1
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
2
|
Li Y, Ma Y, Jin Y, Peng X, Wang X, Zhang P, Liu P, Liang C, Yang Q. Porcine intraepithelial lymphocytes undergo migration and produce an antiviral response following intestinal virus infection. Commun Biol 2022; 5:252. [PMID: 35318455 PMCID: PMC8941121 DOI: 10.1038/s42003-022-03205-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
The location of intraepithelial lymphocytes (IELs) between epithelial cells provide a first line of immune defense against enteric infection. It is assumed that IELs migrate only along the basement membrane or into the lateral intercellular space (LIS) between epithelial cells. Here, we identify a unique transepithelial migration of porcine IELs as they move to the free surface of the intestinal epithelia. The major causative agent of neonatal diarrhea in piglets, porcine epidemic diarrhea virus (PEDV), increases the number of IELs entering the LIS and free surface of the intestinal epithelia, driven by chemokine CCL2 secreted from virus-infected intestinal epithelial cells. Remarkably, only virus pre-activated IELs inhibits PEDV infection and their antiviral activity depends on the further activation by virus-infected cells. Although high levels of perforin is detected in the co-culture system, the antiviral function of activated IELs is mainly mediated by IFN-γ secretion inducing robust antiviral response in virus-infected cells. Our results uncover a unique migratory behavior of porcine IELs as well as their protective role in the defense against intestinal infection. When piglets are infected with intestinal virus, porcine intraepithelial lymphocytes undergo intra-and trans-epithelial migration promoted by chemokines from infected epithelial cells and produce an antiviral response.
Collapse
Affiliation(s)
- Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Xuebin Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Xiuyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Penghao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chun Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
3
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Andersen-Civil AIS, Arora P, Williams AR. Regulation of Enteric Infection and Immunity by Dietary Proanthocyanidins. Front Immunol 2021; 12:637603. [PMID: 33717185 PMCID: PMC7943737 DOI: 10.3389/fimmu.2021.637603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
The role of dietary components in immune function has acquired considerable attention in recent years. An important focus area is to unravel the role of bioactive dietary compounds in relation to enteric disease and their impact on gut mucosal immunity. Proanthocyanidins (PAC) are among the most common and most consumed dietary polyphenols, and are characterised by their variable molecular structures and diverse bioactivities. In particular, their anti-oxidative effects and ability to modulate gut microbiota have been widely described. However, there is limited evidence on the mechanism of action of PAC on the immune system, nor is it clearly established how PAC may influence susceptibility to enteric infections. Establishing the sites of action of PAC and their metabolites within the gut environment is fundamental to determine the applicability of PAC against enteric pathogens. Some mechanistic studies have shown that PAC have direct modulatory effects on immune cell signalling, isolated pathogens, and gut mucosal barrier integrity. Boosting the recruitment of immune cells and suppressing the amount of pro-inflammatory cytokines are modulating factors regulated by PAC, and can either be beneficial or detrimental in the course of re-establishing gut homeostasis. Herein, we review how PAC may alter distinct immune responses towards enteric bacterial, viral and parasitic infections, and how the modulation of gut microbiota may act as a mediating factor. Furthermore, we discuss how future studies could help unravel the role of PAC in preventing and/or alleviating intestinal inflammation and dysbiosis caused by enteric disease.
Collapse
Affiliation(s)
- Audrey I S Andersen-Civil
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| |
Collapse
|
5
|
O'Neill K, Pastar I, Tomic-Canic M, Strbo N. Perforins Expression by Cutaneous Gamma Delta T Cells. Front Immunol 2020; 11:1839. [PMID: 32922397 PMCID: PMC7456908 DOI: 10.3389/fimmu.2020.01839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Gamma delta (GD) T cells are an unconventional T cell type present in both the epidermis and the dermis of human skin. They are critical to regulating skin inflammation, wound healing, and anti-microbial defense. Similar to CD8+ cytotoxic T cells expressing an alpha beta (AB) TCR, GD T cells have cytolytic capabilities. They play an important role in elimination of cutaneous tumors and virally infected cells and have also been implicated in pathogenicity of several autoimmune diseases. T cell cytotoxicity is associated with the expression of the pore forming protein Perforin. Perforin is an innate immune protein containing a membrane attack complex perforin-like (MACPF) domain and functions by forming pores in the membranes of target cells, which allow granzymes and reactive oxygen species to enter the cells and destroy them. Perforin-2, encoded by the gene MPEG1, is a newly discovered member of this protein family that is critical for clearance of intracellular bacteria. Cutaneous GD T cells express both Perforin and Perforin-2, but many questions remain regarding the role that these proteins play in GD T cell mediated cytotoxicity against tumors and bacterial pathogens. Here, we review what is known about Perforin expression by skin GD T cells and the mechanisms that contribute to Perforin activation.
Collapse
Affiliation(s)
- Katelyn O'Neill
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
7
|
A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS One 2017; 12:e0186546. [PMID: 29028844 PMCID: PMC5640243 DOI: 10.1371/journal.pone.0186546] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
Collapse
|
8
|
The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLoS One 2017; 12:e0170270. [PMID: 28166225 PMCID: PMC5293270 DOI: 10.1371/journal.pone.0170270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Abstract
One of the hallmarks of Celiac disease (CD) is intraepithelial lymphocytosis in the small intestine. Until now, investigations to characterize the T cell subpopulations within the epithelial layer have not discriminated between the heterodimeric co-receptor molecule, CD8αβ, and the possibly immunoregulatory CD8αα homodimer molecule. Besides TCRαβ+ CD4+ cells, no other phenotypes have been shown to be gluten-reactive. Using flow cytometry on lymphocytes from duodenal biopsies, we determined that the number of B cells (CD3- CD19+) and the number of CD3+ CD4- CD8- double-negative (DN) T cells were elevated 6–7 fold in children with CD. We next isolated and quantified intraepithelial lymphocytes (IELs) from biopsies obtained from patients (both children and adults) with CD, potential CD and non-CD controls. Flow cytometric analysis of the duodenal T cell subpopulations was performed including the markers TCRαβ, TCRγδ, CD4, CD8α and CD8β. Proportions of γδ T cells and CD8αβ+ cells among IELs were increased in CD patients, whereas proportions of CD4+ CD8αα+ and CD4+ single-positive T cells were decreased. Additionally, two gluten-reactive T cell lines (TCLs) derived from CD biopsies were analyzed for changes in proportions of T cell subsets before and after gluten stimulation. In a proliferation assay, dividing cells were tracked with carboxyfluorescein succinimidyl ester (CFSE), and both αβ and γδ T cells proliferated in response to gluten. Changes in duodenal T cell subpopulations in potential CD patients followed the same pattern as for CD patients, but with less pronounced effect.
Collapse
|
9
|
Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, Pantelyushin S, Kishihara K, Alessandrini F, Kündig T, Sallusto F, Hofbauer GFL, Haak S, Becher B. IL-12 protects from psoriasiform skin inflammation. Nat Commun 2016; 7:13466. [PMID: 27892456 PMCID: PMC5133729 DOI: 10.1038/ncomms13466] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023] Open
Abstract
Neutralization of the common p40-subunit of IL-12/23 in psoriasis patients has led to a breakthrough in the management of moderate to severe disease. Aside from neutralizing IL-23, which is thought to be responsible for the curative effect, anti-p40 therapy also interferes with IL-12 signalling and type 1 immunity. Here we dissect the individual contribution of these two cytokines to the formation of psoriatic lesions and understand the effect of therapeutic co-targeting of IL-12 and IL-23 in psoriasis. Using a preclinical model for psoriatic plaque formation we show that IL-12, in contrast to IL-23, has a regulatory function by restraining the invasion of an IL-17-committed γδT (γδT17) cell subset. We discover that IL-12 receptor signalling in keratinocytes initiates a protective transcriptional programme that limits skin inflammation, suggesting that collateral targeting of IL-12 by anti-p40 monoclonal antibodies is counterproductive in the therapy of psoriasis.
Collapse
Affiliation(s)
- Paulina Kulig
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Stephanie Musiol
- Experimental Immunology Unit, Centre of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Centre Munich, 80802 Munich, Germany
| | | | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Gabor Gyülveszi
- Institute for Research in Biomedicine, Cellular Immunology, 6500 Bellinzona, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | | | - Kenji Kishihara
- Department of Immunology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 859-3298 Nagasaki, Japan
| | - Francesca Alessandrini
- Experimental Immunology Unit, Centre of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Centre Munich, 80802 Munich, Germany
| | - Thomas Kündig
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Cellular Immunology, 6500 Bellinzona, Switzerland
| | | | - Stefan Haak
- Experimental Immunology Unit, Centre of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Centre Munich, 80802 Munich, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
10
|
Qiu Y, Peng K, Liu M, Xiao W, Yang H. CD8αα TCRαβ Intraepithelial Lymphocytes in the Mouse Gut. Dig Dis Sci 2016; 61:1451-60. [PMID: 26769056 DOI: 10.1007/s10620-015-4016-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
The epithelium of the mouse small intestine harbors an abundant CD8αα(+)TCRαβ(+) intraepithelial lymphocyte (IEL) population. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similarly to other regulatory T cell populations. After leaving the thymus, these cells directly seed the intestinal epithelium, which provides a unique combination of cellular interactions together with cytokines, nutrients, and antigens that guide the lineage-specific differentiation and function of these IELs. For instance, epithelial cells and nearby immune cells secrete a number of cytokines, including interleukin-15 (IL-15), IL-7, and transforming growth factor-β, resulting in an assortment of cellular responses, including activation of master transcription factors, cell proliferation, and cytokine secretion. Recent advances have also highlighted the importance of diet-derived substances and commensal metabolites, such as the aryl hydrocarbon receptor ligands and vitamin D, in controlling the survival and gene expression of CD8αα(+)TCRαβ(+) IELs. Furthermore, these cells function in the epithelium and require constant communication between cells in the form of cell-to-cell contacts. These interactions tune the antigen sensitivity of the TCR and maintain the quiescence of the CD8αα(+)TCRαβ(+) IELs. Finally, we discuss how these cells might contribute to tolerance and immunopathological responses in the gut. Therefore, an increased understanding of CD8αα(+)TCRαβ(+) IELs in the gut will help us understand how these cells participate in immune regulation and protection.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Minqiang Liu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| |
Collapse
|
11
|
Liu Z, Xu Y, Chen L, Xie J, Tang J, Zhao J, Shu B, Qi S, Chen J, Liang G, Luo G, Wu J, He W, Liu X. Dendritic epidermal T cells facilitate wound healing in diabetic mice. Am J Transl Res 2016; 8:2375-2384. [PMID: 27347345 PMCID: PMC4891450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
The impairment of skin repair in diabetic patients can lead to increased morbidity and mortality. Proper proliferation, apoptosis and migration in keratinocytes are vital for skin repair, but in diabetic patients, hyperglycemia impairs this process. Dendritic epidermal T cells (DETCs) are an important part of the resident cutaneous immunosurveillance program. We observed a reduction in the number of DETCs in a streptozotocin-induced diabetic mouse model. This reduction in DETCs resulted in decreased IGF-1 and KGF production in the epidermis, which is closely associated with diabetic delayed wound closure. DETCs ameliorated the poor wound-healing conditions in diabetic mice by increasing keratinocyte migration and proliferation and decreasing keratinocyte apoptosis in diabetes-like microenvironments. Our results elucidate a new mechanism for diabetic delayed wound closure and point to a new strategy for the treatment of wounds in diabetic patients.
Collapse
Affiliation(s)
- Zhongyang Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Yingbin Xu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Lei Chen
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Jinming Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Jingling Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Bin Shu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Jian Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Guangping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Xusheng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| |
Collapse
|
12
|
Williams AR, Fryganas C, Reichwald K, Skov S, Mueller-Harvey I, Thamsborg SM. Polymerization-dependent activation of porcine γδ T-cells by proanthocyanidins. Res Vet Sci 2016; 105:209-15. [PMID: 27033935 DOI: 10.1016/j.rvsc.2016.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
Plant-derived proanthocyanidins (PAC) have been promoted as a natural method of improving health and immune function in livestock. It has previously been shown that PAC are effective agonists for activating ruminant γδ T-cells in vitro, however effects on other livestock species are not yet clear. Moreover, the fine structural characteristics of the PAC which contribute to this stimulatory effect have not been elucidated. Here, we demonstrate activation of porcine γδ T-cells by PAC via up-regulation of CD25 (IL-2Rα) and show that 1) activation is dependent on degree of polymerization (DP), with PAC fractions containing polymers with mean DP >6 significantly more effective than fractions with mean DP <6, whilst flavan-3-ol monomers (the constituent monomeric units of PAC) did not induce CD25 expression and 2) both procyanidin and prodelphinidin-type PAC are effective agonists. Furthermore, we show that this effect of PAC is restricted to the γδ T-cell population within porcine peripheral mononuclear cells as significant CD25 up-regulation was not observed in non γδ T-cells, and no activation (via CD80/86 up-regulation) was evident in monocytes. Our results show that dietary PAC may contribute to enhancement of innate immunity in swine via activation of γδ T-cells.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Christos Fryganas
- Chemistry and Biochemistry Laboratory, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Kirsten Reichwald
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Irene Mueller-Harvey
- Chemistry and Biochemistry Laboratory, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Stig M Thamsborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
13
|
Cellular Barriers after Extravasation: Leukocyte Interactions with Polarized Epithelia in the Inflamed Tissue. Mediators Inflamm 2016; 2016:7650260. [PMID: 26941485 PMCID: PMC4749818 DOI: 10.1155/2016/7650260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
During the inflammatory response, immune cells egress from the circulation and follow a chemotactic and haptotactic gradient within the tissue, interacting with matrix components in the stroma and with parenchymal cells, which guide them towards the sites of inflammation. Polarized epithelial cells compartmentalize tissue cavities and are often exposed to inflammatory challenges such as toxics or infections in non-lymphoid tissues. Apicobasal polarity is critical to the specialized functions of these epithelia. Indeed, a common feature of epithelial dysfunction is the loss of polarity. Here we review evidence showing that apicobasal polarity regulates the inflammatory response: various polarized epithelia asymmetrically secrete chemotactic mediators and polarize adhesion receptors that dictate the route of leukocyte migration within the parenchyma. We also discuss recent findings showing that the loss of apicobasal polarity increases leukocyte adhesion to epithelial cells and the consequences that this could have for the inflammatory response towards damaged, infected or transformed epithelial cells.
Collapse
|
14
|
Kato-Nagaoka N, Shimada SI, Yamakawa Y, Tsujibe S, Naito T, Setoyama H, Watanabe Y, Shida K, Matsumoto S, Nanno M. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice. Immunology 2015; 146:59-69. [PMID: 25967857 DOI: 10.1111/imm.12480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022] Open
Abstract
To clarify the effect of secretory IgA (sIgA) deficiency on gut homeostasis, we examined intraepithelial lymphocytes (IELs) in the small intestine (SI) of polymeric immunoglobulin receptor-deficient (pIgR(-/-) ) mice. The pIgR(-/-) mice exhibited the accumulation of CD8αβ(+) T-cell receptor (TCR)-αβ(+) IELs (CD8αβ(+) αβ-IELs) after weaning, but no increase of CD8αβ(+) γδ-IELs was detected in pIgR(-/-) TCR-β(-/-) mice compared with pIgR(+/+) TCR-β(-/-) mice. When 5-bromo-2'-deoxyuridine (BrdU) was given for 14 days, the proportion of BrdU-labelled cells in SI-IELs was not different between pIgR(+/+) mice and pIgR(-/-) mice. However, the proportion of BrdU-labelled CD8αβ(+) -IELs became higher in pIgR(-/-) mice than pIgR(+/+) mice 10 days after discontinuing BrdU-labelling. Intravenously transferred splenic T cells migrated into the intraepithelial compartments of pIgR(+/+) TCR-β(-/-) mice and pIgR(-/-) TCR-β(-/-) mice to a similar extent. In contrast, in the case of injection of immature bone marrow cells, CD8αβ(+) αβ-IELs increased much more in the SI of pIgR(-/-) TCR-β(-/-) mice than pIgR(+/+) TCR-β(-/-) mice 8 weeks after the transfer. αβ-IELs from pIgR(-/-) mice could produce more interferon-γ and interleukin-17 than those of pIgR(+/+) mice, and intestinal permeability tended to increase in the SI of pIgR(-/-) mice with aging. Taken together, these results indicate that activated CD8αβ(+) αβ-IELs preferentially accumulate in pIgR(-/-) mice through the enhanced differentiation of immature haematopoietic precursor cells, which may subsequently result in the disruption of epithelial integrity.
Collapse
Affiliation(s)
| | | | - Yoko Yamakawa
- Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | - Kan Shida
- Yakult Central Institute, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Leibelt S, Friede ME, Rohe C, Gütle D, Rutkowski E, Weigert A, Kveberg L, Vaage JT, Hornef MW, Steinle A. Dedicated immunosensing of the mouse intestinal epithelium facilitated by a pair of genetically coupled lectin-like receptors. Mucosal Immunol 2015; 8:232-42. [PMID: 24985083 DOI: 10.1038/mi.2014.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/03/2014] [Indexed: 02/04/2023]
Abstract
The integrity of the intestinal epithelium is constantly surveyed by a peculiar subset of innate-like T lymphocytes embedded in the epithelial cell layer, hence called intestinal intraepithelial lymphocytes (IELs). IELs are thought to act as "first-line" sentinels sensing the state of adjacent epithelial cells via both T-cell receptors and auxiliary receptors. Auxiliary receptors modulating IEL activity include C-type lectin-like receptors encoded in the natural killer gene complex such as NKG2D. Here, we report that the CTLR Nkrp1g is expressed by a subpopulation of mouse CD103(+) IELs allowing immunosensing of the intestinal epithelium through ligation of the genetically coupled CTLR Clr-f that is almost exclusively expressed on differentiated intestinal epithelial cells (IECs). Most of these Nkrp1g-expressing IELs exhibit a γδTCR(bright)Nkg2a(-) phenotype and are intimately associated with the intestinal epithelium. As Clr-f expression strongly inhibits effector functions of Nkrp1g-expressing cells and is upregulated upon poly(I:C) challenge, Clr-f molecules may quench reactivity of these IELs towards the epithelial barrier that is constantly provoked by microbial and antigenic stimuli. Altogether, we here newly characterize a genetically linked C-type lectin-like receptor/ligand pair with a highly restricted tissue expression that apparently evolved to allow for a dedicated immunosurveillance of the mouse intestinal epithelium.
Collapse
Affiliation(s)
- S Leibelt
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - M E Friede
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - C Rohe
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - D Gütle
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - E Rutkowski
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - A Weigert
- Institute for Biochemistry I, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - L Kveberg
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - J T Vaage
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - M W Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - A Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EEL, Wising C, Johansson MEV, Hansson GC. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 2015; 260:8-20. [PMID: 24942678 DOI: 10.1111/imr.12182] [Citation(s) in RCA: 905] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bereiter-Hahn J, Bernd A, Beschmann H, Eberle I, Kippenberger S, Rossberg M, Strecker V, Zöller N. Cellular responses to egg-oil (charismon©). ACTA MEDICA (HRADEC KRÁLOVÉ) 2014; 57:41-8. [PMID: 25257149 DOI: 10.14712/18059694.2014.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Egg-oil (Charismon©) is known for its beneficial action in wound healing and other skin irritancies and its antibacterial activity. The physiological basis for these actions has been investigated using cells in culture: HaCaT-cells (immortalized human keratinocytes), human endothelial cells in culture (HUVEC), peripheral blood mononuclear lymphocytes (PBML) and a full thickness human skin model (FTSM). Emphasis was on the influence of egg-oil on cell migration and IL-8 production in HaCaT cells, respiration, mitochondrial membrane potential, reactive oxygen (ROS) production and proliferation in HUVEC and HaCaT cells, cytokine and interleukin production in PBML and UV-light induced damage of FTSM. IL-8 production by HaCaT cells is stimulated by egg-oil whilst in phythemagglutin in-activated PBMLs production of the interleukins IL-2, IL-6, IL-10 and IFN-γ and TFN-α is reduced. ROS-production after H(2)O(2) stimulation first is enhanced but later on reduced. Respiration becomes activated due to partial uncoupling of the mitochondrial respiratory chain and proliferation of HaCaT and HUVEC is reduced. Recovery of human epidermis cells in FTSM after UV-irradiation is strongly supported by egg-oil. These results support the view that egg-oil acts through reduction of inflammatory processes and ROS production. Both these processes are equally important in cellular aging as in healing of chronic wounds.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Kinematic Cell Research Group, Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Germany.
| | - August Bernd
- Zentrum der Dermatologie und Venerologie, Goethe Universität Frankfurt am Main, Germany
| | - Heike Beschmann
- Zentrum der Dermatologie und Venerologie, Goethe Universität Frankfurt am Main, Germany
| | - Irina Eberle
- Kinematic Cell Research Group, Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Germany
| | - Stefan Kippenberger
- Zentrum der Dermatologie und Venerologie, Goethe Universität Frankfurt am Main, Germany
| | - Maila Rossberg
- Kinematic Cell Research Group, Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Germany
| | - Valentina Strecker
- Kinematic Cell Research Group, Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Germany
| | - Nadja Zöller
- Zentrum der Dermatologie und Venerologie, Goethe Universität Frankfurt am Main, Germany
| |
Collapse
|
18
|
Primary γδ T cell lymphoma of the lung: report of a case with features suggesting derivation from intraepithelial γδ T lymphocytes. Virchows Arch 2014; 465:731-6. [DOI: 10.1007/s00428-014-1623-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022]
|
19
|
Abstract
Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.
Collapse
|
20
|
|
21
|
Abstract
γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection.
Collapse
|
22
|
Bhatt T, Rizvi A, Batta SPR, Kataria S, Jamora C. Signaling and mechanical roles of E-cadherin. ACTA ACUST UNITED AC 2013; 20:189-99. [PMID: 24205986 DOI: 10.3109/15419061.2013.854778] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The epithelium comprises an important tissue that lines the internal and external surfaces of metazoan organs. In order to organize sheets of epithelial cells into three-dimensional tissues, it requires the coordination of basic cellular processes such as polarity, adhesion, growth, and differentiation. Moreover, as a primary barrier to the external environment, epithelial tissues are often subjected to physical forces and damage. This critical barrier function dictates that these fundamental cellular processes are continually operational in order to maintain tissue homeostasis in the face of almost constant trauma and stress. A protein that is largely responsible for the organization and maintenance of epithelial tissues is the transmembrane protein, E-cadherin, found at the surface of epithelial cells. Though originally investigated for its essential role in mediating intercellular cohesion, its impact on a wide array of physiological processes underscores its fundamental contributions to tissue development and its perturbation in a variety of common diseases.
Collapse
Affiliation(s)
- Tanay Bhatt
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine , Bangalore , India
| | | | | | | | | |
Collapse
|