1
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Wu H, Li W, Hao M, Wang Y, Xue L, Ju C, Zhang C. An EPR-Independent extravasation Strategy: Deformable leukocytes as vehicles for improved solid tumor therapy. Adv Drug Deliv Rev 2022; 187:114380. [PMID: 35662610 DOI: 10.1016/j.addr.2022.114380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Effective delivery of therapeutic modality throughout the tumorous nidus plays a crucial role in successful solid tumor treatment. However, conventional nanomedicines based on enhanced permeability and retention (EPR) effect have yielded limited delivery/therapeutic efficiency, due mainly to the heterogeneity of the solid tumor. Leukocytes, which could intrinsically migrate across the vessel wall and crawl through tissue interstitium in a self-deformable manner, have currently emerged as an alternative drug delivery vehicle. In this review, we start with the intrinsic properties of leukocytes (e.g., extravasation and crawling inside tumor), focusing on unveiling the conceptual rationality of leveraging leukocytes as EPR-independent delivery vehicles. Then we discussed various cargoes-loading/unloading strategies for leukocyte-based vehicles as well as their promising applications. This review aims to serve as an up-to-date compilation, which might provide inspiration for scientists in the field of drug delivery.
Collapse
|
3
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
5
|
Lafont E. Stress Management: Death Receptor Signalling and Cross-Talks with the Unfolded Protein Response in Cancer. Cancers (Basel) 2020; 12:E1113. [PMID: 32365592 PMCID: PMC7281445 DOI: 10.3390/cancers12051113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout tumour progression, tumour cells are exposed to various intense cellular stress conditions owing to intrinsic and extrinsic cues, to which some cells are remarkably able to adapt. Death Receptor (DR) signalling and the Unfolded Protein Response (UPR) are two stress responses that both regulate a plethora of outcomes, ranging from proliferation, differentiation, migration, cytokine production to the induction of cell death. Both signallings are major modulators of physiological tissue homeostasis and their dysregulation is involved in tumorigenesis and the metastastic process. The molecular determinants of the control between the different cellular outcomes induced by DR signalling and the UPR in tumour cells and their stroma and their consequences on tumorigenesis are starting to be unravelled. Herein, I summarize the main steps of DR signalling in relation to its cellular and pathophysiological roles in cancer. I then highlight how the UPR and DR signalling control common cellular outcomes and also cross-talk, providing potential opportunities to further understand the development of malignancies.
Collapse
Affiliation(s)
- Elodie Lafont
- Inserm U1242, Université de Rennes, 35042 Rennes, France;
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| |
Collapse
|
6
|
Rossin A, Miloro G, Hueber AO. TRAIL and FasL Functions in Cancer and Autoimmune Diseases: Towards an Increasing Complexity. Cancers (Basel) 2019; 11:cancers11050639. [PMID: 31072029 PMCID: PMC6563024 DOI: 10.3390/cancers11050639] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) and Fas Ligand (FasL/TNFSF6), two major cytokines of the TNF (Tumor Necrosis Factor) superfamily, exert their main functions from the immune system compartment. Mice model studies revealed that TRAIL and FasL-mediated signalling both control the homeostasis of the immune cells, mainly from the lymphoid lineage, and function on cytotoxic cells as effector proteins to eliminate the compromised cells. The first clues in the physiological functions of TRAIL arose from the analysis of TRAIL deficient mice, which, even though they are viable and fertile, are prone to cancer and autoimmune diseases development, revealing TRAIL as an important safeguard against autoimmunity and cancer. The naturally occurring gld (generalized lymphoproliferative disease) and lpr (lymphoproliferation) mutant mice develop lymphadenopathy and lupus-like autoimmune disease. The discovery that they are mutated in the fasl and the fas receptor gene, respectively, demonstrates the critical role of the FasL/Fas system in lymphocyte homeostasis and autoimmunity. This review summarizes the state of current knowledge regarding the key death and non-death immune functions that TRAIL and FasL play in the initiation and progression of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Aurélie Rossin
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France.
| | - Giorgia Miloro
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France.
| | | |
Collapse
|
7
|
Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martínez-Lostao L. Role of Exosomes in the Regulation of T-cell Mediated Immune Responses and in Autoimmune Disease. Cells 2019; 8:cells8020154. [PMID: 30759880 PMCID: PMC6406439 DOI: 10.3390/cells8020154] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
: T-cell mediated immune responses should be regulated to avoid the development of autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate this process, namely death of overactivated T cells by cytokine deprivation, suppression by T regulatory cells (Treg), induction of expression of immune checkpoint molecules such as CTLA-4 and PD-1, or activation-induced cell death (AICD). In addition, activated T cells release membrane microvesicles called exosomes during these regulatory processes. In this review, we revise the role of exosome secretion in the different pathways of immune regulation described to date and its importance in the prevention or development of autoimmune disease. The expression of membrane-bound death ligands on the surface of exosomes during AICD or the more recently described transfer of miRNA or even DNA inside T-cell exosomes is a molecular mechanism that will be analyzed.
Collapse
Affiliation(s)
- Alberto Anel
- Immunity, Cancer & Stem Cells Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| | - Ana Gallego-Lleyda
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| | - Diego de Miguel
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, Gower St, Bloomsbury, WC1E 6BT London, UK.
| | - Javier Naval
- Immunity, Cancer & Stem Cells Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| | - Luis Martínez-Lostao
- Immunology Department, Lozano Blesa Clinical Hospital, and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| |
Collapse
|
8
|
Balomenos D, Shokri R, Daszkiewicz L, Vázquez-Mateo C, Martínez-A C. On How Fas Apoptosis-Independent Pathways Drive T Cell Hyperproliferation and Lymphadenopathy in lpr Mice. Front Immunol 2017; 8:237. [PMID: 28344578 PMCID: PMC5344898 DOI: 10.3389/fimmu.2017.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
Fas induces massive apoptosis in T cells after repeated in vitro T cell receptor (TCR) stimulation and is critical for lymphocyte homeostasis in Fas-deficient (lpr) mice. Although the in vitro Fas apoptotic mechanism has been defined, there is a large conceptual gap between this in vitro phenomenon and the pathway that leads to in vivo development of lymphadenopathy and autoimmunity. A striking abnormality in lpr mice is the excessive proliferation of CD4+ and CD8+ T cells, and more so of the double-negative TCR+CD4−CD8−B220+ T cells. The basis of lpr T cell hyperproliferation remains elusive, as it cannot be explained by Fas-deficient apoptosis. T cell-directed p21 overexpression reduces hyperactivation/hyperproliferation of all lpr T cell subtypes and lymphadenopathy in lpr mice. p21 controls expansion of repeatedly stimulated T cells without affecting apoptosis. These results confirm a direct link between hyperactivation/hyperproliferation, autoreactivity, and lymphadenopathy in lpr mice and, with earlier studies, suggest that Fas apoptosis-independent pathways control lpr T cell hyperproliferation. lpr T cell hyperproliferation could be an indirect result of the defective apoptosis of repeatedly stimulated lpr T cells. Nonetheless, in this perspective, we argue for an alternative setting, in which lack of Fas would directly cause lpr T cell hyperactivation/hyperproliferation in vivo. We propose that Fas/Fas ligand (FasL) acts as an activation inhibitor of recurrently stimulated T cells, and that its disruption causes overexpansion of T cells in lpr mice. Research to define the underlying mechanism of this Fas/FasL effect could resolve the phenotype of lpr mice and lead to therapeutics for related human syndromes.
Collapse
Affiliation(s)
- Dimitrios Balomenos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Rahman Shokri
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Lidia Daszkiewicz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Cristina Vázquez-Mateo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), UAM Campus de Cantoblanco , Madrid , Spain
| |
Collapse
|
9
|
Arabpour M, Cool RH, Faber KN, Quax WJ, Haisma HJ. Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. J Drug Target 2016; 25:360-369. [PMID: 27885847 DOI: 10.1080/1061186x.2016.1262867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activated hepatic stellate cells (HSCs) are known to play a central role in liver fibrosis and their elimination is a crucial step toward the resolution and reversion of liver fibrosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a molecule that may contribute to the apoptotic removal of activated HSC through binding to its dedicated receptors. In the present study, we investigated the potential application of recombinant receptor-specific TRAIL proteins in the efficient elimination of activated HSCs. Our finding revealed differential contribution of TRAIL receptors among HSCs populations with activated hepatic stellate cells expresses more TRAIL receptors DR5. In vitro treatment of activated HSCs with DR5-specific or wild-type TRAIL variants induced a significant reduction in viability and extracellular matrix production, whereas no significant decrease in viability was associated with the treatment of cells by DR4-specific TRAIL. Our analysis indicate the successful application of the DR5 receptor-specific TRAIL variant in the targeted elimination of activated HSCs via interference with collagen production and simultaneous induction of apoptosis via activation of the caspase pathway. DR5 receptor-specific TRAIL may thus represent a new therapeutic compound for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Mohammad Arabpour
- a Mivac Development , Arvid Wallgrens backe 20 , Gothenburg , Sweden.,b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Robbert H Cool
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Klaas Nico Faber
- c Department of Gastrointestinal and Liver Diseases , University Medical Center Groningen , Groningen , the Netherlands
| | - Wim J Quax
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Hidde J Haisma
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| |
Collapse
|
10
|
TRAIL modulates the immune system and protects against the development of diabetes. J Immunol Res 2015; 2015:680749. [PMID: 25759846 PMCID: PMC4352427 DOI: 10.1155/2015/680749] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 01/10/2023] Open
Abstract
TRAIL or tumor necrosis factor (TNF) related apoptosis-inducing ligand is a member of the TNF superfamily of proteins, whose best characterized function is the induction of apoptosis in tumor, infected, or transformed cells through activation of specific receptors. In nontransformed cells, however, the actions of TRAIL are less well characterized. Recent studies suggest that TRAIL may be implicated in the development and progression of diabetes. Here we review TRAIL biological actions, its effects on the immune system, and how and to what extent it has been shown to protect against diabetes.
Collapse
|
11
|
Daszkiewicz L, Vázquez-Mateo C, Rackov G, Ballesteros-Tato A, Weber K, Madrigal-Avilés A, Di Pilato M, Fotedar A, Fotedar R, Flores JM, Esteban M, Martínez-A C, Balomenos D. Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production. Sci Rep 2015; 5:7691. [PMID: 25573673 PMCID: PMC4287747 DOI: 10.1038/srep07691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.
Collapse
Affiliation(s)
- Lidia Daszkiewicz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Cristina Vázquez-Mateo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - André Ballesteros-Tato
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Kathrin Weber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Adrián Madrigal-Avilés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Mauro Di Pilato
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Arun Fotedar
- Cancer Cell Biology Program, Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - Rati Fotedar
- Sanford-Burnham Medical Research Institute, San Diego, CA, USA
| | - Juana M Flores
- Animal Biology Department, School of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Mariano Esteban
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Dimitrios Balomenos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
12
|
Azijli K, van Roosmalen IAM, Smit J, Pillai S, Fukushima M, de Jong S, Peters GJ, Bijnsdorp IV, Kruyt FAE. The novel thymidylate synthase inhibitor trifluorothymidine (TFT) and TRAIL synergistically eradicate non-small cell lung cancer cells. Cancer Chemother Pharmacol 2014; 73:1273-1283. [PMID: 24744163 DOI: 10.1007/s00280-014-2465-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE TRAIL, a tumor selective anticancer agent, may be used for the treatment of non-small cell lung cancer (NSCLC). However, TRAIL resistance is frequently encountered. Here, the combined use of TRAIL with trifluorothymidine (TFT), a thymidylate synthase inhibitor, was examined for sensitizing NSCLC cells to TRAIL. METHODS Interactions between TRAIL and TFT were studied in NSCLC cells using growth inhibition and apoptosis assays. Western blotting and flow cytometry were used to investigate underlying mechanisms. RESULTS The combined treatment of TFT and TRAIL showed synergistic cytotoxicity in A549, H292, H322 and H460 cells. For synergistic activity, the sequence of administration was important; TFT treatment followed by TRAIL exposure did not show sensitization. Combined TFT and TRAIL treatment for 24 h followed by 48 h of TFT alone was synergistic in all cell lines, with combination index values below 0.9. The treatments affected cell cycle progression, with TRAIL inducing a G1 arrest and TFT, a G2/M arrest. TFT activated Chk2 and reduced Cdc25c levels known to cause G2/M arrest. TRAIL-induced caspase-dependent apoptosis was enhanced by TFT, whereas TFT alone mainly induced caspase-independent death. TFT increased the expression of p53 and p21/WAF1, and p53 was involved in the increase of TRAIL-R2 surface expression. TFT also caused downregulation of cFLIP and XIAP and increased Bax expression. CONCLUSIONS TFT enhances TRAIL-induced apoptosis in NSCLC cells by sensitizing the apoptotic machinery at different levels in the TRAIL pathway. Our findings suggest a possible therapeutic benefit of the combined use of TFT and TRAIL in NSCLC.
Collapse
Affiliation(s)
- Kaamar Azijli
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu D, Dong D, Zhou Y, Lu M, Pang XW, Li Y, Tian XJ, Zhang Y, Zhang J. The tumor-suppressive function of UNC5D and its repressed expression in renal cell carcinoma. Clin Cancer Res 2013; 19:2883-92. [PMID: 23589179 DOI: 10.1158/1078-0432.ccr-12-2978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE As a newly added member of the UNC5H receptors, the function of UNC5D/H4 in tumorigenesis remains poorly defined. The aim of this study was to examine the expression of UNC5D in primary renal cell carcinomas (RCC), analyze the mechanisms responsible for its downregulation in RCC, and assess its functional relevance to tumor growth and migration. EXPERIMENTAL DESIGN Forty-four paired primary RCCs and corresponding adjacent noncancerous tissues were collected. The mRNA and protein expression level of UNC5D was assessed by reverse transcriptase-PCR, real-time PCR, or immunohistochemistry. Epigenetic alterations in UNC5D promoter and LOH in the UNC5D locus were also analyzed. Ectopic expression of UNC5D in renal cancer cells with silenced expression of UNC5D was used for analysis of the biologic functions of UNC5D. RESULTS UNC5D expression was attenuated in multiple carcinoma cell lines including renal cancer cells. Similar reduction was also observed in primary RCC tissues as compared with paired adjacent noncancerous tissues. Methylation-specific PCR showed hypermethylation in UNC5D promoter in a significant proportion (18 of 44) of tumor tissue (40.9%). LOH of UNC5D was observed in 13 of 44 patients with RCCs (29.5%). Restoration of UNC5D expression in renal cancer cells significantly inhibited cell proliferation, anchorage-dependent and -independent growth, as well as migration and invasion, whereas knockdown of UNC5D promoted cell growth. Furthermore, ectopic expression of UNC5D induced G2-M cell-cycle arrest. CONCLUSIONS UNC5D is a functional tumor suppressor that is frequently downregulated in RCCs due to promoter hypermethylation and LOH.
Collapse
Affiliation(s)
- Dan Lu
- Department of Immunology, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Trauma patients' elevated tumor necrosis related apoptosis inducing ligand (TRAIL) contributes to increased T cell apoptosis. Clin Immunol 2012; 145:44-54. [PMID: 22926077 DOI: 10.1016/j.clim.2012.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 11/22/2022]
Abstract
Immunosuppression resulting from excessive post-trauma apoptosis of hyperactivated T cells is controversial. TRAIL mediated T cell apoptosis decreases highly activated T cells' responses. Caspase-10, a particular TRAIL target, was increased in trauma patients' T cells with concomitantly elevated plasma TRAIL levels. These patients' T cells developed anergy, implicating increased TRAIL-mediated T cell apoptosis in post-trauma T cell anergy. Control T cells cultured with patients' sera containing high TRAIL levels increased their caspase-10 activity and apoptosis. Stimulated primary T cells are TRAIL apoptosis resistant. Increased plasma thrombospondin-1 and T cell expression of CD47, a thrombospondin-1 receptor, preceded patients' T cell anergy. CD47 triggering of T cells increased their sensitivity to TRAIL-induced apoptosis. Augmentation of T cell TRAIL-induced apoptosis was secondary to CD47 triggered activation of the Src homology-containing phosphatase-1 (SHP-1) and was partially blocked by a SHP-1 inhibitor. We suggest that combined post-trauma CD47 triggering, SHP-1 mediated NFκB suppression, and elevated TRAIL levels increase patients' CD47 expressing T cell apoptosis, thus contributing to subsequent T cell anergy.
Collapse
|
15
|
Norton MT, Fortner KA, Oppenheimer KH, Bonney EA. Evidence that CD8 T-cell homeostasis and function remain intact during murine pregnancy. Immunology 2011; 131:426-37. [PMID: 20553337 DOI: 10.1111/j.1365-2567.2010.03316.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evolving models of immune tolerance have challenged the view that the response of the maternal immune system to environmental or fetal antigens must be suppressed or deviated. CD8 T cells play a central role in the immune response to viruses and intracellular pathogens so the maintenance of both the number and function of these cells is critical to protect both the mother and fetus. We show that the numbers of maternal CD8 T cells in both the spleen and the uterine draining lymph nodes are transiently increased at mid-gestation and this correlates with enhanced CD8 T-cell proliferation and an increased relative expression of both pro-survival and pro-apoptotic molecules. In transgenic mice bearing T-cell antigen receptors specific for the male HY or allo-antigens, the transgenic CD8 T cells retain the ability to proliferate and function during pregnancy. Moreover, anti-HY T-cell receptor transgenic mice have normal numbers of male pups despite the presence of CD8 T cells at the maternal-fetal interface. These data suggest that pregnancy is a dynamic state in which CD8 T-cell turnover is increased while the function and ending size of the CD8 T-cell compartment are maintained.
Collapse
Affiliation(s)
- Michelle T Norton
- University of Vermont College of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
16
|
Ortiz A, Ucero AC, Egido J. Unravelling fibrosis: two newcomers and an old foe. Nephrol Dial Transplant 2010; 25:3492-5. [PMID: 20833689 DOI: 10.1093/ndt/gfq518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Alberto Ortiz
- Dpto de Nefrología Experimental y Patología Vascular, IIS-Fundación Jiménez Díaz, Av/ Reyes Católicos, Madrid, Spain
| | | | | |
Collapse
|
17
|
Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast. Biochem Biophys Res Commun 2008; 376:305-9. [DOI: 10.1016/j.bbrc.2008.08.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 01/21/2023]
|