1
|
Whittaker M, Bendzunas GN, Shirani M, LeClair TJ, Shebl B, Dill TC, Coffino P, Simon SM, Kennedy EJ. Targeted Degradation of Protein Kinase A via a Stapled Peptide PROTAC. ACS Chem Biol 2024; 19:1888-1895. [PMID: 39137166 PMCID: PMC11420944 DOI: 10.1021/acschembio.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are bifunctional molecules that bind and recruit an E3 ubiquitin ligase to a targeted protein of interest, often through the utilization of a small molecule inhibitor. To expand the possible range of kinase targets that can be degraded by PROTACs, we sought to develop a PROTAC utilizing a hydrocarbon-stapled peptide as the targeting agent to bind the surface of a target protein of interest. In this study, we describe the development of a proteolysis-targeting chimera, dubbed Stapled Inhibitor Peptide - PROTAC or StIP-TAC, linking a hydrocarbon-stapled peptide with an E3 ligase ligand for targeted degradation of Protein Kinase A (PKA). This StIP-TAC molecule stimulated E3-mediated protein degradation of PKA, and this effect could be reversed by the addition of the proteasomal inhibitor MG-132. Further, StIP-TAC treatment led to a significant reduction in PKA substrate phosphorylation. Since many protein targets of interest lack structural features that make them amenable to small molecule targeting, development of StIP-TACs may broaden the potential range of protein targets using a PROTAC-mediated proteasomal degradation approach.
Collapse
Affiliation(s)
- Matthew
K. Whittaker
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - George N. Bendzunas
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mahsa Shirani
- Laboratory
of Cellular Biophysics, The Rockefeller
University, New York, New York 10065, United States
| | - Timothy J. LeClair
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Bassem Shebl
- Laboratory
of Cellular Biophysics, The Rockefeller
University, New York, New York 10065, United States
| | - Taylor C. Dill
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Philip Coffino
- Laboratory
of Cellular Biophysics, The Rockefeller
University, New York, New York 10065, United States
| | - Sanford M. Simon
- Laboratory
of Cellular Biophysics, The Rockefeller
University, New York, New York 10065, United States
| | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Dib K, El Banna A, Radulescu C, Lopez Campos G, Sheehan G, Kavanagh K. Histamine Produced by Gram-Negative Bacteria Impairs Neutrophil's Antimicrobial Response by Engaging the Histamine 2 Receptor. J Innate Immun 2022; 15:153-173. [PMID: 35858582 PMCID: PMC10643892 DOI: 10.1159/000525536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
We found that histamine (10-9 M) did not have any effect on the in vitro capture of Escherichia coli by neutrophils but accelerated its intracellular killing. In contrast, histamine (10-6 M) delayed the capture of Escherichia coli by neutrophils and reduced the amounts of pHrodo zymosan particles inside acidic mature phagosomes. Histamine acted through the H4R and the H2R, which are coupled to the Src family tyrosine kinases or the cAMP/protein kinase A pathway, respectively. The protein kinase A inhibitor H-89 abrogated the delay in bacterial capture induced by histamine (10-6 M) and the Src family tyrosine kinase inhibitor PP2 blocked histamine (10-9 M) induced acceleration of bacterial intracellular killing and tyrosine phosphorylation of proteins. To investigate the role of histamine in pathogenicity, we designed an Acinetobacter baumannii strain deficient in histamine production (hdc::TOPO). Galleria mellonella larvae inoculated with the wild-type Acinetobacter baumannii ATCC 17978 strain (1.1 × 105 CFU) died rapidly (100% death within 40 h) but not when inoculated with the Acinetobacter baumannii hdc::TOPO mutant (10% mortality). The concentration of histamine rose in the larval haemolymph upon inoculation of the wild type but not the Acinetobacter baumannii hdc::TOPO mutant, such concentration of histamine blocks the ability of hemocytes from Galleria mellonella to capture Candida albicans in vitro. Thus, bacteria-producing histamine, by maintaining high levels of histamine, may impair neutrophil phagocytosis by hijacking the H2R.
Collapse
Affiliation(s)
- Karim Dib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amal El Banna
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Clara Radulescu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
3
|
Insuela DBR, Ferrero MR, Gonçalves-de-Albuquerque CF, Chaves ADS, da Silva AYO, Castro-Faria-Neto HC, Simões RL, Barja-Fidalgo TC, Silva PMRE, Martins MA, Silva AR, Carvalho VF. Glucagon Reduces Neutrophil Migration and Increases Susceptibility to Sepsis in Diabetic Mice. Front Immunol 2021; 12:633540. [PMID: 34295325 PMCID: PMC8290340 DOI: 10.3389/fimmu.2021.633540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
Sepsis is one of the most common comorbidities observed in diabetic patients, associated with a deficient innate immune response. Recently, we have shown that glucagon possesses anti-inflammatory properties. In this study, we investigated if hyperglucagonemia triggered by diabetes might reduce the migration of neutrophils, increasing sepsis susceptibility. 21 days after diabetes induction by intravenous injection of alloxan, we induced moderate sepsis in Swiss-Webster mice through cecum ligation and puncture (CLP). The glucagon receptor (GcgR) antagonist des-his1-[Glu9]-glucagon amide was injected intraperitoneally 24h and 1h before CLP. We also tested the effect of glucagon on CXCL1/KC-induced neutrophil migration to the peritoneal cavity in mice. Neutrophil chemotaxis in vitro was tested using transwell plates, and the expression of total PKA and phospho-PKA was evaluated by western blot. GcgR antagonist restored neutrophil migration, reduced CFU numbers in the peritoneal cavity and improved survival rate of diabetic mice after CLP procedure, however, the treatment did no alter hyperglycemia, CXCL1/KC plasma levels and blood neutrophilia. In addition, glucagon inhibited CXCL1/KC-induced neutrophil migration to the peritoneal cavity of non-diabetic mice. Glucagon also decreased the chemotaxis of neutrophils triggered by CXCL1/KC, PAF, or fMLP in vitro. The inhibitory action of glucagon occurred in parallel with the reduction of CXCL1/KC-induced actin polymerization in neutrophils in vitro, but not CD11a and CD11b translocation to cell surface. The suppressor effect of glucagon on CXCL1/KC-induced neutrophil chemotaxis in vitro was reversed by pre-treatment with GcgR antagonist and adenylyl cyclase or PKA inhibitors. Glucagon also increased PKA phosphorylation directly in neutrophils in vitro. Furthermore, glucagon impaired zymosan-A-induced ROS production by neutrophils in vitro. Human neutrophil chemotaxis and adherence to endothelial cells in vitro were inhibited by glucagon treatment. According to our results, this inhibition was independent of CD11a and CD11b translocation to neutrophil surface or neutrophil release of CXCL8/IL-8. Altogether, our results suggest that glucagon may be involved in the reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. This work collaborates with better understanding of the increased susceptibility and worsening of sepsis in diabetics, which can contribute to the development of new effective therapeutic strategies for diabetic septic patients.
Collapse
Affiliation(s)
| | - Maximiliano Ruben Ferrero
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Immunopharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda da Silva Chaves
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Hugo Caire Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Rafael Loureiro Simões
- Laboratory of Cellular and Molecular Pharmacology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Bain JM, Alonso MF, Childers DS, Walls CA, Mackenzie K, Pradhan A, Lewis LE, Louw J, Avelar GM, Larcombe DE, Netea MG, Gow NAR, Brown GD, Erwig LP, Brown AJP. Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci U S A 2021; 118:e2020484118. [PMID: 33876755 PMCID: PMC8053999 DOI: 10.1073/pnas.2020484118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, β2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.
Collapse
Affiliation(s)
- Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - M Fernanda Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Catriona A Walls
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Kevin Mackenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Leanne E Lewis
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Johanna Louw
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lars P Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Johnson-Johnson Innovation, Europe, Middle East and Africa Innovation Centre, London W1G 0BG, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom;
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
5
|
Zhu X, Li W, Li Y, Xu W, Yuan Y, Zheng V, Zhang H, O'Donnell JM, Xu Y, Yin X. The antidepressant- and anxiolytic-like effects of resveratrol: Involvement of phosphodiesterase-4D inhibition. Neuropharmacology 2019; 153:20-31. [PMID: 31026437 DOI: 10.1016/j.neuropharm.2019.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/27/2023]
Abstract
Resveratrol is a natural non-flavonoid polyphenol found in red wine, which has numerous pharmacological properties including anti-stress and antidepressant-like abilities. However, whether the antidepressant- and anxiolytic-like effects of resveratrol are related to the inhibition of phosphodiesterase 4 (PDE4) and its subtypes remains unknown. The same holds true for the subsequent cAMP-dependent pathway. The first set of studies investigated whether resveratrol exhibited neuroprotective effects against corticosterone-induced cell lesion as well as its underlying mechanism. We found that 100 μM corticosterone induced PDE2A, PDE3B, PDE4A, PDE4D, PDE10 and PDE11 expression in HT-22 cells, which results in significant cell lesion. However, treatment with resveratrol increased cell viability in a dose- and time-dependent manner. These effects seem related to the inhibition of PDE4D, as evidenced by resveratrol dose-dependently decreasing PDE4D expression. In addition, the PKA inhibitor H89 reversed resveratrol's effects on cell viability. Resveratrol prevented corticosterone-induced reduction in cAMP, pVASP(s157), pCREB, and BDNF levels, indicating that cAMP signaling is involved in resveratrol-induced neuroprotective effects. Not to mention, PDE4D knockdown by PDE4D siRNA potentiated the effect of low dose of resveratrol on cAMP, pVASP, pCREB, and BDNF expression, while PDE4D overexpression reversed the effect of high dose of resveratrol on the expression of the above proteins. Finally, the subsequent in vivo data supports the in vitro findings, suggesting that resveratrol-induced antidepressant- and anxiolytic-like effects are mediated by PDE4D. Overall, these findings support the hypothesis that PDE4D-mediated cAMP signaling plays an important role in resveratrol's protective effects on stress-induced depression- and anxiety-like behavior.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China; Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Wenhua Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China
| | - Yongkun Li
- Department of Neurosurgery, Donghai People's Hospital, Lian-Yun-Gang, Jiangsu Province, 22300, China
| | - Wenhua Xu
- Department of Orthopedics, The People's Hospital of Yichun City, Yichun, Jiangxi Province, China
| | - Yirong Yuan
- Department of Neurosurgery, The People's Hospital of Yichun City, Yichun, Jiangxi Province, China
| | - Victor Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Hanting Zhang
- Departments of Behavioral Medicine & Psychiatry, Physiology & Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
| |
Collapse
|
6
|
Kameritsch P, Kiemer F, Mannell H, Beck H, Pohl U, Pogoda K. PKA negatively modulates the migration enhancing effect of Connexin 43. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:828-838. [PMID: 30769008 DOI: 10.1016/j.bbamcr.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Connexin 43 (Cx43) expression is associated with an increased cell migration and related changes of the actin cytoskeleton (enhanced filopodia formation). These effects are mediated by the C-terminal cytoplasmic part of Cx43 in a channel-independent manner. Since this part has been shown to interact with a variety of proteins and has multiple phosphorylation sites we analyzed here a potential role of the protein kinase A (PKA) for the Cx43 mediated increase in cell migration. Mutation of the PKA-phosphorylation site (substitution of three serines by alanine or glycine) resulted in a further increase in cell motility compared to wild-type Cx43, but with a loss of directionality. Likewise, cell motility was enhanced by PKA inhibition only in Cx43 expressing cells, while reduced in the presence of the PKA activator forskolin. In contrast, cell motility remained unaffected by stimulation with forskolin in cells expressing Cx43 with the mutated PKA phosphorylation site (Cx43-PKA) as well as in Cx-deficient cells. Moreover, PKA activation resulted in increased binding of PKA and VASP to Cx43 associated with an enhanced phosphorylation of VASP, an important regulatory protein of cell polarity and directed migration. Functionally, we could confirm these results in endothelial cells endogenously expressing Cx43. A Tat-Cx43 peptide containing the PKA phosphorylation site abolished the PKA dependent reduction in endothelial cell migration. Our results indicate that PKA dependent phosphorylation of Cx43 modulates cell motility and plays a pivotal role in regulating directed cell migration.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| | - Felizitas Kiemer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 München, Germany.
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| |
Collapse
|
7
|
Tan HT, Chung MCM. Label-Free Quantitative Phosphoproteomics Reveals Regulation of Vasodilator-Stimulated Phosphoprotein upon Stathmin-1 Silencing in a Pair of Isogenic Colorectal Cancer Cell Lines. Proteomics 2018; 18:e1700242. [PMID: 29460479 DOI: 10.1002/pmic.201700242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/10/2018] [Indexed: 02/06/2023]
Abstract
In this communication, we present the phosphoproteome changes in an isogenic pair of colorectal cancer cell lines, viz., the poorly metastatic HCT-116 and the highly metastatic derivative E1, upon stathmin-1 (STMN1) knockdown. The aim was to better understand how the alterations of the phosphoproteins in these cells are involved in cancer metastasis. After the phosphopeptides were enriched using the TiO2 HAMMOC approach, comparative proteomics analysis was carried out using sequential window acquisition of all theoretical mass spectra-MS. Following bioinformatics analysis using MarkerView and OneOmics platforms, we identified a list of regulated phosphoproteins that may play a potential role in signaling, maintenance of cytoskeletal structure, and focal adhesion. Among these phosphoproteins, was the actin cytoskeleton regulator protein, vasodilator-stimulated phosphoprotein (VASP), where its change in phosphorylation status was found to be concomitant with STMN1-associated roles in metastasis. We further showed that silencing of stathmin-1 altered the expression, subcellular localization and phosphorylation status of VASP, which suggested that it might be associated with remodeling of the cell cytoskeleton in colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maxey Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Simo-Cheyou ER, Youreva V, Srivastava AK. cAMP attenuates angiotensin-II-induced Egr-1 expression via PKA-dependent signaling pathway in vascular smooth muscle cells. Can J Physiol Pharmacol 2017; 95:928-937. [PMID: 28460186 DOI: 10.1139/cjpp-2017-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
cAMP has been shown to inhibit vascular smooth muscle cell proliferation and exerts a vasculoprotective effect. An upregulation of the early growth response protein-1 (Egr-1) expression has been linked with the development of atherosclerosis and intimal hyperplasia. We have recently demonstrated that angiotensin-II (Ang-II) stimulates Egr-1 expression via Ca2+/ERK-mediated cAMP-response element binding protein (CREB) activation. However, whether Ang-II-induced signaling leading to Egr-1 expression is modulated by cAMP remains unexplored. Therefore, in the present studies, we have examined the effect of cAMP on Ang-II-induced expression of Egr-1 and associated signaling pathways. Isoproterenol (ISO) and forskolin (FSK) attenuated Ang-II-induced Egr-1 expression in a dose-dependent fashion. In addition, dibutyryl-cAMP and benzoyl-cAMP, as well as isobutylmethylxanthine, attenuated Ang-II-induced Egr-1 expression. Moreover, inhibition of Ang-II-induced Egr-1 expression was accompanied by an increase in the phosphorylation of the vasodilator-activated phosphoprotein (VASP), and this was associated with a concomitant decrease in ERK phosphorylation. Blockade of PKA using H89 decreased VASP phosphorylation, restored Ang-II-induced ERK phosphorylation, and abolished ISO- and FSK-mediated inhibition of Ang-II-induced Egr-1 expression. In summary, these results suggest that PKA-mediated suppression of Ang-II-induced Egr-1 expression and phosphorylation of ERK may be among the mechanisms by which cAMP exerts its vasculoprotective effects.
Collapse
Affiliation(s)
- Estelle R Simo-Cheyou
- a Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue St-Denis, Montreal, QC H2X 0A9, Canada.,b Department of Nutrition, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Viktoria Youreva
- a Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue St-Denis, Montreal, QC H2X 0A9, Canada
| | - Ashok K Srivastava
- a Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue St-Denis, Montreal, QC H2X 0A9, Canada.,b Department of Nutrition, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale centre-ville, Montreal, QC H3C 3J7, Canada.,c Department of Medicine, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale centre-ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Pacher P, Persidsky Y. Selective activation of cannabinoid receptor 2 in leukocytes suppresses their engagement of the brain endothelium and protects the blood-brain barrier. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1548-1558. [PMID: 24055259 PMCID: PMC3814716 DOI: 10.1016/j.ajpath.2013.07.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 01/13/2023]
Abstract
Cannabinoid receptor 2 (CB2) is highly expressed in immune cells and stimulation decreases inflammatory responses. We tested the idea that selective CB2 activation in human monocytes suppresses their ability to engage the brain endothelium and migrate across the blood-brain barrier (BBB), preventing consequent injury. Intravital videomicroscopy was used to quantify adhesion of leukocytes to cortical vessels in lipopolysaccharide-induced neuroinflammation, after injection of ex vivo CB2-activated leukocytes into mice; CB2 agonists markedly decreased adhesion of ex vivo labeled cells in vivo. In an in vitro BBB model, CB2 activation in monocytes largely attenuated adhesion to and migration across monolayers of primary human brain microvascular endothelial cells and diminished BBB damage. CB2 stimulation in monocytes down-regulated active forms of integrins, lymphocyte function-associated antigen 1 (LFA-1), and very late antigen 4 (VLA-4). Cells treated with CB2 agonists exhibited increased phosphorylation levels of inhibitory sites of the actin-binding proteins cofilin and VASP, which are upstream regulators of conformational integrin changes. Up-regulated by relevant stimuli, Rac1 and RhoA were suppressed by CB2 agonists in monocytes. CB2 stimulation decreased formation of lamellipodia, which play a key role in monocyte migration. These results indicate that selective CB2 activation in leukocytes decreases key steps in monocyte-BBB engagement, thus suppressing inflammatory leukocyte responses and preventing neuroinflammation.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Pal Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Liverani E, Rico MC, Garcia AE, Kilpatrick LE, Kunapuli SP. Prasugrel metabolites inhibit neutrophil functions. J Pharmacol Exp Ther 2013; 344:231-43. [PMID: 23097214 PMCID: PMC3533408 DOI: 10.1124/jpet.112.195883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/23/2012] [Indexed: 12/13/2022] Open
Abstract
Clopidogrel and prasugrel belong to a thienopyridine class of oral antiplatelet drugs that, after having been metabolized in the liver, can inhibit platelet function by irreversibly antagonizing the P2Y(12) receptor. Furthermore, thienopyridines influence numerous inflammatory conditions, but their effects on neutrophils have not been evaluated, despite the important role of these cells in inflammation. Therefore, we investigated the effect of prasugrel metabolites on neutrophils to further clarify the role of thienopyridines in inflammation. Interestingly, a prasugrel metabolite mixture, produced in vitro using rat liver microsomes, significantly inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)- and platelet-activating factor (PAF)-induced neutrophil activation. More specifically, prasugrel metabolites inhibited neutrophil transmigration, CD16 surface expression, and neutrophil-platelet aggregation. Moreover, prasugrel metabolite pretreatment also significantly decreased fMLP- or PAF-induced extracellular-signal-regulated kinase phosphorylation as well as calcium mobilization. To determine the target of prasugrel in neutrophils, the role of both P2Y(12) and P2Y(13) receptors was studied using specific reversible antagonists, AR-C69931MX and MRS2211, respectively. Neither antagonist had any direct effect on the agonist-induced neutrophil functional responses. Our findings indicate that prasugrel metabolites may directly target neutrophils and inhibit their activation, suggesting a possible explanation for their anti-inflammatory effects previously observed. However, these metabolites do not act through either the P2Y(12) or P2Y(13) receptor in neutrophils.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University, MRB, 3420 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
11
|
Stone JD, Narine A, Tulis DA. Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase and cAMP-dependent protein kinase. Front Physiol 2012; 3:409. [PMID: 23112775 PMCID: PMC3482697 DOI: 10.3389/fphys.2012.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.
Collapse
Affiliation(s)
- Joshua D Stone
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | | | | |
Collapse
|
12
|
Rom S, Fan S, Reichenbach N, Dykstra H, Ramirez SH, Persidsky Y. Glycogen synthase kinase 3β inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1414-25. [PMID: 22863953 PMCID: PMC3463628 DOI: 10.1016/j.ajpath.2012.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023]
Abstract
Glycogen synthase kinase (GSK) 3β has been identified as a regulator of immune responses. We demonstrated previously that GSK3β inhibition in human brain microvascular endothelial cells (BMVECs) reduced monocyte adhesion/migration across BMVEC monolayers. Herein, we tested the idea that GSK3β inhibition in monocytes can diminish their ability to engage the brain endothelium and migrate across the blood-brain barrier. Pretreatment of primary monocytes with GSK3β inhibitors resulted in a decrease in adhesion (60%) and migration (85%), with similar results in U937 monocytic cells. Monocyte-BMVEC interactions resulted in diminished barrier integrity that was reversed by GSK3β suppression in monocytic cells. Because integrins mediate monocyte rolling/adhesion, we detected the active conformational form of very late antigen 4 after stimulation with a peptide mimicking monocyte engagement by vascular cell adhesion molecule-1. Peptide stimulation resulted in a 14- to 20-fold up-regulation of the active form of integrin in monocytes that was suppressed by GSK3β inhibitors (40% to 60%). Because small GTPases, such as Rac1, control leukocyte movement, we measured active Rac1 after monocyte activation with relevant stimuli. Stimulation enhanced the level of active Rac1 that was diminished by GSK3β inhibitors. Monocytes treated with GSK3β inhibitors showed increased levels of inhibitory sites of the actin-binding protein, cofilin, and vasodilator-stimulated phosphoprotein-regulating conformational changes of integrins. These results indicate that GSK3β inhibition in monocytes affects active integrin expression, cytoskeleton rearrangement, and adhesion via suppression of Rac1-diminishing inflammatory leukocyte responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Goncharova EA, Goncharov DA, Zhao H, Penn RB, Krymskaya VP, Panettieri RA. β2-adrenergic receptor agonists modulate human airway smooth muscle cell migration via vasodilator-stimulated phosphoprotein. Am J Respir Cell Mol Biol 2012; 46:48-54. [PMID: 22210825 DOI: 10.1165/rcmb.2011-0217oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Severe asthma manifests as airway remodeling and irreversible airway obstruction, in part because of the proliferation and migration of human airway smooth muscle (HASM) cells. We previously reported that cyclic adenosine monophosphate-mobilizing agents, including β(2)-adrenergic receptor (β(2)AR) agonists, which are mainstay of asthma therapy, and prostaglandin E2 (PGE2), inhibit the migration of HASM cells, although the mechanism for this migration remains unknown. Vasodilator-stimulated phosphoprotein (VASP), an anticapping protein, modulates the formation of actin stress fibers during cell motility, and is negatively regulated by protein kinase A (PKA)-specific inhibitory phosphorylation at serine 157 (Ser157). Here, we show that treatment with β(2)AR agonists and PGE2 induces the PKA-dependent phosphorylation of VASP and inhibits the migration of HASM cells. The stable expression of PKA inhibitory peptide and the small interfering (si) RNA-induced depletion of VASP abolish the inhibitory effects of albuterol and PGE2 on the migration of HASM cells. Importantly, prolonged treatment with albuterol prevents the agonist-induced phosphorylation of VASP at Ser157, and reverses the inhibitory effects of albuterol and formoterol, but not PGE2, on the basal and PDGF-induced migration of HASM cells. Collectively, our data demonstrate that β(2)AR agonists selectively inhibit the migration of HASM cells via a β(2)AR/PKA/VASP signaling pathway, and that prolonged treatment with albuterol abolishes the inhibitory effect of β-agonists on the phosphorylation of VASP and migration of HASM cells because of β(2)AR desensitization.
Collapse
Affiliation(s)
- Elena A Goncharova
- Airways Biology Initiative, Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
14
|
Xu Q, Nakayama M, Suzuki Y, Sakai K, Nakamura T, Sakai Y, Matsumoto K. Suppression of acute hepatic injury by a synthetic prostacyclin agonist through hepatocyte growth factor expression. Am J Physiol Gastrointest Liver Physiol 2012; 302:G420-9. [PMID: 22159278 DOI: 10.1152/ajpgi.00216.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have demonstrated that mice disrupted with the cyclooxygenase-2 gene showed much more severe liver damage compared with wild-type mice after liver injury, and prostaglandins (PGs) such as PGE(1/2) and PGI(2) have decreased hepatic injury, but the mechanisms by which prostaglandins exhibit protective action on the liver have yet to be addressed. In the present study, we investigated the mechanism of the protective action of PGI(2) using the synthetic IP receptor agonist ONO-1301. In primary cultures of hepatocytes and nonparenchymal liver cells, ONO-1301 did not show protective action directly on hepatocytes, whereas it stimulated expression of hepatocyte growth factor (HGF) in nonparenchymal liver cells. In mice, peroral administration of ONO-1301 increased hepatic gene expression and protein levels of HGF. Injections of CCl4 induced acute liver injury in mice, but the onset of acute liver injury was strongly suppressed by administration of ONO-1301. The increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) by CCl4 were suppressed by 10 mg/kg ONO-1301 to 39.4 and 33.6%, respectively. When neutralizing antibody against HGF was administered with ONO-1301 and CCl4, the decreases by ONO-1301 in serum ALT and AST, apoptotic liver cells, and expansion of necrotic areas in liver tissue were strongly reversed by neutralization of endogenous HGF. These results indicate that ONO-1301 increases expression of HGF and that hepatoprotective action of ONO-1301 in CCl4-induced liver injury may be attributable to its activity to induce expression of HGF, at least in part. The potential for involvement of HGF-Met-mediated signaling in the hepatotrophic action of endogenous prostaglandins generated by injury-dependent cyclooxygenase-2 induction is considerable.
Collapse
Affiliation(s)
- Qing Xu
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa Univ., Kakuma, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Thom SR, Bhopale VM, Yang M, Bogush M, Huang S, Milovanova TN. Neutrophil beta2 integrin inhibition by enhanced interactions of vasodilator-stimulated phosphoprotein with S-nitrosylated actin. J Biol Chem 2011; 286:32854-65. [PMID: 21795685 DOI: 10.1074/jbc.m111.255778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Production of reactive species in neutrophils exposed to hyperoxia causes S-nitrosylation of β-actin, which increases formation of short actin filaments, leading to alterations in the cytoskeletal network that inhibit β(2) integrin-dependent adherence (Thom, S. R., Bhopale, V. M., Mancini, D. J., and Milovanova, T. N. (2008) J. Biol. Chem. 283, 10822-10834). In this study, we found that vasodilator-stimulated protein (VASP) exhibits high affinity for S-nitrosylated short filamentous actin, which increases actin polymerization. VASP bundles Rac1, Rac2, cyclic AMP-dependent, and cyclic GMP-dependent protein kinases in close proximity to short actin filaments, and subsequent Rac activation increases actin free barbed end formation. Using specific chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates enhanced free barbed end formation, increased actin polymerization, and β(2) integrin inhibition by hyperoxia. Alternatively, incubating neutrophils with formylmethionylleucylphenylalanine or 8-bromo-cyclic GMP activates either cyclic AMP-dependent or cyclic GMP-dependent protein kinase, respectively, outside of the short F-actin pool and phosphorylates VASP on serine 153. Phosphorylated VASP abrogates the augmented polymerization normally observed with S-nitrosylated actin, VASP binding to actin, elevated Rac activity, and elevated formation of actin free barbed ends, thus restoring normal β(2) integrin function.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, Department of Emergency Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kim SJ, Nian C, McIntosh CH. Sitagliptin (MK0431) inhibition of dipeptidyl peptidase IV decreases nonobese diabetic mouse CD4+ T-cell migration through incretin-dependent and -independent pathways. Diabetes 2010; 59:1739-50. [PMID: 20368408 PMCID: PMC2889774 DOI: 10.2337/db09-1618] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Treatment of NOD mice with the dipeptidyl peptidase-IV (DPP-IV) inhibitor sitagliptin preserved islet transplants through a pathway involving modulation of splenic CD4(+) T-cell migration. In the current study, effects of sitagliptin on migration of additional subsets of CD4(+) T-cells were examined and underlying molecular mechanisms were further defined. RESEARCH DESIGN AND METHODS Effects of sitagliptin on migration of NOD mouse splenic, thymic, and lymph node CD4(+) T-cells were determined. Signaling modules involved in DPP-IV-, Sitagliptin- and incretin-mediated modulation of CD4(+) T-cell migration were studied using Western blot and Rac1 and nuclear factor-kappaB (NF-kappaB) activity assays. RESULTS Migration of splenic and lymph node CD4(+) T-cells of diabetic NOD mice was reduced by sitagliptin treatment. In vitro treatment of splenic, but not thymic or lymph node CD4(+) T-cells, from nondiabetic NOD mice with soluble (s) DPP-IV increased migration. Sitagliptin abolished sDPP-IV effects on splenic CD4(+) T-cell migration, whereas incretins decreased migration of lymph node, but not splenic, CD4(+) T-cells. Splenic CD4(+) T-cells demonstrating increased in vitro migration in response to sDPP-IV and lymph node CD4(+) T-cells that were nonresponsive to incretins selectively infiltrated islets of NOD mice, after injection. Sitagliptin decreases migration of splenic CD4(+) T-cells through a pathway involving Rac1/vasodilator-stimulated phosphoprotein, whereas its inhibitory effects on the migration of lymph node CD4(+) T-cells involve incretin-activation of the NF-kappaB pathway. CONCLUSIONS Benefits of sitagliptin treatment in diabetic NOD mice may be mediated through selective effects on subpopulations of T-cells that are related to autoimmunity.
Collapse
Affiliation(s)
- Su-Jin Kim
- From the Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cuilan Nian
- From the Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher H.S. McIntosh
- From the Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: C.H.S. McIntosh,
| |
Collapse
|
17
|
Eckert RE, Neuder LE, Park J, Adler KB, Jones SL. Myristoylated alanine-rich C-kinase substrate (MARCKS) protein regulation of human neutrophil migration. Am J Respir Cell Mol Biol 2010; 42:586-94. [PMID: 19574534 PMCID: PMC2874444 DOI: 10.1165/rcmb.2008-0394oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 05/29/2009] [Indexed: 01/01/2023] Open
Abstract
Neutrophil migration into infected tissues is essential for host defense, but products of activated neutrophils can be quite damaging to host cells. Neutrophil influx into the lung and airways and resultant inflammation characterizes diseases such as chronic obstructive pulmonary disease, bronchiectasis, and cystic fibrosis. To migrate, neutrophils must reorganize the actin cytoskeleton to establish a leading edge pseudopod and a trailing edge uropod. The actin-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) has been shown to bind and cross-link actin in a variety of cell types and to co-localize with F-actin in the leading edge lamellipodium of migrating fibroblasts. The hypothesis that MARCKS has a role in the regulation of neutrophil migration was tested using a cell-permeant peptide derived from the MARCKS myristoylated aminoterminus (MANS peptide). Treatment of isolated human neutrophils with MANS significantly inhibited both their migration and beta2 integrin-dependent adhesion in response to N-formyl-methionyl-leucyl-phenylalanine (fMLF), IL-8, or leukotriene (LT)B(4). The IC(50) for fMLF-induced migration and adhesion was 17.1 microM and 12.5 microM, respectively. MANS significantly reduced the F-actin content in neutrophils 30 seconds after fMLF stimulation, although the peptide did not alter the ability of cells to polarize or spread. MANS did not alter fMLF-induced increases in surface beta2 integrin expression. These results suggest that MARCKS, via its myristoylated aminoterminus, is a key regulator of neutrophil migration and adhesion.
Collapse
Affiliation(s)
- Rachael E. Eckert
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Laura E. Neuder
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Joungjoa Park
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Kenneth B. Adler
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Samuel L. Jones
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| |
Collapse
|
18
|
Lin WH, Nelson SE, Hollingsworth RJ, Chung CY. Functional roles of VASP phosphorylation in the regulation of chemotaxis and osmotic stress response. Cytoskeleton (Hoboken) 2010; 67:259-71. [PMID: 20191567 PMCID: PMC2854163 DOI: 10.1002/cm.20443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 02/05/2010] [Indexed: 11/06/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) plays crucial roles in controlling F-actin-driven processes and growing evidence indicates that VASP function is modulated by phosphorylation at multiple sites. However, the complexity of mammalian system prevents the clear understanding of the role of VASP phosphorylation. In this study, we took advantage of Dictyostelium which possesses only one member of the Ena/VASP family to investigate the functional roles of VASP phosphorylation. Our results demonstrated that hyperosmotic stress and cAMP stimulation cause VASP phosphorylation. VASP phosphorylation plays a negative role for the early steps of filopodia/microspikes formation. VASP phosphorylation appears to modulate VASP localization at the membrane cortex and its interactions with WASP and WIPa. Analysis of chemotaxis of cells expressing VASP mutants showed that VASP phosphorylation is required for the establishment of cell polarity under a cAMP gradient.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Biological Sciences, School of Art and Science, Vanderbilt University, Nashville, TN 37232-6600
| | - Sharon E. Nelson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - Ryan J. Hollingsworth
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - Chang Y. Chung
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
- Department of Biological Sciences, School of Art and Science, Vanderbilt University, Nashville, TN 37232-6600
| |
Collapse
|
19
|
Desiniotis A, Schäfer G, Klocker H, Eder IE. Enhanced antiproliferative and proapoptotic effects on prostate cancer cells by simultaneously inhibiting androgen receptor and cAMP-dependent protein kinase A. Int J Cancer 2010; 126:775-89. [PMID: 19653278 DOI: 10.1002/ijc.24806] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The androgen-signaling pathway with the androgen receptor (AR) as its key molecule is widely understood to influence prostate tumor growth significantly even after androgen ablation. Under androgen-deprived conditions, the AR may be activated inappropriately through interaction with other molecules, including cyclic AMP-dependent protein kinase A (PKA). In a previous study, we have shown that knocking down the AR significantly inhibits prostate tumor growth. In this study, we show that combined inhibition of the AR and the regulatory subunit I alpha of PKA (RIalpha) with small interference RNAs significantly increased the growth-inhibitory and proapoptotic effects of AR knockdown. This treatment strategy was effective in androgen-sensitive and in androgen ablation-resistant prostate cancer cells. In addition, we report that downregulating PKA RIalpha was sufficient to inhibit PKA signaling and interestingly also impaired AR expression and activation. Vice versa, AR knockdown induced a decline in PKA RIalpha, associated with reduced PKA activity. This mutual influence on expression level was specific, because siRNAs against the AR did not affect expression of PKA RIalpha in AR negative DU-145 cells and a siRNA control did not affect protein expression. Another important finding of our study was that depletion of PKA RIalpha also potentiated the antiproliferative effect of the antiandrogen bicalutamide in androgen-sensitive LNCaP. We therefore concluded that combined inhibition of PKA RIalpha and AR may be a promising new therapeutic option for prostate cancer patients and might be superior to solely preventing AR expression.
Collapse
Affiliation(s)
- Andreas Desiniotis
- Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
20
|
Interleukin-1 Receptor-Associated Kinase-1 (IRAK-1) functionally associates with PKCepsilon and VASP in the regulation of macrophage migration. Mol Immunol 2009; 47:1278-82. [PMID: 20044140 DOI: 10.1016/j.molimm.2009.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 11/22/2022]
Abstract
Macrophage migration is mediated by complex cellular signaling processes and cytoskeleton re-arrangement. In particular, recent advances indicate that the innate immunity signaling process plays a key role in the regulation of macrophage migration. In this report, we have provided evidence demonstrating the involvement of a key innate immunity signaling kinase, Interleukin-1 Receptor-Associated Kinase-1 (IRAK-1) as a critical modulator of macrophage migration. Macrophage migration induced by phorbol 12-myristate 13-acetate (PMA) is significantly attenuated in IRAK-1(-/-) macrophages as compared to wild type macrophages. Mechanistically, we demonstrated that IRAK-1 works downstream of PKCepsilon and upstream of VASP, a member of Ena/VASP family proteins. IRAK-1 forms a close complex with PKCepsilon as well as VASP, and participates in PMA-induced phosphorylation of VASP. Notably, IRAK-1 contains a novel EVH1 domain binding motif (L(167)WPPPP) within its N-terminus, which is responsible for its interaction with VASP. The mutant IRAK-1 (L167A/W168A) fails to associate with VASP. Our findings provide a novel facet regarding the molecular signaling process regulating macrophage migration.
Collapse
|
21
|
Zhang D, Ouyang J, Wang N, Zhang Y, Bie J, Zhang Y. Promotion of PDGF-induced endothelial cell migration by phosphorylated VASP depends on PKA anchoring via AKAP. Mol Cell Biochem 2009; 335:1-11. [DOI: 10.1007/s11010-009-0234-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/13/2009] [Indexed: 12/20/2022]
|
22
|
Neel NF, Barzik M, Raman D, Sobolik-Delmaire T, Sai J, Ham AJ, Mernaugh RL, Gertler FB, Richmond A. VASP is a CXCR2-interacting protein that regulates CXCR2-mediated polarization and chemotaxis. J Cell Sci 2009; 122:1882-94. [PMID: 19435808 PMCID: PMC2684839 DOI: 10.1242/jcs.039057] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2009] [Indexed: 01/08/2023] Open
Abstract
Chemotaxis regulates the recruitment of leukocytes, which is integral for a number of biological processes and is mediated through the interaction of chemokines with seven transmembrane G-protein-coupled receptors. Several studies have indicated that chemotactic signaling pathways might be activated via G-protein-independent mechanisms, perhaps through novel receptor-interacting proteins. CXCR2 is a major chemokine receptor expressed on neutrophils. We used a proteomics approach to identify unique ligand-dependent CXCR2-interacting proteins in differentiated neutrophil-like HL-60 cells. Using this approach, vasodilator-stimulated phosphoprotein (VASP) was identified as a CXCR2-interacting protein. The interaction between CXCR2 and VASP is direct and enhanced by CXCL8 stimulation, which triggers VASP phosphorylation via PKA- and PKCdelta-mediated pathways. The interaction between CXCR2 and VASP requires free F-actin barbed ends to recruit VASP to the leading edge. Finally, knockdown of VASP in HL-60 cells results in severely impaired CXCR2-mediated chemotaxis and polarization. These data provide the first demonstration that direct interaction of VASP with CXCR2 is essential for proper CXCR2 function and demonstrate a crucial role for VASP in mediating chemotaxis in leukocytes.
Collapse
Affiliation(s)
- Nicole F. Neel
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| | - Melanie Barzik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
02139, USA
| | - Dayanidhi Raman
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| | - Tammy Sobolik-Delmaire
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| | - Jiqing Sai
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| | - Amy J. Ham
- Department of Biochemistry, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| | - Raymond L. Mernaugh
- Department of Biochemistry, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| | - Frank B. Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
02139, USA
| | - Ann Richmond
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine,
Nashville, TN 37232, USA
| |
Collapse
|
23
|
Cook VL, Neuder LE, Blikslager AT, Jones SL. The effect of lidocaine on in vitro adhesion and migration of equine neutrophils. Vet Immunol Immunopathol 2009; 129:137-42. [DOI: 10.1016/j.vetimm.2008.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 11/26/2022]
|
24
|
Lee SP, Serezani CH, Medeiros AI, Ballinger MN, Peters-Golden M. Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:530-7. [PMID: 19109185 PMCID: PMC10601494 DOI: 10.4049/jimmunol.182.1.530] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eicosanoid lipid mediators, including prostaglandin E(2) (PGE(2)) and leukotrienes (LTs) B(4) and D(4), are produced in abundance in the infected lung. We have previously demonstrated that individually, PGE(2) suppresses while both classes of LTs augment alveolar macrophage (AM) innate immune functions. In this study, we sought to more appropriately model the milieu at a site of infection by studying the in vitro effects of these lipid mediators on Fc gammaR-mediated phagocytosis when they are present in combination. Consistent with their individual actions, both LTB(4) and LTD(4) opposed the suppressive effect of PGE(2) on phagocytosis, but only LTB(4) did so by mitigating the stimulatory effect of PGE(2) on intracellular cAMP production. Unexpectedly, we observed that IgG-opsonized targets themselves elicited a dose-dependent reduction in intracellular cAMP in AMs, but this was not observed in peritoneal macrophages or elicited peritoneal neutrophils; this effect in AMs was completely abolished by treatment with the LT synthesis inhibitor AA861, the BLT receptor 1 antagonist CP 105,696, and the G alpha i inhibitor pertussis toxin. Of two downstream cAMP effectors, protein kinase A and exchange protein activated by cAMP, the ability of PGE(2) to activate the latter but not the former was abrogated by both LTs B(4) and D(4). Taken together, our results indicate that both classes of LTs oppose the immune suppressive actions of PGE(2), with the stimulatory actions of LTB(4) reflecting combinatorial modulation of intracellular cAMP and those of LTD(4) being cAMP independent.
Collapse
Affiliation(s)
- Sang Pyo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI 48109
- Gachon University Gil Hospital, Incheon, 405-760, South Korea
| | - Carlos H. Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Alexandra I Medeiros
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Megan N. Ballinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| |
Collapse
|