with the same genetic variants of inherited channelopathies (ICC) often exhibit incomplete penetrance and variable expressivity which underscores the need to establish patient-specific disease models to comprehend the mechanistic pathways of arrhythmias and determine personalized therapies. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) inherit the genetic background of the patient and reflect the electrophysiological characteristics of the native cardiomyocytes. Thus, iPSC-CMs provide an innovative and translational pivotal platform in cardiac disease modeling and therapeutic screening. In this review, we will examine how patient-specific iPSC-CMs historically evolved to model arrhythmia syndromes in a dish, and their utility in understanding the role of specific ion channels and their functional characteristics in causing arrhythmias. We will also examine how CRISPR/Cas9 have enabled the establishment of patient-independent and variant-induced iPSC-CMs-based arrhythmia models. Next, we will examine the limitations of using human iPSC-CMs with respect to in vitro arrhythmia modeling that stems from variations in iPSCs or toxicity due to gene editing on iPSC or iPSC-CMs and explore how such hurdles are being addressed. Importantly, we will also discuss how novel 3D iPSC-CM models can better capture in vitro characteristics and how all-optical platforms provide non-invasive and high- throughput electrophysiological data that is useful for stratification of emerging arrhythmogenic variants and drug discovery. Finally, we will examine strategies to improve iPSC-CM maturity, including powerful gene editing and optogenetic tools that can introduce/modify specific ion channels in iPSC-CMs and tailor cellular and functional characteristics. We anticipate that an elegant synergy of iPSCs, novel gene editing, 3D- culture models, and all-optical platforms will offer a high-throughput template to faithfully recapitulate in vitro arrhythmogenic events necessary for personalized arrhythmia monitoring and drug screening process.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Cora Albers
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Nathan Smole
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Shuliang Guo
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Sakima A Smith
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Wells SP, O'Shea C, Hayes S, Weeks KL, Kirchhof P, Delbridge LM, Pavlovic D, Bell JR. Male and female atria exhibit distinct acute electrophysiological responses to sex steroids. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100079. [PMID: 39309304 PMCID: PMC11413518 DOI: 10.1016/j.jmccpl.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024]
Abstract
The electrophysiological properties of the hearts of women and men are different. These differences are at least partly mediated by the actions of circulating estrogens and androgens on the cardiomyocytes. Experimentally, much of our understanding in this field is based on studies focusing on ventricular tissue, with considerably less known in the context of atrial electrophysiology. The aim of this investigation was to compare the electrophysiological properties of male and female atria and assess responses to acute sex steroid exposure. Age-matched adult male and female C57BL/6 mice were anesthetized (4 % isoflurane) and left atria isolated. Atria were loaded with Di-4-ANEPPS voltage sensitive dye and optical mapping performed to assess action potential duration (APD; at 10 %, 20 %, 30 %, 50 %, and 70 % repolarization) and conduction velocity in the presence of 1 nM and 100 nM 17β-estradiol or testosterone. Male and female left atria demonstrated similar baseline action potential duration and conduction velocity, with significantly greater APD70 spatial heterogeneity evident in females. 17β-estradiol prolonged action potential duration in both sexes - an effect that was augmented in females. Atrial conduction was slowed in the presence of 100 nM 17β-estradiol in both males and females. Testosterone prolonged action potential duration in males only and did not modulate conduction velocity in either sex. This study provides novel insights into male and female atrial electrophysiology and its regulation by sex steroids. As systemic sex steroid levels change and intra-cardiac estrogen synthesis capacity increases with aging, these actions may have an increasingly important role in determining atrial arrhythmia vulnerability.
Collapse
Affiliation(s)
- Simon P. Wells
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Hayes
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kate L. Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, University Heart and Vascular Center UKE, Hamburg, Hamburg, Germany
| | - Lea M.D. Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James R. Bell
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
13
|
Hamaguchi S, Agata N, Seki M, Namekata I, Tanaka H. Developmental Changes in the Excitation-Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. J Cardiovasc Dev Dis 2024; 11:267. [PMID: 39330325 PMCID: PMC11432613 DOI: 10.3390/jcdd11090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024] Open
Abstract
The developmental changes in the excitation-contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in the guinea pig it decreases during the fetal stage but turns into an increase just before birth. Such changes can be attributed to changes in the repolarizing potassium currents. The T-tubule and the sarcoplasmic reticulum are scarcely present in the fetal cardiomyocyte, but increase during postnatal development. This causes a developmental shift in the Ca2+ handling from a sarcolemma-dependent mechanism to a sarcoplasmic reticulum-dependent mechanism. The sensitivity for beta-adrenoceptor-mediated positive inotropy decreases during early postnatal development, which parallels the increase in sympathetic nerve innervation. The alpha-adrenoceptor-mediated inotropy in the mouse changes from positive in the neonate to negative in the adult. This can be explained by the change in the excitation-contraction mechanism mentioned above. The shortening of the action potential duration enhances trans-sarcolemmal Ca2+ extrusion by the Na+-Ca2+ exchanger. The sarcoplasmic reticulum-dependent mechanism of contraction in the adult allows Na+-Ca2+ exchanger activity to cause negative inotropy, a mechanism not observed in neonatal myocardium. Such developmental studies would provide clues towards a more comprehensive understanding of cardiac function.
Collapse
Affiliation(s)
| | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan; (S.H.); (N.A.); (M.S.); (I.N.)
| |
Collapse
|
14
|
Aromolaran KA, Corbin A, Aromolaran AS. Obesity Arrhythmias: Role of IL-6 Trans-Signaling. Int J Mol Sci 2024; 25:8407. [PMID: 39125976 PMCID: PMC11313575 DOI: 10.3390/ijms25158407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease that is rapidly increasing in prevalence and affects more than 600 million adults worldwide, and this figure is estimated to increase by at least double by 2030. In the United States, more than one-third of the adult population is either overweight or obese. The global obesity epidemic is a major risk factor for the development of life-threatening arrhythmias occurring in patients with long QT, particularly in conditions where multiple heart-rate-corrected QT-interval-prolonging mechanisms are simultaneously present. In obesity, excess dietary fat in adipose tissue stimulates the release of immunomodulatory cytokines such as interleukin (IL)-6, leading to a state of chronic inflammation in patients. Over the last decade, increasing evidence has been found to support IL-6 signaling as a powerful predictor of the severity of heart diseases and increased risk for ventricular arrhythmias. IL-6's pro-inflammatory effects are mediated via trans-signaling and may represent a novel arrhythmogenic risk factor in obese hearts. The first selective inhibitor of IL-6 trans-signaling, olamkicept, has shown encouraging results in phase II clinical studies for inflammatory bowel disease. Nevertheless, the connection between IL-6 trans-signaling and obesity-linked ventricular arrhythmias remains unexplored. Therefore, understanding how IL-6 trans-signaling elicits a cellular pro-arrhythmic phenotype and its use as an anti-arrhythmic target in a model of obesity remain unmet clinical needs.
Collapse
Affiliation(s)
- Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (K.A.A.); (A.C.)
| | - Andrea Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (K.A.A.); (A.C.)
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (K.A.A.); (A.C.)
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
15
|
Hodges D, Stonerook M, Salvail D, Lemouton S. Maximizing insights from nonclinical safety studies in the context of rising costs and changing regulations. J Pharmacol Toxicol Methods 2024; 128:107538. [PMID: 38955287 DOI: 10.1016/j.vascn.2024.107538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The traditional paradigm of non-rodent safety assessment studies, primarily reliant on non-human primates (NHPs) and dogs, is undergoing a transformation. During the 2023 Safety Pharmacology Society Annual Meeting, scientists from leading nonclinical contract organizations discussed how traditional IND-enabling studies can benefit from employing underutilized alternative non-rodent models, such as the swine. Swine offer a cost-effective approach to drug development and share many anatomical and physiological similarities with humans. The inclusion of non-traditional species in safety assessments, coupled with advanced measurement techniques, aids in de-risking compounds early on and adapting projects to the evolving cost landscape.
Collapse
|
16
|
Baron V, Sommer ST, Fiegle DJ, Pfeuffer AKM, Peyronnet R, Volk T, Seidel T. Effects of electro-mechanical uncouplers, hormonal stimulation and pacing rate on the stability and function of cultured rabbit myocardial slices. Front Bioeng Biotechnol 2024; 12:1363538. [PMID: 38646013 PMCID: PMC11026719 DOI: 10.3389/fbioe.2024.1363538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: Recent advances have enabled organotypic culture of beating human myocardial slices that are stable for weeks. However, human myocardial samples are rare, exhibit high variability and frequently originate from diseased hearts. Thus, there is a need to adapt long-term slice culture for animal myocardium. When applied to animal cardiac slices, studies in healthy or genetically modified myocardium will be possible. We present the culture of slices from rabbit hearts, which resemble the human heart in microstructure, electrophysiology and excitation-contraction coupling. Methods: Left ventricular myocardium from New Zealand White rabbits was cut using a vibratome and cultured in biomimetic chambers for up to 7 days (d). Electro-mechanical uncoupling agents 2,3-butanedione monoxime (BDM) and cytochalasin D (CytoD) were added during initiation of culture and effects on myocyte survival were quantified. We investigated pacing rates (0.5 Hz, 1 Hz, and 2 Hz) and hormonal supplements (cortisol, T3, catecholamines) at physiological plasma concentrations. T3 was buffered using BSA. Contractile force was recorded continuously. Glucose consumption and lactate production were measured. Whole-slice Ca2+ transients and action potentials were recorded. Effects of culture on microstructure were investigated with confocal microscopy and image analysis. Results: Protocols for human myocardial culture resulted in sustained contracture and myocyte death in rabbit slices within 24 h, which could be prevented by transient application of a combination of BDM and CytoD. Cortisol stabilized contraction amplitude and kinetics in culture. T3 and catecholaminergic stimulation did not further improve stability. T3 and higher pacing rates increased metabolic rate and lactate production. T3 stabilized the response to β-adrenergic stimulation over 7 d. Pacing rates above 1 Hz resulted in progredient decline in contraction force. Image analysis revealed no changes in volume fractions of cardiomyocytes or measures of fibrosis over 7 d. Ca2+ transient amplitudes and responsiveness to isoprenaline were comparable after 1 d and 7 d, while Ca2+ transient duration was prolonged after 7 d in culture. Conclusions: A workflow for rabbit myocardial culture has been established, preserving function for up to 7 d. This research underscores the importance of glucocorticoid signaling in maintaining tissue function and extending culture duration. Furthermore, BDM and CytoD appear to protect from tissue damage during the initiation phase of tissue culture.
Collapse
Affiliation(s)
- V. Baron
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - S. T. Sommer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D. J. Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - A.-K. M. Pfeuffer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R. Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T. Volk
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - T. Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Torshizi HM, Omidi N, Khorgami MR, Jamali R, Ahmadi M. Artificial intelligence-based model for automatic real-time and noninvasive estimation of blood potassium levels in pediatric patients. Ann Pediatr Cardiol 2024; 17:116-123. [PMID: 39184121 PMCID: PMC11343398 DOI: 10.4103/apc.apc_54_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 08/27/2024] Open
Abstract
Background An abnormal variation in blood electrolytes, such as potassium, contributes to mortality in children admitted to intensive care units. Continuous and real-time monitoring of potassium serum levels can prevent fatal arrhythmias, but this is not currently practical. The study aims to use machine learning to estimate blood potassium levels with accuracy in real time noninvasively. Methods Hospitalized patients in the Pediatric Department of the Rajaie Cardiology and Medical Research Center and Tehran Heart Center were recruited from December 2021 to June 2022. The electrocardiographic (ECG) features of patients were evaluated. We defined 16 features for each signal and extracted them automatically. The dimension reduction operation was performed with the assistance of the correlation matrix. Linear regression, polynomials, decision trees, random forests, and support vector machine algorithms have been used to find the relationship between characteristics and serum potassium levels. Finally, we used a scatter plot and mean square error (MSE) to display the results. Results Of 463 patients (mean age: 8 ± 1 year; 56% boys) hospitalized, 428 patients met the inclusion criteria, with 35 patients having a high noise of ECG were excluded. After the dimension reduction step, 11 features were selected from each cardiac signal. The random forest regression algorithm showed the best performance with an MSE of 0.3. Conclusion The accurate estimation of serum potassium levels based on ECG signals is possible using machine learning algorithms. This can be potentially useful in predicting serum potassium levels in specific clinical scenarios.
Collapse
Affiliation(s)
- Hamid Mokhtari Torshizi
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Omidi
- Department of Cardiology, Tehran Heart Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafie Khorgami
- Rajaie Heart Center and Department of Pediatric Cardiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Razieh Jamali
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Ahmadi
- Department of Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Kabus D, De Coster T, de Vries AAF, Pijnappels DA, Dierckx H. Fast creation of data-driven low-order predictive cardiac tissue excitation models from recorded activation patterns. Comput Biol Med 2024; 169:107949. [PMID: 38199206 DOI: 10.1016/j.compbiomed.2024.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Excitable systems give rise to important phenomena such as heat waves, epidemics and cardiac arrhythmias. Understanding, forecasting and controlling such systems requires reliable mathematical representations. For cardiac tissue, computational models are commonly generated in a reaction-diffusion framework based on detailed measurements of ionic currents in dedicated single-cell experiments. Here, we show that recorded movies at the tissue-level of stochastic pacing in a single variable are sufficient to generate a mathematical model. Via exponentially weighed moving averages, we create additional state variables, and use simple polynomial regression in the augmented state space to quantify excitation wave dynamics. A spatial gradient-sensing term replaces the classical diffusion as it is more robust to noise. Our pipeline for model creation is demonstrated for an in-silico model and optical voltage mapping recordings of cultured human atrial myocytes and only takes a few minutes. Our findings have the potential for widespread generation, use and on-the-fly refinement of personalised computer models for non-linear phenomena in biology and medicine, such as predictive cardiac digital twins.
Collapse
Affiliation(s)
- Desmond Kabus
- Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Etienne Sabbelaan 53, 8500, Kortrijk, Belgium; Laboratory of Experimental Cardiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hans Dierckx
- Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Etienne Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
19
|
Agarwal V, Kaushik AS, Chaudhary R, Rehman M, Srivastava S, Mishra V. Transcutaneous vagus nerve stimulation ameliorates cardiac abnormalities in chronically stressed rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:281-303. [PMID: 37421431 DOI: 10.1007/s00210-023-02611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Chronically stressed patients often have low vagal tone and increased levels of proinflammatory cytokines, which increase their risk for developing cardiac dysfunction. Transcutaneous vagus nerve stimulation (taVNS) is a way to activate the parasympathetic system, which has the ability to reduce inflammation and antagonize excessive sympathetic responses. However, the effectiveness of taVNS in treating cardiac dysfunction caused by chronic unpredictable stress (CUS) has not been studied. To investigate this, we first validated a rat model of CUS, in which the rats were exposed to random stressors daily for 8 weeks. Post CUS, the rats were treated with taVNS (1.0 ms, 6 V, 6 Hz, for 40 min × 2 weeks, alternatively) and their cardiac function and cholinergic flow were evaluated. Furthermore, serum cardiac troponin I (cTnI), cardiac caspase-3, inducible nitric oxide synthase (iNOS), and transforming growth factor (TGF)-β1 expression in rats were also assessed. The chronically stressed rats showed depressed behavior with increased levels of serum corticosterone and proinflammatory cytokines. Electrocardiogram (ECG) and heart rate variability (HRV) studies revealed elevated heart rate, diminished vagal tone, and altered sinus rhythm in CUS rats. Furthermore, the CUS rats demonstrated cardiac hypertrophy and fibrosis with increased caspase-3, iNOS, and TGF-β expression in their myocardium and increased levels of serum cTnI. Interestingly, alternate taVNS therapy for 2 weeks, post CUS, helped alleviate these cardiac abnormalities. These suggest that taVNS could be a useful adjunctive and non-pharmacological approach for managing CUS induced cardiac dysfunction.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India.
| |
Collapse
|
20
|
Smith J, Richerson G, Kouchi H, Duprat F, Mantegazza M, Bezin L, Rheims S. Are we there yet? A critical evaluation of sudden and unexpected death in epilepsy models. Epilepsia 2024; 65:9-25. [PMID: 37914406 DOI: 10.1111/epi.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.
Collapse
Affiliation(s)
- Jonathon Smith
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - George Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Hayet Kouchi
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Fabrice Duprat
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| |
Collapse
|
21
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
22
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
23
|
Howlett LA, Stevenson-Cocks H, Colman MA, Lancaster MK, Benson AP. Ionic current changes underlying action potential repolarization responses to physiological pacing and adrenergic stimulation in adult rat ventricular myocytes. Physiol Rep 2023; 11:e15766. [PMID: 37495507 PMCID: PMC10371833 DOI: 10.14814/phy2.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
This study aimed to simulate ventricular responses to elevations in myocyte pacing and adrenergic stimulation using a novel electrophysiological rat model and investigate ion channel responses underlying action potential (AP) modulations. Peak ion currents and AP repolarization to 50% and 90% of full repolarization (APD50-90 ) were recorded during simulations at 1-10 Hz pacing under control and adrenergic stimulation conditions. Further simulations were performed with incremental ion current block (L-type calcium current, ICa ; transient outward current, Ito ; slow delayed rectifier potassium current, IKs ; rapid delayed rectifier potassium current, IKr ; inward rectifier potassium current, IK1 ) to identify current influence on AP response to exercise. Simulated APD50-90 closely resembled experimental findings. Rate-dependent increases in IKs (6%-101%), IKr (141%-1339%), and ICa (0%-15%) and reductions in Ito (11%-57%) and IK1 (1%-9%) were observed. Meanwhile, adrenergic stimulation triggered moderate increases in all currents (23%-67%) except IK1 . Further analyses suggest AP plateau is most sensitive to modulations in Ito and ICa while late repolarization is most sensitive to IK1 , ICa , and IKs , with alterations in IKs predominantly stimulating the greatest magnitude of influence on late repolarization (35%-846% APD90 prolongation). The modified Leeds rat model (mLR) is capable of accurately modeling APs during physiological stress. This study highlights the importance of ICa , Ito , IK1, and IKs in controlling electrophysiological responses to exercise. This work will benefit the study of cardiac dysfunction, arrythmia, and disease, though future physiologically relevant experimental studies and model development are required.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Alan P Benson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Lindovsky J, Nichtova Z, Dragano NRV, Pajuelo Reguera D, Prochazka J, Fuchs H, Marschall S, Gailus-Durner V, Sedlacek R, Hrabě de Angelis M, Rozman J, Spielmann N. A review of standardized high-throughput cardiovascular phenotyping with a link to metabolism in mice. Mamm Genome 2023; 34:107-122. [PMID: 37326672 PMCID: PMC10290615 DOI: 10.1007/s00335-023-09997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Cardiovascular diseases cause a high mortality rate worldwide and represent a major burden for health care systems. Experimental rodent models play a central role in cardiovascular disease research by effectively simulating human cardiovascular diseases. Using mice, the International Mouse Phenotyping Consortium (IMPC) aims to target each protein-coding gene and phenotype multiple organ systems in single-gene knockout models by a global network of mouse clinics. In this review, we summarize the current advances of the IMPC in cardiac research and describe in detail the diagnostic requirements of high-throughput electrocardiography and transthoracic echocardiography capable of detecting cardiac arrhythmias and cardiomyopathies in mice. Beyond that, we are linking metabolism to the heart and describing phenotypes that emerge in a set of known genes, when knocked out in mice, such as the leptin receptor (Lepr), leptin (Lep), and Bardet-Biedl syndrome 5 (Bbs5). Furthermore, we are presenting not yet associated loss-of-function genes affecting both, metabolism and the cardiovascular system, such as the RING finger protein 10 (Rfn10), F-box protein 38 (Fbxo38), and Dipeptidyl peptidase 8 (Dpp8). These extensive high-throughput data from IMPC mice provide a promising opportunity to explore genetics causing metabolic heart disease with an important translational approach.
Collapse
Affiliation(s)
- Jiri Lindovsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zuzana Nichtova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Nathalia R. V. Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - David Pajuelo Reguera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
25
|
Silva Dos Santos D, Turaça LT, Coutinho KCDS, Barbosa RAQ, Polidoro JZ, Kasai-Brunswick TH, Campos de Carvalho AC, Girardi ACC. Empagliflozin reduces arrhythmogenic effects in rat neonatal and human iPSC-derived cardiomyocytes and improves cytosolic calcium handling at least partially independent of NHE1. Sci Rep 2023; 13:8689. [PMID: 37248416 DOI: 10.1038/s41598-023-35944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
The antidiabetic agent class of sodium-glucose cotransporter 2 (SGLT2) inhibitors confer unprecedented cardiovascular benefits beyond glycemic control, including reducing the risk of fatal ventricular arrhythmias. However, the impact of SGLT2 inhibitors on the electrophysiological properties of cardiomyocytes exposed to stimuli other than hyperglycemia remains elusive. This investigation tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) affects cardiomyocyte electrical activity under hypoxic conditions. Rat neonatal and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes incubated or not with the hypoxia-mimetic agent CoCl2 were treated with EMPA (1 μM) or vehicle for 24 h. Action potential records obtained using intracellular microelectrodes demonstrated that EMPA reduced the action potential duration at 30%, 50%, and 90% repolarization and arrhythmogenic events in rat and human cardiomyocytes under normoxia and hypoxia. Analysis of Ca2+ transients using Fura-2-AM and contractility kinetics showed that EMPA increased Ca2+ transient amplitude and decreased the half-time to recover Ca2+ transients and relaxation time in rat neonatal cardiomyocytes. We also observed that the combination of EMPA with the Na+/H+ exchanger isoform 1 (NHE1) inhibitor cariporide (10 µM) exerted a more pronounced effect on Ca2+ transients and contractility than either EMPA or cariporide alone. Besides, EMPA, but not cariporide, increased phospholamban phosphorylation at serine 16. Collectively, our data reveal that EMPA reduces arrhythmogenic events, decreases the action potential duration in rat neonatal and human cardiomyocytes under normoxic or hypoxic conditions, and improves cytosolic calcium handling at least partially independent of NHE1. Moreover, we provided further evidence that SGLT2 inhibitor-mediated cardioprotection may be partly attributed to its cardiomyocyte electrophysiological effects.
Collapse
Affiliation(s)
- Danúbia Silva Dos Santos
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | - Lauro Thiago Turaça
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | | | - Raiana Andrade Quintanilha Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro de Tecnologia Celular, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Juliano Zequini Polidoro
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | - Tais Hanae Kasai-Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana Castello Costa Girardi
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil.
| |
Collapse
|
26
|
Cuenca-Bermejo L, Fernández-Del Palacio MJ, de Cassia Gonçalves V, Bautista-Hernández V, Sánchez-Rodrigo C, Fernández-Villalba E, Kublickiene K, Raparelli V, Kautzky-Willer A, Norris CM, Pilote L, Herrero MT. Age and Sex Determine Electrocardiogram Parameters in the Octodon degus. BIOLOGY 2023; 12:747. [PMID: 37237559 PMCID: PMC10215068 DOI: 10.3390/biology12050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular diseases represent the leading cause of mortality and morbidity worldwide, and age is an important risk factor. Preclinical models provide supportive evidence toward age-related cardiac changes, as well as allow for the study of pathological aspects of the disease. In the present work, we evaluated the electrocardiogram (ECG) recording in the O. degus during the aging process in both females and males. Taking into account the age and sex, our study provides the normal ranges for the heart rate, duration and voltage of the ECG waves and intervals, as well as electrical axis deviation. We found that the QRS complex duration and QTc significantly increased with age, whereas the heart rate significantly decreased. On the other hand, the P wave, PR and QTc segments durations, S wave voltage and electrical axis were found to be significantly different between males and females. The heart rhythm was also altered in aged animals, resulting in an increased incidence of arrhythmias, especially in males. Based on these results, we suggest that this rodent model could be useful for cardiovascular research, including impacts of aging and biological sex.
Collapse
Affiliation(s)
- Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| | | | - Valeria de Cassia Gonçalves
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Consuelo Sánchez-Rodrigo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy;
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Colleen M. Norris
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Louise Pilote
- Division of Clinical Epidemiology, Research Institute of McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada;
| | - María Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| |
Collapse
|
27
|
Kawaguchi N, Nakanishi T. Animal Disease Models and Patient-iPS-Cell-Derived In Vitro Disease Models for Cardiovascular Biology-How Close to Disease? BIOLOGY 2023; 12:468. [PMID: 36979160 PMCID: PMC10045735 DOI: 10.3390/biology12030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Currently, zebrafish, rodents, canines, and pigs are the primary disease models used in cardiovascular research. In general, larger animals have more physiological similarities to humans, making better disease models. However, they can have restricted or limited use because they are difficult to handle and maintain. Moreover, animal welfare laws regulate the use of experimental animals. Different species have different mechanisms of disease onset. Organs in each animal species have different characteristics depending on their evolutionary history and living environment. For example, mice have higher heart rates than humans. Nonetheless, preclinical studies have used animals to evaluate the safety and efficacy of human drugs because no other complementary method exists. Hence, we need to evaluate the similarities and differences in disease mechanisms between humans and experimental animals. The translation of animal data to humans contributes to eliminating the gap between these two. In vitro disease models have been used as another alternative for human disease models since the discovery of induced pluripotent stem cells (iPSCs). Human cardiomyocytes have been generated from patient-derived iPSCs, which are genetically identical to the derived patients. Researchers have attempted to develop in vivo mimicking 3D culture systems. In this review, we explore the possible uses of animal disease models, iPSC-derived in vitro disease models, humanized animals, and the recent challenges of machine learning. The combination of these methods will make disease models more similar to human disease.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | | |
Collapse
|
28
|
Young WJ, Haessler J, Benjamins JW, Repetto L, Yao J, Isaacs A, Harper AR, Ramirez J, Garnier S, van Duijvenboden S, Baldassari AR, Concas MP, Duong T, Foco L, Isaksen JL, Mei H, Noordam R, Nursyifa C, Richmond A, Santolalla ML, Sitlani CM, Soroush N, Thériault S, Trompet S, Aeschbacher S, Ahmadizar F, Alonso A, Brody JA, Campbell A, Correa A, Darbar D, De Luca A, Deleuze JF, Ellervik C, Fuchsberger C, Goel A, Grace C, Guo X, Hansen T, Heckbert SR, Jackson RD, Kors JA, Lima-Costa MF, Linneberg A, Macfarlane PW, Morrison AC, Navarro P, Porteous DJ, Pramstaller PP, Reiner AP, Risch L, Schotten U, Shen X, Sinagra G, Soliman EZ, Stoll M, Tarazona-Santos E, Tinker A, Trajanoska K, Villard E, Warren HR, Whitsel EA, Wiggins KL, Arking DE, Avery CL, Conen D, Girotto G, Grarup N, Hayward C, Jukema JW, Mook-Kanamori DO, Olesen MS, Padmanabhan S, Psaty BM, Pattaro C, Ribeiro ALP, Rotter JI, Stricker BH, van der Harst P, van Duijn CM, Verweij N, Wilson JG, Orini M, Charron P, Watkins H, Kooperberg C, Lin HJ, Wilson JF, Kanters JK, Sotoodehnia N, Mifsud B, Lambiase PD, Tereshchenko LG, Munroe PB. Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease. Nat Commun 2023; 14:1411. [PMID: 36918541 PMCID: PMC10015012 DOI: 10.1038/s41467-023-36997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2023] [Indexed: 03/15/2023] Open
Abstract
The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration. Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism and genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle and their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction.
Collapse
Affiliation(s)
- William J Young
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jan-Walter Benjamins
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Linda Repetto
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Aaron Isaacs
- Dept. of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Andrew R Harper
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Julia Ramirez
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain and Center of Biomedical Research Network, Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Sophie Garnier
- Sorbonne Universite, INSERM, UMR-S1166, Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Disease, Paris, 75013, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, 75013, France
| | - Stefan van Duijvenboden
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Antoine R Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luisa Foco
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Jonas L Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Raymond Noordam
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Casia Nursyifa
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Meddly L Santolalla
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, 15152, Peru
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Negin Soroush
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada
| | - Stella Trompet
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Julius Global Health, University Utrecht Medical Center, Utrecht, the Netherlands
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Archie Campbell
- Usher Institute, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
- Health Data Research UK, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Adolfo Correa
- Departments of Medicine, Pediatrics and Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio De Luca
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
- Laboratory of Excellence GENMED (Medical Genomics), Paris, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Christina Ellervik
- Department of Data and Data Support, Region Zealand, 4180, Sorø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anuj Goel
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Christopher Grace
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Rebecca D Jackson
- Center for Clinical and Translational Science, Ohio State Medical Center, Columbus, OH, USA
| | - Jan A Kors
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, København, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter W Macfarlane
- Institute of Health and Wellbeing, School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Lorenz Risch
- Labormedizinisches zentrum Dr. Risch, Vaduz, Liechtenstein
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - Ulrich Schotten
- Dept. of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Xia Shen
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, China
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Monika Stoll
- Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Dept. of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute of Human Genetics, Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Eduardo Tarazona-Santos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrew Tinker
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eric Villard
- Sorbonne Universite, INSERM, UMR-S1166, Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Disease, Paris, 75013, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, 75013, France
| | - Helen R Warren
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Durrer Center for Cardiovascular Research, Amsterdam, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands, Leiden, the Netherlands
| | | | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattte, WA, USA
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil, Belo Horizonte, Minas Gerais, Brazil
- Cardiology Service and Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, Belo Horizonte, Minas Gerais, Brazil
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- Department of Cardiology, Heart and Lung Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michele Orini
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Philippe Charron
- Sorbonne Universite, INSERM, UMR-S1166, Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Disease, Paris, 75013, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, 75013, France
- APHP, Cardiology Department, Pitié-Salpêtrière Hospital, Paris, 75013, France
- APHP, Département de Génétique, Centre de Référence Maladies Cardiaques Héréditaires, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Borbala Mifsud
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Larisa G Tereshchenko
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Medicine, Cardiovascular Division, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Patricia B Munroe
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
29
|
Zhang HQ, Lin JL, Pan L, Mao L, Pang JL, Yuan Q, Li GY, Yi GS, Lin YB, Feng BL, Li YD, Wang Y, Jie LJ, Zhang YH. Enzastaurin cardiotoxicity: QT interval prolongation, negative inotropic responses and negative chronotropic action. Biochem Pharmacol 2023; 209:115443. [PMID: 36720353 DOI: 10.1016/j.bcp.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Several clinical trials observed that enzastaurin prolonged QT interval in cancer patients. However, the mechanism of enzastaurin-induced QT interval prolongation is unclear. Therefore, this study aimed to assess the effect and mechanism of enzastaurin on QT interval and cardiac function. The Langendorff and Ion-Optix MyoCam systems were used to assess the effects of enzastaurin on QT interval, cardiac systolic function and intracellular Ca2+ transient in guinea pig hearts and ventricular myocytes. The effects of enzastaurin on the rapid delayed rectifier (IKr), the slow delayed rectifier K+ current (IKs), transient outward potassium current (Ito), action potentials, Ryanodine Receptor 2 (RyR2) and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) expression and activity in HEK 293 cell system and primary cardiomyocytes were investigated using whole-cell recording technique and western blotting. We found that enzastaurin significantly prolonged QT interval in guinea pig hearts and increased the action potential duration (APD) in guinea pig cardiomyocytes in a dose-dependent manner. Enzastaurin potently inhibited IKr by binding to the human Ether-à-go-go-Related gene (hERG) channel in both open and closed states, and hERG mutant channels, including S636A, S631A, and F656V attenuated the inhibitory effect of enzastaurin. Enzastaurin also moderately decreased IKs. Additionally, enzastaurin also induced negative chronotropic action. Moreover, enzastaurin impaired cardiac systolic function and reduced intracellular Ca2+ transient via inhibition of RyR2 phosphorylation. Taken together, we found that enzastaurin prolongs QT, reduces heart rate and impairs cardiac systolic function. Therefore, we recommend that electrocardiogram (ECG) and cardiac function should be continuously monitored when enzastaurin is administered to cancer patients.
Collapse
Affiliation(s)
- He-Qiang Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jia-le Lin
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Pan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liang Mao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Long Pang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qian Yuan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gui-Yang Li
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gang-Si Yi
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang-Bin Lin
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bao-Long Feng
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun-da Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Ling-Jun Jie
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yan-Hui Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
30
|
Nesterova T, Rokeakh R, Solovyova O, Panfilov A. Mathematical Modelling of Leptin-Induced Effects on Electrophysiological Properties of Rat Cardiomyocytes and Cardiac Arrhythmias. MATHEMATICS 2023; 11:874. [DOI: 10.3390/math11040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Elevated plasma leptin levels, or hyperleptinemia, have been demonstrated to correlate with metabolic syndrome markers, including obesity, and may be an independent risk factor for the development of cardiovascular disease. In this paper, we use cardiac models to study possible effects of hyperleptinemia on the electrophysiological properties of cardiomyocytes and cardiac arrhythmias. We modified the parameters of an improved Gattoni 2016 model of rat ventricular cardiomyocytes to simulate experimental data for the leptin effects on ionic currents. We used four model variants to investigate the effects of leptin-induced parameter modification at the cellular level and in 2D tissue. In all models, leptin was found to increase the duration of the action potential. In some cases, we observed a dramatic change in the shape of the action potential from triangular, characteristic of rat cardiomyocytes, to a spike-and-dome, indicating predisposition to arrhythmias. In all 2D tissue models, leptin increased the period of cardiac arrhythmia caused by a spiral wave and enhanced dynamic instability, manifesting as increased meandering, onset of hypermeandering, and even spiral wave breakup. The leptin-modified cellular models developed can be used in subsequent research in rat heart anatomy models.
Collapse
Affiliation(s)
- Tatiana Nesterova
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620049, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia
| | - Roman Rokeakh
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620049, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia
| | - Olga Solovyova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620049, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia
| | - Alexander Panfilov
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia
| |
Collapse
|
31
|
Şengül Ayan S, Süleymanoğlu S, Özdoğan H. A pilot study of ion current estimation by ANN from action potential waveforms. J Biol Phys 2022; 48:461-475. [PMID: 36372807 PMCID: PMC9727005 DOI: 10.1007/s10867-022-09619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Experiments using conventional experimental approaches to capture the dynamics of ion channels are not always feasible, and even when possible and feasible, some can be time-consuming. In this work, the ionic current-time dynamics during cardiac action potentials (APs) are predicted from a single AP waveform by means of artificial neural networks (ANNs). The data collection is accomplished by the use of a single-cell model to run electrophysiological simulations in order to identify ionic currents based on fluctuations in ion channel conductance. The relevant ionic currents, as well as the corresponding cardiac AP, are then calculated and fed into the ANN algorithm, which predicts the desired currents solely based on the AP curve. The validity of the proposed methodology for the Bayesian approach is demonstrated by the R (validation) scores obtained from training data, test data, and the entire data set. The Bayesian regularization's (BR) strength and dependability are further supported by error values and the regression presentations, all of which are positive indicators. As a result of the high convergence between the simulated currents and the currents generated by including the efficacy of a developed Bayesian solver, it is possible to generate behavior of ionic currents during time for the desired AP waveform for any electrical excitable cell.
Collapse
Affiliation(s)
- Sevgi Şengül Ayan
- Department of Engineering, Industrial Engineering, Antalya Bilim University, Döşemealtı, Antalya, Turkey
| | - Selim Süleymanoğlu
- Department of Engineering, Electrical and Computer Engineering, Antalya Bilim University, Döşemealtı, Antalya, Turkey
| | - Hasan Özdoğan
- Department of Medical Imaging Techniques, Vocational School of Health Services, Antalya Bilim University, Döşemealtı, Antalya, Turkey
| |
Collapse
|
32
|
BARTAKOVA A, NOVAKOVA M, STRACINA T. Anesthetized guinea pig as a model for drug testing. Physiol Res 2022; 71:S211-S218. [PMID: 36647909 PMCID: PMC9906665 DOI: 10.33549/physiolres.934994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Based on the World Health Organization statistics, cardiovascular diseases represent the major cause of death worldwide. Although a wide range of treatment approaches and pharmaceuticals is available, the therapy is often not effective enough and therefore health risks for the patient persist. Thus, it is still essential to test new drug candidates for the treatment of various pathophysiological conditions related to cardiovascular system. In vivo models represent indispensable part of preclinical testing of such substances. Anesthetized guinea pig as a whole-body model allows to evaluate complex reactions of cardiovascular system to tested substance. Moreover, action potential of guinea pig cardiomyocyte is quite comparable to that of human. Hence, the results from this model are then quite well translatable to clinical medicine. Aim of this paper was to summarize the methodology of this model, including its advantages and/or limitations and risks, based on the effects of two substances with adrenergic activity on the ECG parameters. The model of anesthetized guinea pig proved to be valuable and suitable for testing of drugs with cardiovascular effects.
Collapse
Affiliation(s)
- Anna BARTAKOVA
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie NOVAKOVA
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tibor STRACINA
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Souza DS, Chignalia AZ, Carvalho-de-Souza JL. Modulation of cardiac voltage-activated K + currents by glypican 1 heparan sulfate proteoglycan. Life Sci 2022; 308:120916. [PMID: 36049528 PMCID: PMC11105158 DOI: 10.1016/j.lfs.2022.120916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glypican 1 (Gpc1) is a heparan sulfate proteoglycan attached to the cell membrane via a glycosylphosphatidylinositol anchor, where it holds glycosaminoglycans nearby. We have recently shown that Gpc1 knockout (Gpc1-/-) mice feature decreased systemic blood pressure. To date, none has been reported regarding the role of Gpc1 on the electrical properties of the heart and specifically, in regard to a functional interaction between Gpc1 and voltage-gated K+ channels. METHODS We used echocardiography and in vivo (electrocardiographic recordings) and in vitro (patch clamping) electrophysiology to study mechanical and electric properties of mice hearts. We used RT-PCR to probe K+ channels' gene transcription in heart tissue. RESULTS Gpc1-/- hearts featured increased cardiac stroke volume and preserved ejection fraction. Gpc1-/- electrocardiograms showed longer QT intervals, abnormalities in the ST segment, and delayed T waves, corroborated by longer action potentials in isolated ventricular cardiomyocytes. In voltage-clamp, these cells showed decreased Ito and IK voltage-activated K+ current densities. Moreover, IK showed activation at less negative voltages, but a higher level of inactivation at a given membrane potential. Kcnh2 and Kcnq1 voltage-gated K+ channels subunits' transcripts were remarkably more abundant in heart tissues from Gpc1-/- mice, suggesting that Gpc1 may interfere in the steps between transcription and translation in these cases. CONCLUSION Our data reveals an unprecedented connection between Gpc1 and voltage-gated K+ channels expressed in the heart and this knowledge contributes to the understanding of the role of this HSPG in cardiac function which may play a role in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Diego Santos Souza
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andreia Zago Chignalia
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Department of Physiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Department of Physiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA; Department of Ophthalmology and Visual Sciences, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
34
|
Ivonin AG, Smirnova SL, Roshchevskaya IM. Heart Electrical Activity during Ventricular Repolarization in Rats after Acute Exhaustive Treadmill Running. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Rieder M, Kreifels P, Stuplich J, Ziupa D, Servatius H, Nicolai L, Castiglione A, Zweier C, Asatryan B, Odening KE. Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome. Front Cardiovasc Med 2022; 9:916036. [PMID: 35911527 PMCID: PMC9329832 DOI: 10.3389/fcvm.2022.916036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant. Materials and Methods In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QTmax-QTmin in all ECG leads) and delta Tpeak/end (Tpeak/end V5 – Tpeak/end V2), were assessed in the 12-lead ECG at rest and during exercise testing. Results QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, p = 0.004), but surprisingly not associated with symptoms in LQT1. In contrast, post-exercise QTc (minute 4 of recovery) was significantly longer in symptomatic than asymptomatic patients with LQT1 (486.5 ms ± 7.0 ms vs. 463.3 ms ± 16.3 ms, p = 0.04), while no such difference was observed in patients with LQT2. Enhanced delta Tpeak/end and QT dispersion were only associated with symptoms in LQT1 (delta Tpeak/end 19.0 ms ± 18.1 ms vs. −4.0 ms ± 4.4 ms, p = 0.02; QT-dispersion: 54.3 ms ± 10.2 ms vs. 31.4 ms ± 10.4 ms, p = 0.01), but not in LQT2. Delta Tpeak/end was particularly discriminative after exercise, where all symptomatic patients with LQT1 had positive and all asymptomatic LQT1 patients had negative values (11.8 ± 7.9 ms vs. −7.5 ± 1.7 ms, p = 0.003). Conclusion Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical “QTc at rest” was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS.
Collapse
Affiliation(s)
- Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Paul Kreifels
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Judith Stuplich
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - David Ziupa
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Helge Servatius
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Luisa Nicolai
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Babken Asatryan
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
37
|
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
38
|
Comparison of frontal QRS-T angle in patients with schizophrenia and healthy volunteers. J Psychiatr Res 2022; 149:76-82. [PMID: 35255386 DOI: 10.1016/j.jpsychires.2022.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases are the most prominent cause of death in patients with schizophrenia. Frontal QRS-T (fQRS-T) angle is a novel marker of myocardial depolarization and repolarization heterogeneity. Recent studies have indicated that the fQRS-T angle is associated with some cardiovascular abnormalities. This study aimed to investigate the fQRS-T angle and its relationship with symptoms severity in patients with schizophrenia. One hundred-six patients with schizophrenia and sixty-four healthy controls were included in this study. fQRS-T angle and QT interval measurements were calculated for each participant from the automatic report of the 12-lead electrocardiography (ECG) device. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and The Positive and Negative Syndrome Scale (PANSS) were performed on the patients with schizophrenia. Corrected QT (QTc) interval and fQRS-T angle were significantly higher in the patients with schizophrenia than healthy controls (p < 0.001 and p < 0.001, respectively). fQRS-T angle was positively correlated with age (r = 0.43), duration of disease (r = 0.37), and negative symptoms scores (r = 0.39). In linear regression analysis, the disease duration and negative symptom severity were the independent predictors of fQRS-T angle in patients with schizophrenia (t = 3.730, p = 0.003 and t = 2.257, p = 0.023, respectively). The fQRS-T angle may be an important ECG parameter to interpret cardiovascular disease risk in patients with schizophrenia.
Collapse
|
39
|
Haverinen J, Hassinen M, Vornanen M. Effect of Channel Assembly (KCNQ1 or KCNQ1 + KCNE1) on the Response of Zebrafish IKs Current to IKs Inhibitors and Activators. J Cardiovasc Pharmacol 2022; 79:670-677. [PMID: 35377576 DOI: 10.1097/fjc.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT In cardiac myocytes, the slow component of the delayed rectifier K+ current (IKs) ensures repolarization of action potential during beta-adrenergic activation or when other repolarizing K+ currents fail. As a key factor of cardiac repolarization, IKs should be present in model species used for cardiovascular drug screening, preferably with pharmacological characteristics similar to those of the human IKs. To this end, we investigated the effects of inhibitors and activators of the IKs on KCNQ1 and KCNQ1 + KCNE1 channels of the zebrafish, an important model species, in Chinese hamster ovary cells. Inhibitors of IKs, chromanol 293B and HMR-1556, inhibited zebrafish IKs channels with approximately similar potency as that of mammalian IKs. Chromanol 293B concentration for half-maximal inhibition (IC50) of zebrafish IKs was at 13.1 ± 5.8 and 13.4 ± 2.8 µM for KCNQ1 and KCNQ1+KCNE1 channels, respectively. HMR-1556 was a more potent inhibitor of zebrafish IKs channels with IC50 = 0.1 ± 0.1 µM and 1.5 ± 0.8 µM for KCNQ1 and KCNQ1 + KCNE1 channels, respectively. R-L3 and mefenamic acid, generally identified as IKs activators, both inhibited zebrafish IKs. R-L3 almost completely inhibited the current generated by KCNQ1 and KCNQ1 + KCNE1 channels with similar potency (IC50 1.1 ± 0.4 and 1.0 ± 0.4 µM, respectively). Mefenamic acid partially blocked zebrafish KCNQ1 (IC50 = 9.5 ± 4.8 µM) and completely blocked KCNQ1 + KCNE1 channels (IC50 = 3.3 ± 1.8 µM). Although zebrafish IKs channels respond to IKs inhibitors in the same way as mammalian IKs channels, their response to activators is atypical, probably because of the differences in the binding domain of KCNE1 to KCNQ1. Therefore, care must be taken when translating the results from zebrafish to humans.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | |
Collapse
|
40
|
Li Y, Peng X, Lin R, Wang X, Liu X, Bai R, Ma C, Tang R, Ruan Y, Liu N. The Antiarrhythmic Mechanisms of Flecainide in Catecholaminergic Polymorphic Ventricular Tachycardia. Front Physiol 2022; 13:850117. [PMID: 35356081 PMCID: PMC8959698 DOI: 10.3389/fphys.2022.850117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe yet rare inherited arrhythmia disorder. The cornerstone of CPVT medical therapy is the use of β-blockers; 30% of patients with CPVT do not respond well to optimal β-blocker treatment. Studies have shown that flecainide effectively prevents life-threatening arrhythmias in CPVT. Flecainide is a class IC antiarrhythmic drug blocking cardiac sodium channels. RyR2 inhibition is proposed as the principal mechanism of antiarrhythmic action of flecainide in CPVT, while it is highly debated. In this article, we review the current progress of this issue.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Rong Lin
- North China Medical and Health Group XingTai Hospital, Xingtai, China
| | - Xuesi Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xinmeng Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Rong Bai
- Banner – University Medical Center Phoenix, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Ribo Tang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
- Ribo Tang,
| | - Yanfei Ruan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
- Yanfei Ruan,
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
- *Correspondence: Nian Liu,
| |
Collapse
|
41
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
42
|
Hohl M, Selejan SR, Wintrich J, Lehnert U, Speer T, Schneider C, Mauz M, Markwirth P, Wong DWL, Boor P, Kazakov A, Mollenhauer M, Linz B, Klinkhammer BM, Hübner U, Ukena C, Moellmann J, Lehrke M, Wagenpfeil S, Werner C, Linz D, Mahfoud F, Böhm M. Renal Denervation Prevents Atrial Arrhythmogenic Substrate Development in CKD. Circ Res 2022; 130:814-828. [PMID: 35130718 DOI: 10.1161/circresaha.121.320104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated GFR, <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.
Collapse
Affiliation(s)
- Mathias Hohl
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Simina-Ramona Selejan
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Jan Wintrich
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Ulrike Lehnert
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Thimoteus Speer
- Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany (T.S.).,Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany. (T.S.)
| | - Clara Schneider
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Muriel Mauz
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Philipp Markwirth
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Dickson W L Wong
- Institut für Pathologie Universitätsklinikum Aachen, Germany (D.W.L.W., P.B., B.M.K.)
| | - Peter Boor
- Institut für Pathologie Universitätsklinikum Aachen, Germany (D.W.L.W., P.B., B.M.K.)
| | - Andrey Kazakov
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Martin Mollenhauer
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Germany (M. Mollenhauer)
| | - Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Denmark (B.L.)
| | | | - Ulrich Hübner
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany (U.H.)
| | - Christian Ukena
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Julia Moellmann
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Germany (J.M., M.L.)
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Germany (J.M., M.L.)
| | - Stefan Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Saarland University, Homburg/Saar, Germany. (S.W.)
| | - Christian Werner
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Dominik Linz
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.).,Cardiovascular Research Institute Maastricht, University Maastricht, the Netherlands (D.L.)
| | - Felix Mahfoud
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Michael Böhm
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| |
Collapse
|