1
|
Wang M, Liang X, Ma R, Lin W, Fang Z, Zhang L, Chen G, He J, Bai E, Pi E, Zhang P, Wang H, Shen C. Correlation Analysis of Secondary Metabolism and Endophytic Fungal Assembles Provide Insights Into Screening Efficient Taxol-Related Fungal Elicitors. PLANT, CELL & ENVIRONMENT 2025; 48:4196-4211. [PMID: 39925221 DOI: 10.1111/pce.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
The efficacy of Taxol, a natural anticancer drug, in the treatment of various types of cancers has been certified globally. Fungal elicitors have been reported as an impressive strategy for enhancing Taxol biosynthesis. We have investigated the effect of twig age on Taxol biosynthesis and the communities of endophytic fungi. A negative correlation between Taxol content and the complexity of the endophytic fungal community in twigs was predicted. Endogenous taxoids, similar to balancing valves, might have a specific effect on controlling the microbiota assembly in Taxus twigs. Utilising the special correlation, 11 isolates of twig age-associated fungi were used to screen new fungal elicitors involved in Taxol biosynthesis. Two efficient fungal elicitors, L01 (Guignardia) and J02 (Diaporthe), were identified, increasing the Taxol contents by 5.91- and 4.83-folds, respectively. It is confirmed that effective fungal elicitors may be negatively correlated with Taxol contents in Taxus tissues. Furthermore, the J02 and L01 fungal elicitors significantly induced the jasmonic acid (JA) content, speculating the involvement of MYC2a-controlled JA signalling in fungal elicitor-activated Taxol biosynthesis. Our data revealed the effect of twig age on Taxol biosynthesis of Taxus and provided a novel approach to screen effective fungal elicitors involved in Taxol biosynthesis.
Collapse
Affiliation(s)
- Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ruoyun Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wanting Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zijin Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lingxiao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ganlin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiaxu He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Enhui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Palupi KD, Oktavia L, Wulansari D, Fathoni A, Praptiwi P, Rahmi D, Agusta A. Plant Endophytic Fungi: Powerful Catalytic Cells for Biotransformation of Chemical Structures of Biologically Active Compounds. Chem Biodivers 2025; 22:e202402281. [PMID: 39714361 DOI: 10.1002/cbdv.202402281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Fungal endophytes are recognized as an essential source of bioactive compounds. Besides producing a wide variety of compounds, fungal endophytes can also facilitate a biotransformation process. In this process, endophytes act as an enzyme source to catalyze chemical reactions and modify the structures of bioactive compounds. Biotransformation offers advantages over chemical synthesis, for instance, the allowance of eco-friendly reactions and regioselective as well as stereoselective synthesis that is often difficult to achieve using chemical synthesis. This review focuses on the utilization of endophytic fungi in the biotransformation process of bioactive compounds to improve their pharmacological, pharmacokinetic, or toxicological parameters. We also discuss the future perspectives and obstacles of using the endophytic fungi-based biotransformation process.
Collapse
Affiliation(s)
- Kartika Dyah Palupi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Listiana Oktavia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dewi Wulansari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ahmad Fathoni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Praptiwi Praptiwi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dwinna Rahmi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
3
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
4
|
Enyi EO, Chigozie VU, Okezie UM, Udeagbala NT, Oko AO. A review of the pharmaceutical applications of endophytic fungal secondary metabolites. Nat Prod Res 2024:1-17. [PMID: 39514834 DOI: 10.1080/14786419.2024.2423036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A major challenge to human health is the emergence of drug-resistant pathogenic strains of organisms. Studies have found ecologically friendly, cost-effective, and innocuous alternative sources of bioactive compounds capable of managing drug-resistant menace. This review x-rays the endophytic fungal community and the pharmaceutical applications of their secondary metabolites. Endophytic fungi house biologically active compounds, which makes them a good pharmaceutical alternative. Also, their intrinsic ability to produce such an avalanche of bioactive compounds could be attributed to their mutualistic interaction with the plant's host. Secondary metabolites harvested from endophytic fungi have been identified and categorised: steroids, xanthones, terpenoids, isocoumarins, phenols, tetralones, benzopyranones, and enniatrines. This review also highlights optimisation strategy, co-culture method, chemical epigenetic remodelling, and molecular method as approaches adopted to boost the production of bioactive compounds. The numerous applications of endophytic fungal secondary metabolites were equally presented, which include their bioactive properties, as well as their use in industries.
Collapse
Affiliation(s)
- E O Enyi
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
- International Institute for Infectious Disease, Biosafety and Biosecurity Research, Ohaozara, Nigeria
| | - V U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
- International Institute for Pharmaceutical Research and Innovations (IIPRI), Ohaozara, Nigeria
| | - U M Okezie
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - N T Udeagbala
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
| | - A O Oko
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
| |
Collapse
|
5
|
Gärditz KF, Czesnick H. Paclitaxel - a Product of Fungal Secondary Metabolism or an Artefact? PLANTA MEDICA 2024; 90:726-735. [PMID: 38754434 PMCID: PMC11254485 DOI: 10.1055/a-2309-6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Taxol (common name: paclitaxel) is an extremely important component of drugs for the treatment of various cancers. Thirty years after the discovery of its effectiveness, a metabolic precursor of Taxol (10-deacetylbaccatin III) is still primarily extracted from needles of European yew trees. In order to meet the considerable demand, hopes were pinned on the possibilities of biotechnological production from the very beginning. In 1993, as if by chance, Taxol was supposedly discovered in fungi that grow endobiotically in yew trees. This finding aroused hopes of biotechnological use to produce fungal Taxol in large quantities in fermenters. It never came to that. Instead, a confusing flood of publications emerged that claimed to have detected Taxol in more and more eukaryotic and even prokaryotic species. However, researchers never reproduced these rather puzzling results, and they could certainly not be applied on an industrial scale. This paper will show that some of the misguided approaches were apparently based on a seemingly careless handling of sparse evidence and on at least questionable publications. Apparently, the desired gold rush of commercial exploitation was seductive. Scientific skepticism as an indispensable core of good scientific practice was often neglected, and the peer review process has not exerted its corrective effect. Self-critical reflection and more healthy skepticism could help to reduce the risk of such aberrations in drug development. This article uses this case study as a striking example to show what can be learned from the Taxol case in terms of research ethics and the avoidance of questionable research practices.
Collapse
Affiliation(s)
- Klaus Ferdinand Gärditz
- Institute of Public Law, University of Bonn, Bonn, Germany
- Ombudsman for suspected cases of scientific misconduct, University of Bonn, Bonn, Germany
| | | |
Collapse
|
6
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
7
|
Subban K, Kempken F. Insights into Taxol® biosynthesis by endophytic fungi. Appl Microbiol Biotechnol 2023; 107:6151-6162. [PMID: 37606790 PMCID: PMC10560151 DOI: 10.1007/s00253-023-12713-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
There have been two hundred reports that endophytic fungi produce Taxol®, but its production yield is often rather low. Although considerable efforts have been made to increase Taxol/taxanes production in fungi by manipulating cocultures, mutagenesis, genome shuffles, and gene overexpression, little is known about the molecular signatures of Taxol biosynthesis and its regulation. It is known that some fungi have orthologs of the Taxol biosynthetic pathway, but the overall architecture of this pathway is unknown. A biosynthetic putative gene homology approach, combined with genomics and transcriptomics analysis, revealed that a few genes for metabolite residues may be located on dispensable chromosomes. This review explores a number of crucial topics (i) finding biosynthetic pathway genes using precursors, elicitors, and inhibitors; (ii) orthologs of the Taxol biosynthetic pathway for rate-limiting genes/enzymes; and (iii) genomics and transcriptomics can be used to accurately predict biosynthetic putative genes and regulators. This provides promising targets for future genetic engineering approaches to produce fungal Taxol and precursors. KEY POINTS: • A recent trend in predicting Taxol biosynthetic pathway from endophytic fungi. • Understanding the Taxol biosynthetic pathway and related enzymes in fungi. • The genetic evidence and formation of taxane from endophytic fungi.
Collapse
Affiliation(s)
- Kamalraj Subban
- Department of Genetics & Molecular Biology in Botany, Botanical Institute and Botanical Garden, Christian-Albrecht University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany
| | - Frank Kempken
- Department of Genetics & Molecular Biology in Botany, Botanical Institute and Botanical Garden, Christian-Albrecht University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| |
Collapse
|
8
|
Rai M, Zimowska B, Gade A, Ingle P. Phoma spp. an untapped treasure of cytotoxic compounds: current status and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12635-9. [PMID: 37401998 DOI: 10.1007/s00253-023-12635-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
The genus Phoma has been explored for a wide range of secondary metabolites signifying a huge range of bioactivities. Phoma sensu lato is a major group that secretes several secondary metabolites. The genus Phoma mainly includes Phoma macrostoma, P. multirostrata, P. exigua, P. herbarum, P. betae, P. bellidis, P. medicaginis, P. tropica, and many more species from the genus that are continuously being identified for their potential secondary metabolites. The metabolite spectrum includes bioactive compounds like phomenon, phomin, phomodione, cytochalasins, cercosporamide, phomazines, and phomapyrone reported from various Phoma spp. These secondary metabolites show a broad range of activities including antimicrobial, antiviral, antinematode, and anticancer. The present review is aimed to emphasize the importance of Phoma sensu lato fungi, as a natural source of biologically active secondary metabolites, and their cytotoxic activities. So far, cytotoxic activities of Phoma spp. have not been reviewed; hence, this review will be novel and useful for the readers to develop Phoma-derived anticancer agents. KEY POINTS: • Different Phoma spp. contain a wide variety of bioactive metabolites. • These Phoma spp. also secrete cytotoxic and antitumor compounds. • The secondary metabolites can be used for the development of anticancer agents.
Collapse
Affiliation(s)
- Mahendra Rai
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India.
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland.
| | - Beata Zimowska
- Department of Plant Protection, University of Life Sciences in Lublin, Poland7 K. St. Leszczyńskiego Street, 20-069, Lublin, Poland
| | - Aniket Gade
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Matunga, 400019, Mumbai, India
| | - Pramod Ingle
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
| |
Collapse
|
9
|
Suwannasai N, Sangvichien E, Phosri C, McCloskey S, Wangsawat N, Thamvithayakorn P, Ruchikachorn N, Thienhirun S, Mekkamol S, Sihanonth P, Whalley MA, Whalley AJS. Exploring the Xylariaceae and its relatives. BOTANICAL STUDIES 2023; 64:15. [PMID: 37382773 PMCID: PMC10310687 DOI: 10.1186/s40529-023-00389-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
The Xylariaceae and its relatives rank as one of the best-known members of the Ascomycota. They are now well recognized for their diversity, global distribution, ecological activities and their outstanding novel metabolites with wide ranging bioactivity.
Collapse
Affiliation(s)
- Nuttika Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110, Thailand
| | - Ek Sangvichien
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Hua Mark Bangkapi, Bangkok, 10240, Thailand
| | - Cherdchai Phosri
- Department of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sirirath McCloskey
- National Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Niwana Wangsawat
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110, Thailand
- Food Research Unit, CPF Food Research and Development Center, 359 Moo 4 Wang Noi, Phra Nakhon Si Ayutthaya, 13170, Thailand
- National Centre for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Bangkok, 12120, Pathumthani, Thailand
| | - Pisit Thamvithayakorn
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110, Thailand
| | - Nutthaporn Ruchikachorn
- The Institute for the Promotion of Teaching Science and Technology (IPST), 924 Sukhumvit Road, Phra Khanong Subdistrict, Klong Toei District, Bangkok, 10110, Thailand
| | - Surang Thienhirun
- Department of Royal Forest, Forest Products Research Division, Bangkok, 10900, Thailand
| | - Sureewan Mekkamol
- Plant Protection Program, Faculty of Agricultural Production, Maejo University, 63 Sansai-Phrao Road, Nongharn, Sansai District, Chiang Mai, 50290, Thailand
| | - Prakitsin Sihanonth
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Margaret A Whalley
- School of Pharmacy and Biomolecular Science, Liverpool John Moore University, Liverpool, L3 3AF, UK
| | - Anthony J S Whalley
- School of Pharmacy and Biomolecular Science, Liverpool John Moore University, Liverpool, L3 3AF, UK.
| |
Collapse
|
10
|
Prescott TAK, Hill R, Mas-Claret E, Gaya E, Burns E. Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules 2023; 13:986. [PMID: 37371566 DOI: 10.3390/biom13060986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal-derived drugs include some of the most important medicines ever discovered, and have proved pivotal in treating chronic diseases. Not only have they saved millions of lives, but they have in some cases changed perceptions of what is medically possible. However, now the low-hanging fruit have been discovered it has become much harder to make the kind of discoveries that have characterised past eras of fungal drug discovery. This may be about to change with new commercial players entering the market aiming to apply novel genomic tools to streamline the discovery process. This review examines the discovery history of approved fungal-derived drugs, and those currently in clinical trials for chronic diseases. For key molecules, we discuss their possible ecological functions in nature and how this relates to their use in human medicine. We show how the conservation of drug receptors between fungi and humans means that metabolites intended to inhibit competitor fungi often interact with human drug receptors, sometimes with unintended benefits. We also plot the distribution of drugs, antimicrobial compounds and psychoactive mushrooms onto a fungal tree and compare their distribution to those of all fungal metabolites. Finally, we examine the phenomenon of self-resistance and how this can be used to help predict metabolite mechanism of action and aid the drug discovery process.
Collapse
Affiliation(s)
| | - Rowena Hill
- Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | | | - Ester Gaya
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| |
Collapse
|
11
|
Xu TM, Sun YF, Liu S, Song CG, Gao N, Wu DM, Cui BK. Ceriporiopsistianshanensis (Polyporales, Agaricomycetes) and Sideratianshanensis (Hymenochaetales, Agaricomycetes), two new species of wood-inhabiting fungi from Xinjiang, Northwest China. MycoKeys 2023; 98:1-18. [PMID: 37287766 PMCID: PMC10242528 DOI: 10.3897/mycokeys.98.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Wood-inhabiting fungi are abundant in China, but their distribution is uneven, with more fungi in southwest China and fewer fungi in northwest China. During the investigation of wood-inhabiting fungi in Xinjiang, we collected a large number of specimens. Eight specimens growing on Piceaschrenkiana were collected from Tianshan Mountains, and they were described as two new species in Ceriporiopsis and Sidera based on morphological characters and molecular evidence. Ceriporiopsistianshanensis is characterized by a cream to salmon-buff pore surface, larger pores measuring 1-3 per mm, and broadly ellipsoid basidiospores 5-6.5 × 3-4 μm. Sideratianshanensis is characterized by annual to perennial basidiocarps, measuring 15 mm thick, pores 5-7 per mm, cream to rosy buff pore surface, and allantoid basidiospores 3-3.5 × 1-1.4 µm. Detailed illustrations and descriptions of the novel species are provided.
Collapse
Affiliation(s)
- Tai-Min Xu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Chang-Ge Song
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, ChinaBiotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation SciencesShiheziChina
| | - Dong-Mei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, ChinaBiotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation SciencesShiheziChina
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
12
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
13
|
Zhang H, Yang MF, Zhang Q, Yan B, Jiang YL. Screening for broad-spectrum antimicrobial endophytes from Rosa roxburghii and multi-omic analyses of biosynthetic capacity. FRONTIERS IN PLANT SCIENCE 2022; 13:1060478. [PMID: 36466255 PMCID: PMC9709285 DOI: 10.3389/fpls.2022.1060478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Plants with certain medicinal values are a good source for isolating function-specific endophytes. Rosa roxburghii Tratt. has been reported to be a botanical source of antimicrobial compounds, which may represent a promising candidate for screening endophytic fungi with antimicrobial potential. In this study, 54 endophytes were isolated and molecularly identified from R. roxburghii. The preliminary screening using the plate confrontation method resulted in 15 different endophytic strains showing at least one strong inhibition or three or more moderate inhibition against the 12 tested strains. Further re-screening experiments based on the disc diffusion method demonstrated that Epicoccum latusicollum HGUP191049 and Setophoma terrestris HGUP190028 had excellent antagonistic activity. The minimum inhibitory concentration (MIC) test for extracellular metabolites finally indicated that HGUP191049 had lower MIC values and a broader antimicrobial spectrum, compared to HGUP190028. Genomic, non-target metabolomic, and comparative genomic studies were performed to understand the biosynthetic capacity of the screened-out endophytic fungus. Genome sequencing and annotation of HGUP191049 revealed a size of 33.24 megabase pairs (Mbp), with 24 biosynthetic gene clusters (BGCs), where the putative antimicrobial compounds, oxyjavanicin, patulin and squalestatin S1 were encoded by three different BGCs, respectively. In addition, the non-targeted metabolic results demonstrated that the strain contained approximately 120 antimicrobial secondary metabolites and was structurally diverse. Finally, comparative genomics revealed differences in pathogenicity, virulence, and carbohydrate-active enzymes in the genome of Epicoccum spp. Moreover, the results of the comparative analyses presumed that Epicoccum is a promising source of antimicrobial terpenes, while oxyjavanicin and squalestatin S1 are antimicrobial compounds shared by the genus. In conclusion, R. roxburghii and the endophytic HGUP191049 isolated from it are promising sources of broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Mao-Fa Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Qian Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Bin Yan
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Yu-Lan Jiang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|