1
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
2
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
3
|
Khandibharad S, Singh S. Artificial intelligence channelizing protein-peptide interactions pipeline for host-parasite paradigm in IL-10 and IL-12 reciprocity by SHP-1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166466. [PMID: 35750267 DOI: 10.1016/j.bbadis.2022.166466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022]
Abstract
Identification of molecular targets in any cellular phenomena is a challenge and a path that one endeavors upon independently. We have identified a phosphatase SHP-1 as a point of intervention of IL-10 and IL-12 reciprocity in leishmaniasis. The therapeutic model that we have developed uniquely targets this protein but the pipeline in general can be used by the researchers for their unique targets. Naturally occurring peptides are well known for their biochemical participation in cellular functions hence we were motivated to use this uniqueness of physico-chemical properties of peptides conferred by amino acids through machine learning to channelize a mode of therapeutic exploration in infectious disease. Using computational approaches, we identified high order sequence conservation and similarity in SHP-1 sequence which was also evolutionarily conserved, complete structure of Mouse SHP-1 was predicted and validated, a unique motif of the same was identified against which library of synthetic peptides were designed and validated followed by screening the library by docking them with MuSHP-1 protein structure. Our findings showed 3 peptides had high binding affinity and in future can be validated using cell based and in vivo assays.
Collapse
Affiliation(s)
- Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA.
| |
Collapse
|
4
|
Waldeck-Weiermair M, Yadav S, Spyropoulos F, Krüger C, Pandey AK, Michel T. Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radic Biol Med 2021; 177:360-369. [PMID: 34752919 PMCID: PMC8639655 DOI: 10.1016/j.freeradbiomed.2021.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Hydrogen peroxide (H2O2) is the most abundant reactive oxygen species (ROS) within mammalian cells. At low concentrations, H2O2 serves as a versatile cell signaling molecule that mediates vital physiological functions. Yet at higher concentrations, H2O2 can be a toxic molecule by promoting pathological oxidative stress in cells and tissues. Within normal cells, H2O2 is differentially distributed in a variety of subcellular locales. Moreover, many redox-active enzymes and their substrates are themselves differentially distributed within cells. Numerous reports have described the biological and biochemical consequences of adding exogenous H2O2 to cultured cells and tissues, but many of these observations are difficult to interpret: the effects of exogenous H2O2 do not necessarily replicate the cellular responses to endogenous H2O2. In recent years, chemogenetic approaches have been developed to dynamically regulate the abundance of H2O2 in specific subcellular locales. Chemogenetic approaches have been applied in multiple experimental systems, ranging from in vitro studies on the intracellular transport and metabolism of H2O2, all the way to in vivo studies that generate oxidative stress in specific organs in living animals. These chemogenetic approaches have exploited a yeast-derived d-amino acid oxidase (DAAO) that synthesizes H2O2 only in the presence of its d-amino acid substrate. DAAO can be targeted to various subcellular locales, and can be dynamically activated by the addition or withdrawal of its d-amino acid substrate. In addition, recent advances in the development of highly sensitive genetically encoded H2O2 biosensors are providing a better understanding of both physiological and pathological oxidative pathways. This review highlights several applications of DAAO as a chemogenetic tool across a wide range of biological systems, from analyses of subcellular H2O2 metabolism in cells to the development of new disease models caused by oxidative stress in vivo.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Shambhu Yadav
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fotios Spyropoulos
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Department of Pediatric Newborn Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
| | - Christina Krüger
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Lim J, Sari-Ak D, Bagga T. Siglecs as Therapeutic Targets in Cancer. BIOLOGY 2021; 10:1178. [PMID: 34827170 PMCID: PMC8615218 DOI: 10.3390/biology10111178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Hypersialylation is a common post-translational modification of protein and lipids found on cancer cell surfaces, which participate in cell-cell interactions and in the regulation of immune responses. Sialic acids are a family of nine-carbon α-keto acids found at the outermost ends of glycans attached to cell surfaces. Given their locations on cell surfaces, tumor cells aberrantly overexpress sialic acids, which are recognized by Siglec receptors found on immune cells to mediate broad immunomodulatory signaling. Enhanced sialylation exposed on cancer cell surfaces is exemplified as "self-associated molecular pattern" (SAMP), which tricks Siglec receptors found on leukocytes to greatly down-regulate immune responsiveness, leading to tumor growth. In this review, we focused on all 15 human Siglecs (including Siglec XII), many of which still remain understudied. We also highlighted strategies that disrupt the course of Siglec-sialic acid interactions, such as antibody-based therapies and sialic acid mimetics leading to tumor cell depletion. Herein, we introduced the central roles of Siglecs in mediating pro-tumor immunity and discussed strategies that target these receptors, which could benefit improved cancer immunotherapy.
Collapse
Affiliation(s)
- Jackwee Lim
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| | - Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul 34668, Turkey;
| | - Tanaya Bagga
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| |
Collapse
|
6
|
Okubo K, Brenner MD, Cullere X, Saggu G, Patchen ML, Bose N, Mihori S, Yuan Z, Lowell CA, Zhu C, Mayadas TN. Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep 2021; 35:109142. [PMID: 34010642 PMCID: PMC8218468 DOI: 10.1016/j.celrep.2021.109142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. β-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, β-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by β-glucan, a previously described activator of innate immunity. Okubo et al. demonstrate that β-glucan binding to the glycosphingolipid lactosylceramide engages a Lyn kinase to SHP-1 phosphatase pathway that reduces FcγRIIA binding propensity for IgG, which suggests FcγRIIA affinity regulation by “inside-out” signaling. The β-glucan-lactosylceramide-Lyn axis prevents FcγRIIA-dependent neutrophil recruitment in vitro and to intravascular IgG deposits following glomerulonephritis.
Collapse
Affiliation(s)
- Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Brenner
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Gurpanna Saggu
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | | | - Nandita Bose
- Biothera Pharmaceuticals, Inc., Eagan, Minnesota, MN 55121, USA
| | - Saki Mihori
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Zhou Yuan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Cheng Zhu
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
8
|
Abram CL, Lowell CA. Shp1 function in myeloid cells. J Leukoc Biol 2017; 102:657-675. [PMID: 28606940 DOI: 10.1189/jlb.2mr0317-105r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
The motheaten mouse was first described in 1975 as a model of systemic inflammation and autoimmunity, as a result of immune system dysregulation. The phenotype was later ascribed to mutations in the cytoplasmic tyrosine phosphatase Shp1. This phosphatase is expressed widely throughout the hematopoietic system and has been shown to impact a multitude of cell signaling pathways. The determination of which cell types contribute to the different aspects of the phenotype caused by global Shp1 loss or mutation and which pathways within these cell types are regulated by Shp1 is important to further our understanding of immune system regulation. In this review, we focus on the role of Shp1 in myeloid cells and how its dysregulation affects immune function, which can impact human disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Patin EC, Geffken AC, Willcocks S, Leschczyk C, Haas A, Nimmerjahn F, Lang R, Ward TH, Schaible UE. Trehalose dimycolate interferes with FcγR-mediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling. PLoS One 2017; 12:e0174973. [PMID: 28384255 PMCID: PMC5383150 DOI: 10.1371/journal.pone.0174973] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis (M. tuberculosis), contains an abundant cell wall glycolipid and a crucial virulence factor, trehalose-6,6’-dimycolate (TDM). TDM causes delay of phagosome maturation and thus promotes survival of mycobacteria inside host macrophages by a not fully understood mechanism. TDM signals through the Monocyte-INducible C-type LEctin (Mincle), a recently identified pattern recognition receptor. Here we show that recruitment of Mincle by TDM coupled to immunoglobulin (Ig)G-opsonised beads during Fcγ receptor (FcγR)-mediated phagocytosis interferes with phagosome maturation. In addition, modulation of phagosome maturation by TDM requires SH2-domain-containing inositol polyphosphate 5’ phosphatase (SHP-1) and the FcγRIIB, which strongly suggests inhibitory downstream signalling of Mincle during phagosome formation. Overall, our study reveals important mechanisms contributing to the virulence of TDM.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| | - Anna C Geffken
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| | - Sam Willcocks
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christoph Leschczyk
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin- Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ulrich E Schaible
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| |
Collapse
|
10
|
Inhibition of c-Rel DNA binding is critical for the anti-inflammatory effects of novel PIKfyve inhibitor. Eur J Pharmacol 2016; 780:93-105. [DOI: 10.1016/j.ejphar.2016.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/15/2023]
|
11
|
Watson NB, Schneider KM, Massa PT. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2796-809. [PMID: 25681345 DOI: 10.4049/jimmunol.1402210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy.
Collapse
Affiliation(s)
- Neva B Watson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Karin M Schneider
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Paul T Massa
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and Department of Neurology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
12
|
Kasraie S, Niebuhr M, Werfel T. Interleukin (IL)-31 activates signal transducer and activator of transcription (STAT)-1, STAT-5 and extracellular signal-regulated kinase 1/2 and down-regulates IL-12p40 production in activated human macrophages. Allergy 2013; 68:739-47. [PMID: 23621408 DOI: 10.1111/all.12152] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Interleukin-31 is a cytokine expressed by activated T cells. A major function of IL-31 in atopic dermatitis (AD) is the induction of pruritus in the skin. We recently showed that IL-31 induces pro-inflammatory cytokines following staphylococcal exotoxins' stimulation in human macrophages. However, signalling pathways of IL-31 in activated human macrophages still remain unclear. The aim of the study was to investigate the signalling pathways of IL-31 receptor as well as functional effects of IL-31 in activated macrophages. METHODS Human macrophages were prestimulated with staphylococcal exotoxins (SEB, α-toxin) to up-regulate the IL-31 receptor with and without IL-31. Phospho-signal transducer and activator of transcription (pSTAT) 1/3/5, phospho-extracellular signal-regulated kinase (ERK 1/2), β-actin as well as p21/WAF/Cip1 levels were determined by means of Western blot analysis. Interleukin-12p40, IL-12p70 and IL-23 secretions were assessed by using an enzyme-linked immunosorbent assay. RESULTS Interleukin-31 strongly activated STAT-1 and 5 but not STAT-3 in human macrophages after up-regulation of IL-31 receptor with staphylococcal exotoxins. p21/WAF/Cip1 expression was induced by IL-31 in activated human macrophages. Furthermore, IL-31 down-regulated. IL-12p40 secretion via ERK 1/2 phosphorylation in human macrophages following up-regulation of IL-31 receptor with staphylococcal exotoxins. CONCLUSIONS The T helper (Th) 2 cytokine IL-31 induces pro-inflammatory effects in activated human macrophages via STAT-1 and 5 phosphorylation. Interleukin-31-induced ERK 1/2 activation contributes to the underlying mechanism of Th1 cytokine IL-12 suppression in macrophages. This mechanism may be relevant in Th2 inflammatory responses and may help to develop therapeutic strategies in IL-31-associated diseases such as AD.
Collapse
Affiliation(s)
- S. Kasraie
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover; Germany
| | - M. Niebuhr
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover; Germany
| | - T. Werfel
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover; Germany
| |
Collapse
|
13
|
Abram CL, Roberge GL, Pao LI, Neel BG, Lowell CA. Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice. Immunity 2013; 38:489-501. [PMID: 23521885 DOI: 10.1016/j.immuni.2013.02.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/26/2012] [Indexed: 01/18/2023]
Abstract
The motheaten mouse has long served as a paradigm for complex autoimmune and inflammatory disease. Null mutations in Ptpn6, which encodes the nonreceptor protein-tyrosine phosphatase Shp1, cause the motheaten phenotype. However, Shp1 regulates multiple signaling pathways in different hematopoietic cell types, so the cellular and molecular mechanism of autoimmunity and inflammation in the motheaten mouse has remained unclear. By using floxed Ptpn6 mice, we dissected the contribution of innate immune cells to the motheaten phenotype. Ptpn6 deletion in neutrophils resulted in cutaneous inflammation, but not autoimmunity, providing an animal model of human neutrophilic dermatoses. By contrast, dendritic cell deletion caused severe autoimmunity, without inflammation. Genetic and biochemical analysis showed that inflammation was caused by enhanced neutrophil integrin signaling through Src-family and Syk kinases, whereas autoimmunity resulted from exaggerated MyD88-dependent signaling in dendritic cells. Our data demonstrate that disruption of distinct Shp1-regulated pathways in different cell types combine to cause motheaten disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
14
|
Kaneko T, Saito Y, Kotani T, Okazawa H, Iwamura H, Sato-Hashimoto M, Kanazawa Y, Takahashi S, Hiromura K, Kusakari S, Kaneko Y, Murata Y, Ohnishi H, Nojima Y, Takagishi K, Matozaki T. Dendritic Cell-Specific Ablation of the Protein Tyrosine Phosphatase Shp1 Promotes Th1 Cell Differentiation and Induces Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2012; 188:5397-407. [DOI: 10.4049/jimmunol.1103210] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
The role of phosphoinositide 3-kinase signaling in intestinal inflammation. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:358476. [PMID: 22570785 PMCID: PMC3337621 DOI: 10.1155/2012/358476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase signaling pathway plays a central role in regulating the host inflammatory response. The net effect can either be pro- or anti-inflammatory depending on the system and cellular context studied. This paper focuses on phosphatidylinositol 3-kinase signaling in innate and adaptive immune cells of the intestinal mucosa. The role of phosphatidylinositol 3-kinase signaling in mouse models of inflammatory bowel disease is also discussed. With the development of new isoform specific inhibitors, we are beginning to understand the specific role of this complex pathway, in particular the role of the γ isoform in intestinal inflammation. Continued research on this complex pathway will enhance our understanding of its role and provide rationale for the design of new approaches to intervention in chronic inflammatory conditions such as inflammatory bowel disease.
Collapse
|
16
|
Shimizu-Hirota R, Xiong W, Baxter BT, Kunkel SL, Maillard I, Chen XW, Sabeh F, Liu R, Li XY, Weiss SJ. MT1-MMP regulates the PI3Kδ·Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev 2012; 26:395-413. [PMID: 22345520 DOI: 10.1101/gad.178749.111] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3β signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.
Collapse
Affiliation(s)
- Ryoko Shimizu-Hirota
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumagai C, Kalman B, Middleton FA, Vyshkina T, Massa PT. Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol 2012; 246:51-7. [PMID: 22458980 DOI: 10.1016/j.jneuroim.2012.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022]
Abstract
The protein tyrosine phosphatase, SHP-1, is a negative regulator of proinflammatory signaling and autoimmune disease. We have previously reported reduced SHP-1 expression in peripheral blood leukocytes of subjects with multiple sclerosis (MS). Recent evidence indicates that virus-induced DNA methylation of the SHP-1 promoter is responsible for aberrant silencing of SHP-1 expression and function in hematopoietic cells that might relate to inflammatory diseases. In the present study, bisulfite sequencing of the SHP-1 promoter demonstrated that over a third of MS subjects had abnormally high promoter methylation. As SHP-1 is deficient in MS leukocytes and SHP-1-regulated proinflammatory genes are correspondingly upregulated, we propose that increased SHP-1 promoter methylation may relate in part to decreased SHP-1 expression and increased leukocyte-mediated inflammation in MS.
Collapse
Affiliation(s)
- Chiharu Kumagai
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
18
|
TGF-β1 re-programs TLR4 signaling in L. donovani infection: enhancement of SHP-1 and ubiquitin-editing enzyme A20. Immunol Cell Biol 2011; 90:640-54. [PMID: 21968712 DOI: 10.1038/icb.2011.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Visceral leishmaniasis (VL), caused by Leishmania donovani, is a major health concern in India. It represents T-helper type 2 (Th2) bias of cytokines in active state and Th1 bias at cure. However, the role of the parasite in regulating Toll-like receptor (TLR)-mediated macrophage activation in VL patients remains elusive. In this report, we demonstrated that later stages of L. donovani infection rendered tolerance to macrophages, leading to incapability for the production of inflammatory cytokines like tumor necrosis factor (TNF)-α and interleukin (IL)-1β in response to TLR stimulation. Overexpression of transforming growth factor (TGF)-β(1), but not IL-10, resulted in suppressed lipopolysaccharide (LPS)-induced production of TNF-α and downregulation of TLR4 expression in L. donovani-infected macrophages. Recombinant human (rh)TGF-β(1) markedly enhanced tyrosine phosphatase (Src homology region 2 domain-containing phosphatase-1) activity, but inhibited IL-1 receptor-activated kinase (IRAK)-1 activation. Addition of neutralizing TGF-β(1) antibody reversed these effects, and thus suggesting the pivotal role of TGF-β(1) in promoting refractoriness for LPS in macrophages. Surprisingly, the use of a tyrosine phosphatase inhibitor (sodium orthovanadate, Na(3)VO(4)) promoted IRAK-1 activation, confirming the negative inhibitory role of tyrosine phosphatase in macrophage activation. Furthermore, rhTGF-β(1) induced tolerance in infected macrophages by reducing inhibitory protein (IκBα) degradation in a time-dependent manner. In addition, short interfering RNA studies proved that overexpression of A20 ubiquitin-editing protein complex induced inhibitory activity of TGF-β(1) on LPS-mediated nuclear factor-κB activation. Thus, these findings suggest that TGF-β(1) promotes overexpression of A20 through tyrosine phosphatase activity that ensures transient activation of inflammatory signaling pathways in macrophages in active L. donovani infection.
Collapse
|
19
|
Frodermann V, Chau TA, Sayedyahossein S, Toth JM, Heinrichs DE, Madrenas J. A modulatory interleukin-10 response to staphylococcal peptidoglycan prevents Th1/Th17 adaptive immunity to Staphylococcus aureus. J Infect Dis 2011; 204:253-62. [PMID: 21673036 DOI: 10.1093/infdis/jir276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor (TLR) 2 on antigen-presenting cells (APCs) enables these cells to recognize peptidoglycan-embedded lipopeptides and glycopolymers in the Staphylococcus aureus cell wall and mount an inflammatory response to this microbe. TLR2 signalling can also modulate immunity to S. aureus by inducing an interleukin (IL)-10 response in APCs. What determines the balance between proinflammatory and modulatory responses to S. aureus is unknown. We show that the modulatory IL-10 response preferentially occurs upon CD14- and CD36-independent TLR2 signaling, triggering PI3K activation, and is restricted to monocytes and monocyte-derived macrophages (MΦs). In contrast, monocyte-derived dendritic cells (DCs) produce mostly IL-12 and IL-23. The differential APC polarization induced by staphylococcal peptidoglycan translates into differential T helper responses: MΦs primarily trigger IL-10 and weak IL-17 responses, whereas DCs trigger a robust Th1/Th17 response. Exploitation of TLR2 signalling plasticity by S. aureus may explain the wide range of outcomes of human encounters with this microbe.
Collapse
Affiliation(s)
- Vanessa Frodermann
- The Centre for Human Immunology, Departments of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Valerio M, Awad AB. β-Sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages. Int Immunopharmacol 2011; 11:1012-7. [DOI: 10.1016/j.intimp.2011.02.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 12/27/2022]
|
21
|
Toubiana J, Rossi AL, Grimaldi D, Belaidouni N, Chafey P, Clary G, Courtine E, Pene F, Mira JP, Claessens YE, Chiche JD. IMPDHII protein inhibits Toll-like receptor 2-mediated activation of NF-kappaB. J Biol Chem 2011; 286:23319-33. [PMID: 21460227 DOI: 10.1074/jbc.m110.201210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K.
Collapse
|
22
|
Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 2010; 107:17385-90. [PMID: 20855618 DOI: 10.1073/pnas.1003996107] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remain unclear. Hydrogen peroxide (H(2)O(2)) plays an important role in cell signaling and is an attractive candidate mediator of adaptive responses in astrocytes. Here we determine (i) the significance of H(2)O(2) in promoting astrocyte-dependent neuroprotection from oxidative stress, and (ii) the relevance of H(2)O(2) in inducing astrocytic Nrf2 activation. To control the duration and level of cytoplasmic H(2)O(2) production in astrocytes cocultured with neurons, we heterologously expressed the H(2)O(2)-producing enzyme Rhodotorula gracilis D-amino acid oxidase (rgDAAO) selectively in astrocytes. Exposure of rgDAAO-astrocytes to D-alanine lead to the concentration-dependent generation of H(2)O(2). Seven hours of low-level H(2)O(2) production (∼3.7 nmol·min·mg protein) in astrocytes protected neurons from oxidative stress, but higher levels (∼130 nmol·min·mg protein) were neurotoxic. Neuroprotection occurred without direct neuronal exposure to astrocyte-derived H(2)O(2), suggesting a mechanism specific to astrocytic intracellular signaling. Nrf2 activation mimicked the effect of astrocytic H(2)O(2) yet H(2)O(2)-induced protection was independent of Nrf2. Astrocytic protein tyrosine phosphatase inhibition also protected neurons from oxidative death, representing a plausible mechanism for H(2)O(2)-induced neuroprotection. These findings demonstrate the utility of rgDAAO for spatially and temporally controlling intracellular H(2)O(2) concentrations to uncover unique astrocyte-dependent neuroprotective mechanisms.
Collapse
|